
Appendix for:
’Constrained deep neural network architecture search

for IoT devices accounting hardware calibration’

Anonymous Author(s)
Affiliation
Address
email

The following Sections cover technical details of our work. Section 1 defines the search spaces1

and manually designed sampling laws, Section 2 provides statistics over networks sampled from2

the defined laws, Section 3 details data augmentation and hyper-parameters used for training and3

Section 4 justifies the choice of the IoT device and explains the workflow to export a model from4

the back-end framework and to deploy it on the IoT device. Section 5 elaborates how we scale our5

algorithm to multiple datasets and provides further information of the datasets.6

1 Search space and sampling law definition7

Table 1: Search spaces induced from established reference models

Space Reference model Params Ops Our Acc1 Ref Acc2 [5]

S1 DenseNet121 [13] 7.0M 898.1M 94.13% 95.04%
S2 MobileNetV2 [12] 2.3M 94.6M 92.94% 94.43%
S3 GoogLeNet [20] 6.2M 1.5G 93.55% -
S4 PNASNetA [15] 135.5K 29.2M 83.85% -
S5 ResNeXt29_32x4d [22] 4.8M 779.6M 93.46% 94.73%
1 reproduced results with our training limited to 100 epochs
2 reference results of third-party implementation with high-effort training of 350 epochs

Table 1 lists the five search spaces used in this work that are based on established models. Typical8

models consist of 2M up to 7M of parameters and cause workloads from 94.6 million up to 1.5 billion9

FLOPs and are too large for fast implementations on a targeted IoT device. DenseNets [13] exists in10

common variants, 121, 161, 169, and 201 and we used the smallest variant (DenseNet121) as starting11

point. We reproduced the accuracy for all architectures by running our training procedure as detailed12

in Section 3 where we used an upper limit of 100 epochs and compare it with the claimed reference13

accuracy from the source from where we obtained the architecture implementation in PyTorch [3].14

The latter values are slightly higher but they are obtained with a high effort training that runs for a15

fixed amount of 350 epochs. Additionally, the later source does not state the mean and variance of16

the training process neither is it completely clear if the values are obtained in a one-shot training or if17

the best values have been selected after repeating the training process several times. In contrast, we18

decided to follow a pragmatic but efficient approach of evaluating each architecture only once and19

to limit training effort to an affordable value of 100 epochs. This decision is motivated by the fact20

that we want the same training procedure to be applied to over 3’000 models. Training evaluations21

with high-effort would cause 3.5× more computational costs and repeating experiments to deliver22

statistics would at least require a repetition factor of 5×. Both aspects together cause a 17.5× increase23

in computation cost. In our opinion, if we are willing to pay such an increase, it would be more24

interesting to use an affordable approach and invest the additional budget into investigating more25

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



architectures. The increased effort would allow investigating over 50’000 network architectures. Next,26

we define the sampling laws and parameters used to manually enforce smaller variants of networks27

within the defined spaces.28

DenseNets [13] consists of four stages, each repeating DenseNet unique blocks. We identified the29

stage-specific number of repetitions, the growth rate and the reduction factor as relevant hyper-30

parameters that we modify. Table 2 specifies the sampling laws. In this case, we decided to clip the31

repetition factor at 32 which additionally includes the configuration of DenseNet161. The normalized32

reduction factor is sampled with a step size of 0.01.33

Table 2: Architecture search space definition S1 with different
sampling laws for DenseNets
Law Cardinality Densenet parameters

ni, i ∈ {1,2,3,4} g∗ r∗∗

L0 3.3∗109 [1,32] [1−32] [0.0,1.0]
L1 2.0∗106 [1,8] [1−8] [0.2,0.8]
L2 6.3∗107 [1,16] [1−16] [0.2,0.8]
L3 1.0∗109 [1,32] [1−32] [0.5,0.8]
∗ g is the growth rate, ∗∗ r is the reduction rate

MobileNetsV2 [12] consists of seven stages, each repeating MobileNetsV2 unique blocks. Each block34

is configured with four parameters, input number of channels, output number of channels, expansion35

factor, and a stride factor. To generate valid configurations, we define the first input channel number36

separately, since the subsequent input shape follows directly from the previous block configuration.37

Additionally, we restrict the stride factor per stage to either be one or two and we further require to38

sample exactly three twos and four ones. The reason for this choice is due to the stride parameter39

directly influences the spatial shape of tensors and the limitation ensures fixed downsampling over40

three steps from 32×32 to 4×4. Additionally, the existing intermediate last convolutional layer is41

separately parametrized and is used as in the original reference model as a transition layer between42

the last block and the final linear classifier. Table 3 states the sampling law definitions.43

Table 3: Architecture search space definition S2 with different sampling laws for
MobileNets
Law Cardinality MobileNet parameters, i ∈ [1,7]

fin ei fi ni si fout

L0 5.2∗1034 [1,128] [1,8] [1,256] [1,4] [1,2] [1,1280]
L1 3.6∗1033 [16,128] [1,6] [16,256] [1,4] [1,2] [128,1280]
L2 2.0∗1028 [16,64] [1,4] [16,128] [1,3] [1,2] [128,512]
L3 3.1∗1021 [16,32] [1,2] [16,64] [1,2] [1,2] [128,256]
L4 4.0∗1019 [16,32] [1,2] [4,32] [1,2] [1,2] [64,128]
L5 1.4∗1015 [16,32] [1,2] [2,8] [1,2] [1,2] [16,64]
L6 4.3∗1013 [4,8] [1,2] [2,8] [1,2] [1,2] [12,16]

GoogLeNet [20] is composed of the characteristic Inception module, which is defined through seven44

intermediate channel depths. The full network is grouped into three stages, first a convolutional45

pre-layer, second, and third a max-pooling separates sequences that are built from two, five, and two46

Inception modules. Table 4 defines the sampling laws. We choose parameter specific upper bounds47

oriented on the reference implementation.48

PNASNet-A [15] consists of three stages that are build by repeating cell-A type of blocks. The stages49

are separated by downsampling layers that are implemented as cell instances with a stride of two.50

Table 6 defines the sampling laws that affect the number of block repetitions and the number of51

channels used in the block, where f2 and f3 are relatively defined to the output shape of previous52

stages.53

2



Table 4: Architecture search space definition S3 with different sampling laws for GoogLeNetd
Law Cardinality GoogLeNet parameters, i ∈ [1,9]

f 0
0 f 1

i f 2
i f 3

i f 4
i f 5

i f 6
i

L0 3.4∗10122 [16,256] [16,384] [16,192] [16,384] [16,48] [16,128] [16,128]
L1 2.8∗10119 [16,256] [16,384] [16,192] [16,384] [16,48] [16,128] [16,128]
L2 1.1∗1097 [16,256] [16,64] [16,64] [16,64] [16,32] [16,32] [16,32]
L3 9.8∗1051 [16,256] [16,32] [8,16] [16,32] [4,8] [4,8] [4,8]
L4 6.3∗1039 [16,128] [4,8] [4,8] [4,8] [4,8] [4,8] [4,8]
L5 5.2∗1026 [8,16] [4,6] [4,6] [4,6] [4,6] [4,6] [4,6]
L6 5.0∗1038 [8,16] [2,6] [2,6] [2,6] [2,6] [2,6] [2,6]

f 0
i+1 := f 1

i + f 3
i + f 5

i + f 6
i for i≥ 0, recursive definition such that next input shape matches the

previous output shape

Table 5: Architecture search space definition S4 with different
sampling laws for PNASNet-A
Law Cardinality PNASNet-A parameters, i ∈ {1,2,3}

ni f1 d2 d3

L0 3.5∗106 [1,12] [1,128] [1,4] [1,4]
L1 3.1∗106 [1,12] [16,128] [1,4] [1,4]
L2 2.3∗105 [1,8] [16,64] [1,3] [1,3]
L3 9.7∗102 [1,3] [8,16] [1,2] [1,2]

Set f2 := f1 ∗d2 and f3 := f2 ∗d3.

ResNeXt [22] is the improvement over the typical ResNet [11] structure. It consists of a three-54

stage architecture where each stage repeats the bottleneck block ni times, for i ∈ {1,2,3}. The55

block consists of the typical residual connection and follows a bottleneck design where grouped56

convolutions are used to reduce the kernel size. We define in the search space with the bottleneck base57

width fi and the cardinality ci. However, the total channel size that is invoked during the grouped58

convolution operation is of width fi ∗ci. Since we want to limit the product fi ∗ci but we also require it59

to be devisable by either fi and ci we decided to randomly sample the later and restrict the cardinality60

upper bound to be lhigh/ fi, where lhigh denotes the upper product limit and fi is dependent on the61

current sampling of the base depth. Table 6 summaries the defined random laws.62

Table 6: Architecture search space definition S5 with
different sampling laws for ResNeXt
Law Cardinality ResNeXt parameters, i ∈ [1,3]

ni fi ci

L0 9.5∗1014 [1,3] [1,64] [1,512]
L1 2.1∗1010 [1,3] [4,64] [1,512/ fi]
L2 2.4∗108 [1,3] [4,32] [1,128/ fi]
L3 1.5∗105 [1,2] [4,8] [1,32/ fi]

2 Statistical results of used networks63

For the defined search spaces and sampling laws, we collected statistics over 1000 networks that are64

presented in Figure 1. We targeted to cover the full domain in [103,107]. Some search spaces, such65

as S1, S3, and S5 are quickly covered with three simple configurations. Other search spaces, such66

as S2 and S3, lead to narrower distributions. We decided to add three additional sampling laws to67

cover the lower domain. The right-hand side of Figure 1 shows statistics obtained when networks68

3



103 104 105 106 107 108

number of parameters

0

10

20

30

40

n
u

m
b

er
of

o
cc

u
rr

en
ce

s

L1

L2

L3

(a) Manual laws on S1

103 104 105 106 107 108

number of parameters

0

100

200

300

400

n
u

m
b

er
of

o
cc

u
rr

en
ce

s

automatic search

random configuration

(b) Automatic law on S1

103 104 105 106 107 108

number of parameters

0

50

100

150

200

250

n
u

m
b

er
of

o
cc

u
rr

en
ce

s

L1

L2

L3

L4

L5

L6

(c) Manual laws on S2

103 104 105 106 107 108

number of parameters

0

200

400

600

800

1000

n
u

m
b

er
of

o
cc

u
rr

en
ce

s

automatic search

random configuration

(d) Automatic law on S2

103 104 105 106 107 108

number of parameters

0

100

200

300

400

n
u

m
b

er
of

o
cc

u
rr

en
ce

s

L1

L2

L3

L4

L5

L6

(e) Manual laws on S3

103 104 105 106 107 108

number of parameters

0

500

1000

1500

2000

2500

n
u

m
b

er
of

o
cc

u
rr

en
ce

s

automatic search

random configuration

(f) Automatic law on S3

are obtained by uniformly sampling each parameter in its full domain (according to the law L0 in69

the previous tables) and when they are obtained with automatically generated sampling laws that70

are adjusted with our proposed genetic algorithm. The base law of the original definition has a high71

impact on where the actual mass of the distribution concentrates. The main densities are around72

106 parameters for S1 and S2. S3 and S4 have the center of mass above 107 parameters which cause73

difficulties for the genetic algorithm to converge towards the low end of the domain. Still, in all cases,74

the genetic algorithm is capable of either considerably moves the center of mass to the left or to75

flatten out the distribution. For completeness, Table 7 states the parameter and flop metrics obtained76

with our defined search spaces.77

4



103 104 105 106 107 108

number of parameters

0

25

50

75

100

125

150

n
u

m
b

er
of

o
cc

u
rr

en
ce

s

L1

L2

L3

(g) Manual laws on S4

103 104 105 106 107 108

number of parameters

0

200

400

600

800

n
u

m
b

er
of

o
cc

u
rr

en
ce

s

automatic search

random configuration

(h) Automatic law on S4

103 104 105 106 107 108

number of parameters

0

20

40

60

80

100

120

n
u

m
b

er
of

o
cc

u
rr

en
ce

s

L1

L2

L3

(i) Manual laws on S5

103 104 105 106 107 108

number of parameters

0

200

400

600

800

n
u

m
b

er
of

o
cc

u
rr

en
ce

s

automatic search

random configuration

(j) Automatic law on S5

Figure 1: Statistic over manual (left) and automatic generated (right) networks for all search spaces
S1 up to S5. With manually design the sampling law, a human expert can reasonably adjust and focus
the distribution into regions of interest, either close to a target constraint and in a general way to
cover five orders of magnitude.

3 Training setup78

We conducted all training experiments in a controlled environment where we trained from scratch for79

each candidate architecture. We used PyTorch version 0.4.1 as development framework and run on80

IBM Power8 or Power9 nodes equipped with either P100 or V100 GPUs. We used standard on-the-fly81

data augmentation during training that pads images with 4 pixels and randomly crops the image to82

32×32 pixels, apply horizontal flipping with a probability of 0.5 and finally normalizes pixel values83

to zero mean and unit variance. During testing, the original 32×32 images are directly normalized84

and feed into the models. For training, we used stochastic gradient descent with a batch size of 12885

samples configured with an initial learning rate of 0.01, a momentum of 0.9, and a weight decay86

factor of 5∗10−4. We used a fixed scheduling schema where the learning rate is divided by a factor87

of 10 at epoch 40 and 70 and we limit training to stop at 100 epochs.88

4 Deployment setup89

In our work, we decided to demonstrate our algorithm to produce optimized network architectures90

for the Raspberry-Pi 3(B+) as stated in our paper. At this point, we consider it worth to justify our91

choice. First, it should be mentioned that there is a current emerging trend in industry and research92

that pushes to improve hardware for artificial intelligence (AI) by either improving performance,93

reducing power consumption or providing better trade-offs in terms of power/performance ratios94

or hardware cost versus the on-device supported features. In terms of thinking through IoT driven95

business cases, the fact that new hardware appears requires to benchmark and rethink on what HW96

5



Table 7: Overview of parameters and flop metrics of generated architecture search spaces. We started
from seven well-known topologies and defined at least three sampling laws per narrow search. The
generated search spaces cover over three order of magnitudes in the amount of weights and flops.

Search space Number of parameters Number of flops

Min Mean+/-Std Max Min Mean+/-Std Max

DenseNet L1 5.8e+2 2.6e+4+/-2.3e+4 1.2e+5 1.5e+5 7.5e+6+/-7.2e+6 3.3e+7
L2 0.e+0 2.3e+5+/-2.3e+5 1.6e+6 0.e+0 6.9e+7+/-7.6e+7 4.0e+8
L3 5.6e+3 2.8e+6+/-3.e+6 1.9e+7 4.5e+5 7.6e+8+/-9.1e+8 4.8e+9

MobileNetV2 L1 9.5e+2 1.6e+3+/-2.0e+2 2.2e+3 1.8e+5 4.5e+5+/-1.7e+5 1.2e+6
L2 2.5e+3 5.4e+3+/-1.4e+3 9.6e+3 9.e+5 2.8e+6+/-1.2e+6 6.6e+6
L3 8.8e+3 2.0e+4+/-5.1e+3 4.0e+4 1.4e+6 5.9e+6+/-3.2e+6 2.1e+7
L4 2.8e+4 6.9e+4+/-1.6e+4 1.3e+5 2.2e+6 1.5e+7+/-1.1e+7 7.2e+7
L5 1.2e+5 4.3e+5+/-1.5e+5 9.9e+5 8.6e+6 1.0e+8+/-8.4e+7 6.9e+8
L6 3.1e+5 2.7e+6+/-1.2e+6 7.8e+6 2.1e+7 6.3e+8+/-5.7e+8 4.0e+9

GoogLeNet L1 4.5e+3 6.5e+3+/-5.4e+2 8.3e+3 1.8e+6 2.6e+6+/-2.8e+5 3.4e+6
L2 8.8e+3 9.8e+3+/-3.2e+2 1.1e+4 3.3e+6 3.8e+6+/-1.9e+5 4.3e+6
L3 1.3e+4 1.7e+4+/-2.e+3 2.2e+4 4.9e+6 8.7e+6+/-1.9e+6 1.3e+7
L4 4.5e+4 6.4e+4+/-6.3e+3 8.0e+4 1.6e+7 2.9e+7+/-5.7e+6 4.3e+7
L5 2.8e+5 3.8e+5+/-3.2e+4 4.9e+5 1.0e+8 1.5e+8+/-1.9e+7 2.1e+8
L6 2.4e+6 4.2e+6+/-6.6e+5 6.8e+6 8.0e+8 1.5e+9+/-3.1e+8 2.5e+9

PNASNet L1 2.7e+3 4.8e+3+/-1.2e+3 7.6e+3 9.4e+5 1.8e+6+/-4.9e+5 2.8e+6
L2 6.8e+3 6.0e+4+/-3.6e+4 2.1e+5 2.4e+6 1.6e+7+/-8.e+6 4.4e+7
L3 1.6e+4 2.6e+5+/-2.2e+5 1.5e+6 4.1e+6 5.1e+7+/-3.3e+7 2.e+8

ResNeXt L1 3.0e+3 1.1e+4+/-3.9e+3 2.2e+4 1.6e+6 6.1e+6+/-2.6e+6 1.2e+7
L2 1.5e+4 1.6e+5+/-7.4e+4 4.5e+5 3.7e+6 7.e+7+/-4.e+7 2.1e+8
L3 1.0e+5 2.1e+6+/-1.1e+6 6.8e+6 2.1e+7 8.5e+8+/-5.8e+8 2.7e+9

product a certain IoT application should be built. We are aware of the existence of tens of ASIC or97

FPGA solutions that might be selected for business legitimated reasons as a target edge inference98

system.99

We think that the crucial factors for a successful IoT deployment strategy cover the following points100

with an importance that is application specific:101

• reliability102

• user/developer friendly software ecosystem103

• modular integration or extensions of different functionality104

• typical IoT support105

• cost efficient system106

We decided that in this work we focus on the algorithm. However, since we are aware of many107

choices and good reasons for a certain HW solution, we developed our approach such that the main108

functionality is decoupled from the actual HW implementation. Especially, populating a database109

with the current results that are obtained with expensive training for obtaining the model accuracy,110

can easily be reused later on for any hardware platform by just implementing the inference and111

timing measurement setup in order to obtain the new HW calibration information. In this work, we112

focus on the most general use-case that causes the least amount of requirements for the underlying113

hardware. That way, we identified the Raspberry-Pi 3(B+) as general purpose quad-core architecture114

as a suitable IoT device candidate. The Raspberry-Pi proves its marketability by the fact that it has115

been shipped over 25 million times by February 2019 [4]. Even though there are competing products116

that are specially tailored for AI deployment, the choice of selecting a general-purpose platform117

equipped with a Linux operating system comes with obvious advantages, such that it enables to reuse118

established software and solutions can be easily extended to any needs. In contrast to dedicated AI119

accelerators that are shipped as USB dongles, potentially required features such as Ethernet, WiFi,120

SDCard slot, or USB ports are already included in the Raspberry-Pi 3(B+). Even though we are aware121

that a general purpose architecture cannot compete in some performance metrics with a dedicated AI122

6



product, we argue that our work is especially insightful since we cover the more challenging case on123

optimizing for a performance limited device. In our view, it is plausible enough to argue that a more124

performant device will automatically deliver better results. We aim to support various HW platforms125

with different deployment flows in future work.126

Next, we describe the deployment flow for the Raspberry-Pi 3(B+). Even though our back-end127

algorithms, as well as our training routine, is implemented in PyTorch, we still aim to remove128

the back-end dependency in order to be open and to ease later migration to new target platforms,129

frameworks, and ecosystems. To that end, we decided to export all models according to the open130

neural network exchange (ONNX) format [2]. We decided to use caffe2 as target device runtime for131

the exported ONNX models. We build the caffe2 framework directly from a full source compilation132

with all default parameters on the Raspberry-Pi 3(B+) and we ensured that the produced code is using133

the ARMs NEON library [1] for fast computation. We wrote a light script to import the produce134

ONNX models and we trigger a sequence of inferences for a single image. In our work, all timing135

results have been obtained by averaging wall clock times over ten runs.136

5 Datasets137

Our large-scale search that provides Pareto optimal fronts is conducted on CIFAR10 [14] with the138

provided train and test splitting. We demonstrate the scalability of our architecture search by applying139

a fast customized search to individual datasets. In contrast to previous architecture searches that140

include training inside the main optimization loop, we can sample a very large amount of neural141

networks in a short time without training. Additionally, we can run the genetic algorithm to bias the142

sampling process into domains we are interested without any single network training step. With our143

approach, customized searches become affordable. For each dataset we performed the following144

workflow: we define an upper constraint τ , we run a genetic search with the optimization goal to145

deliver a sampling law with a probability density function that is concentrated in τ1 = 0.5τ,τ2 = τ ,146

we sample 100 candidate networks from the found sampling law, we filter out the good models that147

strictly satisfy the one-sided constraint < τ and we randomly select 10 suitable networks. Finally, only148

10 candidate networks are entering the compute-intensive trained procedure. This approach allows149

affording to validate our algorithm on thirteen datasets for three considered constraints. Figure 8 of150

our paper presents the results. The following explains the considered datasets.151

We focus on sixteen public available and established image classification datasets: MNIST [9],152

GTSRB [19], svhn [16], CIFAR10 [14], flowers1, flowers102 [17], fashion MNIST [21], food101153

[6], CIFAR100 [14], stl10 [8], textures [7], indoor67 [18], caltech256 [10], quickdraw2, and places154

[23]. Figure 2 shows the number of classes, Figure 3 shows the balance of the classes as ratio of155

samples of the majority over the minority class, and Figure 4 shows the number of samples used156

for training and testing. The datasets span two order of magnitudes in the number of classes and157

in the number of available training samples and one order of magnitude in the balance ratio. The158

datasets stem from various domains and cover typical and relevant use cases such as optical digit159

recognition stemming from handwritten samples (MNIST) or in the context of images stemming from160

house numbers (svhn). GTSRB covers traffic sign recognition, a use case that occurs in autonomous161

driving systems. Scene recognition aims to classify the location of where the picture was taken as162

whole (indoor67 and places), whereas traditional classification tasks are posed around identifying a163

class based on a particular object present within the image. In order to limit the workload, we run our164

proposed algorithm on 13 out of 16 datasets that have less than 100’000 images in the training set.165

Results are presented in Figure 8 of our paper.166

1Available at http://download.tensorflow.org/example_images/flower_photos.tgz
2Available at https://github.com/googlecreativelab/quickdraw-dataset

7

http://download.tensorflow.org/example_images/flower_photos.tgz
https://github.com/googlecreativelab/quickdraw-dataset


flo
wers stl

10

cif
ar1

0

fas
hio

n
mnis

t
sv

hn
gts

rb

gts
rbc

rop

tex
tur

es

ind
oo

r67
pla

ce
s

cif
ar1

00

foo
d1

01

flo
wers

10
2

ca
lte

ch
25

6

qu
ick

dra
w

10
1

10
2

N
um

be
r o

f c
la

ss
es

Figure 2: The number of classes per dataset cover two orders of magnitude, from as few as 5 classes
up to 345 classes.

flo
wers

10
2

tex
tur

es
stl

10

cif
ar1

00

cif
ar1

0

fas
hio

n

foo
d1

01

qu
ick

dra
w

ind
oo

r67
mnis

t

pla
ce

s

flo
wers sv

hn
gts

rb

gts
rbc

rop

ca
lte

ch
25

6
0

2

4

6

8

10

12

C
la

ss
 b

al
an

ce
 (m

ax
/m

in
)

Figure 3: Ratio of class samples of majority over minority class in the training data. The balance
ratio spans from 1.0 (for equally balanced datasets) up to a factor of 11.9×.

8



flo
wers

10
2

flo
wers

tex
tur

es
stl

10

ind
oo

r67

ca
lte

ch
25

6
gts

rb

gts
rbc

rop

cif
ar1

00

cif
ar1

0

fas
hio

n
mnis

t

foo
d1

01

qu
ick

dra
w
pla

ce
s

sv
hn

10
3

10
4

10
5

N
um

be
r o

f s
am

pl
es

train
test

Figure 4: The number of samples within a given dataset used for training and testing sorted by
training samples. Train and test sets are always disjoint and the splitting is given as suggested by the
reference. The number of training samples spans more than two order of magnitude.

9



References167

[1] Arm neon. https://www.arm.com/why-arm/technologies/neon. Accessed: 2019-05-22.168

[2] Onnx: Open neural network exchange format. https://onnx.ai/. Accessed: 2019-05-22.169

[3] Pytorch. https://pytorch.org/. Accessed: 2019-05-22.170

[4] Raspberry pi celebrates 25 millionth sale as 7th anniversary arrives. https://www.tomshardware.com/171

news/raspberry-pi-25-million-sold,38724.html. Accessed: 2019-05-22.172

[5] Train cifar10 with pytorch. https://github.com/kuangliu/pytorch-cifar. Accessed: 2019-05-22.173

[6] L. Bossard, M. Guillaumin, and L. Van Gool. Food-101 – mining discriminative components with random174

forests. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision – ECCV 2014, pages175

446–461, Cham, 2014. Springer International Publishing.176

[7] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild. In177

Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’14, pages178

3606–3613, Washington, DC, USA, 2014. IEEE Computer Society.179

[8] A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning. In180

G. Gordon, D. Dunson, and M. Dudík, editors, Proceedings of the Fourteenth International Conference181

on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages182

215–223, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.183

[9] L. Deng. The mnist database of handwritten digit images for machine learning research [best of the web].184

IEEE Signal Processing Magazine, 29(6):141–142, 2012.185

[10] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007.186

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In The IEEE Conference187

on Computer Vision and Pattern Recognition (CVPR), June 2016.188

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.189

Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR, abs/1704.04861,190

2017.191

[13] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional networks.192

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.193

[14] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.194

[15] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and K. Mur-195

phy. Progressive neural architecture search. In The European Conference on Computer Vision (ECCV),196

September 2018.197

[16] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with198

unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning,199

volume 2011, page 5, 2011.200

[17] M. E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In 2008201

Sixth Indian Conference on Computer Vision, Graphics Image Processing, pages 722–729, Dec 2008.202

[18] A. Quattoni and A. Torralba. Recognizing indoor scenes. In 2009 IEEE Conference on Computer Vision203

and Pattern Recognition, pages 413–420, June 2009.204

[19] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The german traffic sign recognition benchmark: A205

multi-class classification competition. In The 2011 International Joint Conference on Neural Networks,206

pages 1453–1460, July 2011.207

[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for208

computer vision. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June209

2016.210

[21] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine211

learning algorithms, 2017.212

[22] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated residual transformations for deep neural213

networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.214

[23] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million image database for215

scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.216

10

https://www.arm.com/why-arm/technologies/neon
https://onnx.ai/
https://pytorch.org/
https://www.tomshardware.com/news/raspberry-pi-25-million-sold,38724.html
https://www.tomshardware.com/news/raspberry-pi-25-million-sold,38724.html
https://www.tomshardware.com/news/raspberry-pi-25-million-sold,38724.html
https://github.com/kuangliu/pytorch-cifar

	Search space and sampling law definition
	Statistical results of used networks 
	Training setup
	Deployment setup
	Datasets

