
Supplementary Materials

A Preliminaries
A.1 Quantum Information
We introduce necessary quantum information backgrounds for our qWGAN.

Quantum states Quantum information can be formulated in terms of linear algebra. Given the
space Cd, its computational basis is denoted as {~e0, . . . ,~ed�1}, where ~ei = (0, . . . , 1, . . . , 0)† with
the (i + 1)th entry being 1 and other entries being 0; here ‘†’ denotes the complex conjugate of a
vector/matrix.
Pure quantum states with dimension d are represented by unit vectors in Cd: i.e., a vector ~v =
(v0, . . . , vd�1)† is a quantum state if

P
d�1
i=0 |vi|2 = 1. For each i, vi is called the amplitude in ~ei. If

there are at least two non-zero amplitudes, quantum state ~v is in superposition of the computational
basis, a fundamental feature in quantum mechanics.
Mixed quantum states are probabilistic mixtures of pure quantum states. Formally, a mixed state
can be written as

P
r

k=1 pk~vk~v
†
k

where pk � 0 8k 2 [r],
P

r

k=1 pk = 1, and ~vk is a pure state (i.e.
k~vkk2 = 1) for all k 2 [r]. Denote ⇢ :=

P
r

k=1 pk~vk~v
†
k
; ⇢ satisfies ⇢ ⌫ 0, Tr[⇢] = 1, and ⇢† = ⇢

(i.e., ⇢ is a Hermitian matrix). Such matrices are called density matrices, and every mixed state is a
density matrix (and vice versa).
In many scenarios, quantum states are naturally composed of two parts. This comes to the concept of
bipartite quantum systems, where a bipartite quantum state ⇢12 in Cd1 ⌦ Cd2 (d1, d2 2 N) can be
written as ⇢12 =

P
i
ci⇢i,1⌦⇢i,2 for a probability distribution {ci} and density matrices {⇢i,1} in Cd1

and {⇢i,2} in Cd2 . Since
P

i
ci = 1 we have Tr[⇢12] = 1, i.e., ⇢12 is a density matrix in Cd1 ⌦ Cd2 ;

partial trace is defined to further characterize the properties in each separate part. Formally, the
partial trace on system 1 is defined as Tr1[⇢12] :=

P
i
ci⇢i,2, whereas the partial trace on system 2 is

defined as Tr2[⇢12] :=
P

i
ci⇢i,1.

Qubits The basic element in classical computers is one bit, whereas the basic element in quantum
computers is one qubit. Mathematically, a 1-qubit state is a state in C2 and can be written as a~e0+b~e1
for some a, b 2 C such that |a|2 + |b|2 = 1. An n-qubit state can be written as ~v1 ⌦ · · ·⌦ ~vn where
each ~vi (i 2 [n]) is a qubit state, and ⌦ is the Kronecker product: if ~u 2 Cd1 and ~v 2 Cd2 , then
~u⌦ ~v 2 Cd1 ⌦ Cd2 is

~u⌦ ~v = (u0v0, u0v1, . . . , ud1�1vd2�1)
†. (A.1)

n-qubit states are in a Hilbert space of dimension 2n.

Unitary gates Having the definition of quantum states, it comes to the rules of their evolution.
Note that we want to keep the quantum states normalized under `2-norm; in linear algebra such
transformations are known as unitary transformation. Formally, a matrix U is unitary iff UU† = I .
The gates in quantum computation are always unitary gates and can be stated in the circuit model3
where an n-qubit gate is a unitary matrix in C2n . A common group of unitary gates on a qubit is the
Pauli gates, where

�I =

"
1 0

0 1

#
, �x =

"
0 1

1 0

#
, �y =

"
0 �i

i 0

#
, �z =

"
1 0

0 �1

#
; (A.2)

note that the Pauli gates form a basis of all the unitaries acting on C2. Furthermore, �2
I
= �2

x
=

�2
y
= �2

z
= I; this implies that the exponentiation of a Pauli matrix is a linear combination of Pauli

matrices: for any phase ✓ 2 R and � 2 {�I ,�x,�y,�z}, the Taylor expansion of e✓� is

e✓� =
1X

k=0

✓k�k

k!
=

1X

k=0

✓2k

(2k)!
I +

1X

k=0

✓2k+1

(2k + 1)!
�. (A.3)

3Uniform circuits have equivalent computational power as Turing machines; however, they are more conve-
nient to use in quantum computation.

13

Quantum measurements Quantum states can be measured by quantum measurements. For pure
states, the simplest measurement is to measure in the computational basis; for ~v = (v1, . . . , vn), such
measurement returns k with probability |vk|2 for all k 2 [n]. Recall that ~v is normalized such that
k~vk2 = 1, the measurement outcome constitutes a probability distribution on [n]. For n-qubit pure
states ~v, a common measurement is the Pauli measurement, where you first apply ~v by a tensor of
Pauli gates �1 ⌦ · · ·⌦ �n (�1, . . . ,�n 2 {�I ,�x,�y,�z}) and measure in the computational basis
{~e0 ⌦ · · ·⌦ ~e0, . . . ,~e1 ⌦ · · ·⌦ ~e1}.
For a density matrix ⇢, the most general measurements are positive-operator valued measurements
(POVMs), characterized by a set of Hermitian operators {E1, . . . , Ek} such that 1) Ei ⌫ 0 for all
i 2 [k], and 2)

P
k

i=1 Ei = I . The outcome of the measurement is i with probability Tr[⇢Ei]; this
also constitutes a probability distribution as

P
k

i=1 Tr[⇢Ei] = Tr[⇢] = 1.

Distance measure There are various of ways to define the distance between two quantum states ⇢1
and ⇢2. One natural distance is the trace distance defined by FTr(⇢1, ⇢2) := Tr |⇢1 � ⇢2|, the sum of
the absolute value of the eigenvalues of ⇢1 � ⇢2; this generalizes the total variation distance between
classical distributions. Another common distance is the fidelity: F (⇢1, ⇢2) := Tr[

pp
⇢1⇢2

p
⇢1]2.

F (⇢,�) = 1 if and only if ⇢ = �, and F (⇢,�) approaches 1 as ⇢ approaches � [28].
Besides symmetric distances, people also consider divergences as they also characterize natural
properties between two distributions. One such example is the Kullback-Leibler divergence (KL
divergence) [24], also known as the relative entropy, defined as follows for two classical distributions
p and q on [n]:

DKL(pkq) =
nX

i=1

pi log(pi/qi) =
nX

i=1

pi log pi �
nX

i=1

pi log qi. (A.4)

Quantumly there is a natural extension, namely the quantum relative entropy, defined as follows:

S(⇢k�) := Tr[⇢(log ⇢� log �)]. (A.5)

(See (A.9) below for the definition of log ⇢ and log �.)
To learn quantum distributions (states), one must minimize some measure of distance between the true
density matrix and our learned state; however, it turns out that the trace distance and the fidelity are
not easily amenable to be optimized. This is the main reason why we adopt our quantum Wasserstein
semimetric; see more discussions in Section 3 and Supplemental Materials B.

Symmetric subspace Recall that our quantum Wasserstein semimetric in Section 3 is symmetric;
achieving this requires the theory of symmetric subspaces. Given two Hilbert spaces X and Y that are
isometric, a symmetric subspace of the space X ⌦ Y is the space of those vectors that are invariant
to a permutation of X and Y individually. Ref. [22] proved that the projection onto the symmetric
subspace is given by

⇧sym :=
I + SWAP

2
(A.6)

where I is the identity operator and SWAP is the operator such that SWAP(x⌦ y) = (y ⌦ x), 8x 2

X , y 2 Y . It is also well known that ⇧sym is a projector on X ⌦ Y , ie. ⇧2
sym = ⇧sym, and that

⇧sym(u⌦ u) = u⌦ u for all quantum states u. This motivates us to choose the cost matrix C in (4.1)
to be the complement of the symmetric subspace, i.e.,

C :=
I� SWAP

2
. (A.7)

Such choice is natural because on the one hand it ensures that qW(⇢, ⇢) = 0 for any quantum state ⇢,
and on the other hand it promises the symmetry of the semimetric, i.e., qW(⇢,�) = qW(�, ⇢) for
any quantum states ⇢,�.

A.2 Matrix Arithmetics
Unless otherwise mentioned, the matrices we consider are Hermitian, defined as all matrices A such
that A† = A. For any two Hermitian matrices A,B 2 Cn⇥n, we say A ⌫ B iff A�B is a positive
semidefinite matrix (i.e., A�B only has nonnegative eigenvalues), and A � B iff A�B is a positive
definite matrix (i.e., A�B only has positive eigenvalues).

14

A function of a Hermitian matrix is computed by taking summations of matrix powers under its
Taylor expansion; for instance, for any Hermitian A we have

exp(A) :=
1X

k=0

Ak

k!
, (A.8)

and for any 0 � B � 2I we have

log(B) :=
1X

k=1

(�1)k+1

k
(B � I)k. (A.9)

Furthermore, we introduce two tools for matrix arithmetics that we frequently use throughout the
paper. The first is a rule for taking gradients of matrix functions:
Lemma A.1 ([42]). Given a Hermitian matrix W 2 Cn⇥n and a function f : R ! R, we define the
gradient rW f(W) as the entry-wise derivatives, i.e., rW f(W) := (@f(W)ij

@Wij

)n
i,j=1. Then we have

rW Tr(W log(W)) = [log(W) + (W)]† = log(W) +W. (A.10)

For exponentiations of Hermitian matrices, we use the Golden-Thompson inequality stated as follows:
Lemma A.2 ([17, 40]). For any Hermitian matrices A,B 2 Cn⇥n,

Tr(exp(A+B))  Tr(exp(A) exp(B)). (A.11)

B Properties of the Quantum Wasserstein Semimetric
B.1 Proofs
Lemma B.1. Strong Duality holds for the semidefinite program (3.2).

Proof. Note that ⇡ = P ⌦Q is a feasible solution to the primal program (3.2).
Consider the solution = �IY , � = IX for the dual program (3.2). Then IX ⌦ � �⌦ IY � C =
�2IX ⌦ IY � C. For any vector v 2 X ⌦ Y , v†(�2IX ⌦ IY � C)v = �2 � v†Cv  �2 < 0.
Therefore IX ⌦ � �⌦ IY � C and the solution is strictly feasible. Since a strictly feasible solution
exists to the dual program and the primal feasible set is non-empty, Slater’s conditions are satisfied
and the lemma holds [44, Theorem 1 (1)].

Lemma B.1 shows that the primal and dual SDPs have the same optimal value and thus (3.5) can be
taken as an alternate definition of the Quantum Wasserstein distance.
The following theorem establishes some properties of the Quantum Wasserstein distance.
Theorem B.1. qW(·, ·) forms a semimetric over the set of density matrices D(X) over any space X ,
i.e., for any P,Q 2 D(X),

1. qW(P,Q) � 0,
2. qW(P,Q) = qW(Q,P),
3. qW(P,Q) = 0 iff P = Q.

Proof. We will use the definition of qW(·, ·) from (3.2) with Y being an isometric copy of X .
1. Consider the matrix C = I�SWAP

2 . Let ~u =
P

i,j2� uij~ei~ej be any vector in X⌦Y = C|�|
⌦C|�|.

By simple calculation,

~u†C~u =
X

i,j

u⇤
ij
(uij � uji) =

X

ij

(u⇤
ij
� u⇤

ji
)(uij � uji) =

X

ij

|uij � uji|
2
� 0; (B.1)

thus C is positive semidefinite. As a result, Tr(⇡C) � 0 for all ⇡ ⌫ 0, and qW(P,Q) � 0 for all
density matrices P,Q 2 D(X).

2. This property trivially holds because of the definition in (3.2) is symmetric in P and Q.
3. Suppose that P = Q have spectral decomposition

P
i
�i~vi~v

†
i
. Consider ⇡0 =

P
i
�i(~vi~v

†
i
⌦~vi~v

†
i
).

Then, Tr(⇡0C) = Tr(
P

i
�i(~vi~v

†
i
⌦ ~vi~v

†
i
)C) = Tr(

P
i
�i(~v

†
i
⌦ ~v†

i
)C(~vi ⌦ ~vi)). Since C =

I�SWAP
2 , C(~vi ⌦ ~vi) = 0 . Thus Tr(⇡0C) = 0 and since C is positive semidefinite, this must be

the minimum. Thus qW(P,P) = 0.

15

B.2 Regularized Quantum Wasserstein Distance
The regularized primal version of the Quantum Wasserstein GAN is constructed from (4.1) by adding
the relative entropy between the optimization variable ⇡ and the joint distribution of the real and fake
states P ⌦Q, given by S(⇡kP ⌦Q) = Tr(⇡ log(⇡)� ⇡ log(P ⌦Q)):

min
⇡

Tr(⇡C) + �Tr(⇡ log(⇡)� ⇡ log(P ⌦Q)) (B.2)

s.t. TrY(⇡) = P,TrX (⇡) = Q,⇡ 2 D(X ⌦ Y).

Here � is a parameter that is chosen during training, and determines the weight given to the regularizer.
To formulate the dual, we use Hermitian Lagrange multipliers � and to construct a saddle point
problem:

min
⇡

max
 ,�

Tr(⇡C) + �Tr(⇡ log(⇡)� ⇡ log(P ⌦Q))

+ Tr(�(TrY(⇡)� P))� Tr((TrX (⇡)�Q))

=min
⇡

max
 ,�

Tr(⇡(C + �⌦ IY � IX ⌦))� Tr(P�)

+ Tr(Q) + �Tr(⇡ log(⇡)� ⇡ log(P ⌦Q)). (B.3)
Switching the order of the optimizations:

max
 ,�

min
⇡

Tr(⇡(C + �⌦ IY � IX ⌦))� Tr(P�)

+ Tr(Q) + �Tr(⇡ log(⇡)� ⇡ log(P ⌦Q)). (B.4)
Solving the inner optimization problem for ⇡ and using Lemma A.1, we have that for the optimal ⇡,

(C + �⌦ IY � IX ⌦) + � log(⇡) + �I� log(P ⌦Q) = 0. (B.5)
Thus the dual optimization problem reduces to

max
�,

Tr(Q)� Tr(P�)�
�

e
Tr

✓
exp

✓
log(P ⌦Q)� C � �⌦ IY + IX ⌦

�

◆◆
(B.6)

s.t. � 2 H(X), 2 H(Y).

Note that the additional term in the objective of the dual cannot be directly written as the expected
value of measuring a Hermitian operator. However, we can use the Golden-Thompson inequality
(Lemma A.2) to upper bound on the objective, which can be written in terms of the expectation as

max
�,

Tr(Q)� Tr(P�)�
�

e
Tr

✓
(P ⌦Q) exp

✓
�C � �⌦ IY + IX ⌦

�

◆◆

= max
�,

EQ[]� EP [�]�
�

e
· EP⌦Q


exp

✓
�C � �⌦ IY + IX ⌦

�

◆�
(B.7)

s.t. � 2 H(X), 2 H(Y).

The regularized optimization problem has the following property:
Lemma B.2. Let f : D(X) ! R be defined as

EQ[]� EP [�]�
�

e
· EP⌦Q


exp

✓
�C � �⌦ IY + IX ⌦

�

◆�
(B.8)

s.t. � 2 H(X), 2 H(Y).

Then f(P) is a differentiable function of P .

Proof. The optimization objective (B.8) is clearly convex with respect to its parameters. Furthermore,
the second derivatives are non-zero for all �, , and the optimum hence is reached at a unique point.
The objective function can be rewritten as

EP⌦Q

✓
��⌦ IY + IX ⌦ �

�

e
· exp

✓
�C � �⌦ IY + IX ⌦

�

◆◆
. (B.9)

Since P and Q are density matrices and are constrained to lie within a compact set, there exists a
compact region S that is independent of P (but may depend on �) such that the maximum lies inside
S. f(P) can therefore be written as f(P) = max g(P,�,), where �, 2 S, g is convex, and
attains its maximum at a unique point. By Danskin’s theorem [14], the result follows.

16

C More Details on Quantum Wasserstein GAN
C.1 Parameterization of the Generator
The generator G is a quantum operation that maps a fixed distribution ⇢0 to a quantum state P .
Two pure distributions (states with rank 1) are mapped to each other by unitary matrices. ⇢0 is
fixed to be the pure state

N
n

i=1 e0. If the target state is of rank r, G can be parameterized by an
ensemble {(p1, U1), . . . , (pr, Ur)} of unitary operations Ui, each of which is applied with probability
pi. Applying a unitary Ui to ⇢0 produces the state Ui⇢0U

†
i

. Applying G to ⇢0 thus produces the fake
state piUi⇢0U

†
i

.
Each Unitary Ui is parameterized as a quantum circuit consisting of simple parameterized 1- or 2-
qubit Pauli-rotation quantum gates. An n-qubit Pauli-rotation gate R�(✓) is given by exp

�
i✓�

2

�

where ✓ is a real parameter, and � is a tensor product of 1 or 2 Pauli matrices. Pauli-rotation gates
can be efficiently implemented on quantum computers. Thus each unitary Ui can be expressed as
Ui =

Q
j
e

i✓i,j�i,j

2 .

C.2 Parameterization of the Discriminator
The optimization variables in the discriminator are Hermitian operators, � and . There are two
common parameterizations for a Hermitian matrix H:
1. As U†H0U , where U is a parameterized unitary operator, and H0 is a simpler fixed Hermitian

matrix that is easy to measure. Measuring H then corresponds to applying the operator U and
then measuring H0.

2. As a linear combination
Pdim(H)

i=0 ↵iHi, where His are fixed Hermitian matrices that are easy to
measure. Measuring H corresponds to measuring each Hi to obtain the expectation value mi, and
then returning

Pdim(H)
i=0 ↵imi as the expected value of measuring H .

We choose the latter option because it allows ⇠R to be conveniently approximated by a linear
combination of simple Hermitian matrices. Thus � and are represented by

P
k
↵kAk and

P
l
�lBl

where Ak, Bl are tensor products of Pauli matrices. The ↵ks, �ls constitute the parameters of the
discriminator.
The overall structure of the Quantum Wasserstein GAN is given in Figure 8.

e
i�1✓i,1

2

e
i(�4⌦�5)✓i,4

2

e
i�2✓i,2

2

e
i(�6⌦�7)✓i,5

2

e
i�3✓i,3

2

1-qubit gates 2-qubit gates
Figure 7: Example parameterization of a unitary Ui acting on 3 qubits. There are 12 possible 1-qubit gates and
48 possible 2-qubit gates.

N
d

i=1 ~e0 {(pi, Ui)} �

L
Q

N
d

i=1 ~e0 {(pi, Ui)}
�

e
Tr

⇣
exp

⇣
log(P⌦Q)�C��⌦IY+IX⌦

�

⌘⌘

Q

Figure 8: The structure of the quantum WGAN. Here Q is the input state and ~e0 is the 0th computational basis
vector, meaning that the corresponding system is empty at the beginning. The final gate L combines the outputs
of the measurements of �, , ⇠R to produce the final loss function.

17

C.3 Estimating the Loss Function
The loss function is given by Tr(Q)�Tr(P�)�Tr((P ⌦Q)⇠R) = EQ[]�EP [�]�EP⌦Q[⇠R]

where ⇠R is the Hermitian corresponding to the regularizer term �

e
exp

⇣
�C��⌦IY+IX⌦

�

⌘
.

The fake state P is generated by applying a quantum operation G to a fixed quantum state ⇢0. The
quantum operation is represented by applying a set of unitary operations {U1, U2, . . . , Uk} with
corresponding probabilities {p1, p2, . . . , pk} where k is the rank of the final state that would be
generated:

P =
X

i2[k]

piUi⇢0U
†
i
. (C.1)

Lemma C.1. Given a quantum state ⇢ =
P

k

i=1 ↵i⇢i and a Hermitian matrix H then E⇢(H) can be
estimated given only the ability to generate each ⇢i and to measure H .

Proof. Since ⇢ is a quantum state {↵1, . . . ,↵k} must form a probability distribution. Thus,

E⇢[H] = Tr[⇢H] = Tr
hX

i

↵i⇢iH
i
=

X

i

↵i Tr[⇢iH] =
X

i

↵iE⇢i [H] = E↵E⇢i [H]. (C.2)

Thus we can measure the expected value of H measured on ⇢, by sampling an i with probability ↵i,
measuring the expected value of H on ⇢i, and then computing the expectation over i sampled from
the distribution ↵. We can also simply measure the expectation value mi corresponding to each ⇢i
and return

P
i
↵imi as the estimate.

The unitaries Ui are parameterized by a network of gates of the form ei✓i,j�i,j where �i,j is a tensor
product of the matrices �x,�y,�z, I acting on some/all of the registers. With a sufficient number
of such gates, any unitary can be represented by an appropriate choice of ✓i,j . Since each Ui is
expressed as a composition of simple parameterized gates each of them can be implemented on a
quantum computer and thus each Ui⇢0U

†
i

can be generated.

Note that P =
P

i2[k] piUi⇢0U
†
i

and P ⌦ Q =
P

i2[k] pi(Ui⇢0U
†
i
⌦ Q). From Lemma C.1, if �

and ⇠R can be measured, we can estimate the terms EP [�] and EP⌦Q[⇠R]. Next we show how to
measure �, , ⇠R where �, are parameterized as a linear combination of tensor products of the
Pauli matrices �X ,�Y ,�Z ,�I .
Lemma C.2. Any Hermitian that is expressed as a linear combination

P
i
↵iHi of Hermitian

matrices Hi that can be measured on a quantum computer, can also be measured on a quantum
computer.

Proof. For any fixed state ⇢,

E⇢[H] = Tr[⇢H] = Tr
h
⇢
X

i

↵iHi

i
=

X

i

↵i Tr[⇢Hi] =
X

i

↵iE⇢[Hi]. (C.3)

Thus each of the Hermitians Hi can be separately measured and the final result is the weighted
average of the corresponding expectation values with coefficients ↵i.
If the ↵i form a probability distribution, the expectation can be estimated by sampling a batch of
indices from the distribution of ↵i, measuring Hi, and estimating the expectation averaging over the
sampled indices. This procedure can be more efficient if some of the ↵i are of very small magnitude
in comparison to the others. Note that any Hermitian that can be written by as a linear combinationP

i
�iHi where each Hi is easy to measure can be transformed such that the coefficients form a

probability distribution as (
P

i
|�i|)

P
i

|�i|P
i
|�i| sgn(�i)Hi. If Hi can be measured on a quantum

computer, �Hi can also be measured by measuring Hi and negating the result.

Tensor products of Pauli matrices can be measured on quantum computers using elementary tech-
niques [28]. As a result, Lemma C.2 implies that �, can be measured on a quantum computer.
Now, we prove the following lemma for expressing the regularizer term ⇠R:
Lemma C.3. The Hermitian corresponding to the regularizer term ⇠R can be approximated via a
linear combination of Hermitians from {⌃, SWAP ·⌃} where ⌃ is a tensor product of 2-dimensional
Hermitian matrices.

18

Proof. Since C = I�SWAP
2 ,

exp

✓
�C � �⌦ IY + IX ⌦

�

◆
= exp

✓
SWAP�I� 2�⌦ IY + 2IX ⌦

2�

◆
. (C.4)

Observe the following two facts:
• if ⌃1 and ⌃2 are both tensor products of 2-dimensional Hermitian matrices, then ⌃1 · ⌃2 is also a

tensor product of 2-dimensional Hermitian matrices;
• if ⌃ is a tensor product of 2-dimensional Hermitian matrices, then SWAP ·⌃ · SWAP is also a

tensor product of 2-dimensional Hermitian matrices.
As a result, any integral power of SWAP�I � 2� ⌦ IY + 2IX ⌦ can be written as a linear
combination of the matrices {⌃, SWAP ·⌃} where ⌃ is a tensor product of 2-dimensional Hermitian
matrices. Thus any Taylor approximation of exp(SWAP�I � 2� ⌦ IY + 2IX ⌦) is a linear
combination of the same Hermitian matrices, each of which can be easily measured on a quantum
computer. Thus the Taylor series for the exponential can be used to approximately measure the
regularizer term.
A representation as a linear combination of the Hermitians {⌃, SWAP ·⌃}, where ⌃ is a tensor
product of Pauli matrices, can be obtained more easily for a relaxed regularizer term

⇠0
R
= exp

✓
�C

2�

◆
exp

✓
��⌦ IY + IX ⌦

�

◆
exp

✓
�C

2�

◆
; (C.5)

this is motivated by the Trotter formula [41] of matrix exponentiation: for any Hermitian matrices
A,B such that kAk, kBk  �  1, keA+B

� eAeBk = O(�2) but keA+B
� eA/2eBeA/2

k = O(�3).
Using this regularizer gives us a concrete closed form for ⇠0

R
as a linear combination of simpler

Hermitian matrices. It is less computationally intensive to compute than the original regularizer, since
the only operation acting on 2n qubits at the same time is SWAP. This relaxation also yields good
numerical results in practice.
Since (�� ⌦ IY)(IX ⌦) = (IX ⌦)(�� ⌦ IY) = (�� ⌦), the central term in the RHS
of (C.5) is an exponential of commuting terms. If A and B are commuting matrices, we have
exp(A+B) = exp(A) exp(B), and hence

⇠0
R
= exp

⇣
�C

2�

⌘
exp

⇣
��

�

⌘
⌦ exp

⇣
�

⌘
exp

⇣
�C

2�

⌘
. (C.6)

We choose � and to be tensor products of terms of the form a�x + b�y + c�z + dI. It can
be verified that �i�i = I and �i�j + �j�i = 2�i,jI and therefore (a�x + b�y + c�z)2 =
(a2 + b2 + c2)I. Given r =

N
n

i=1(ai�x + bi�y + ci�z + diI), we therefore have r2 =N
n

i=1

�
di(ai�x + bi�y + ci�z + diI) +⇧n

i=1(a
2
i
+ b2

i
+ c2

i
+ d2

i
)I
�

and therefore by induction,

rk =
nO

i=1

0

@dk�1
i

(ai�x + bi�y + ci�z + diI) +

0

@
k�2X

j=0

dj
i

1

A (a2
i
+ b2

i
+ c2

i
+ d2

i
)I

1

A . (C.7)

Eq. (C.7) can be used to expand exp(��/�)⌦ exp(/�) using the truncated Taylor series for the
exponential. Thus exp(��/�)⌦ exp(/�) can be approximated by a linear combination of gates in
⌃ up to any desired accuracy.
In addition, C = I�SWAP

2 implies that C is a projector, i.e., Ck = C for all k 2 N⇤ and C0 = I.
This can be used to express exp(C) in terms of only I and C:

exp
⇣
�C

2

⌘
= I +

1X

j=1

C

(�2)jj!
= I +

h
exp

⇣
�1

2

⌘
� 1

i
C. (C.8)

Using (C.7) and (C.8) we can compute an approximate expression (with any desired accuracy) for the
relaxed regularizer ⇠0

R
as a linear combination of the Hermitian {⌃, SWAP ·⌃} where ⌃ is a tensor

product of Hermitian matrices.

Finally from Lemma C.1,Lemma C.2,Lemma C.3, each of the terms EQ[],EP [�],EP⌦Q[⇠R] can
be computed on a quantum computer.

19

C.4 Direct Estimation of Gradients
In this subsection, we show how the gradients with respect to the parameters of the qWGAN can be
directly estimated using quantum circuits. Suppose we have the following parameterization for the
optimization variables:

⇢0 =
dO

i=1

~e0~e
†
0, P =

rX

i=1

piUi⇢0U
†
i
, Ui =

Y

j

e
i✓i,jHi,j

2 (C.9)

and

� =
X

k

↵kAk, =
X

l

�lBl, (C.10)

where Hj , Ak, Bl are tensor products of Pauli matrices. The parameters of the generator are given
by the variables pi, ✓i,j and the parameters of the discriminator are given by ↵k,�l. As shown in
Lemma C.3, the regularizer term R can be written as

P
q
rqRq where each Rq is either a tensor

product of Pauli matrices or a product of SWAP with a tensor product of Pauli matrices. Thus the
loss function is given by

L = Tr[Q]� Tr[P�]� Tr [(P ⌦Q)R] , (C.11)

and hence
@L

@pi
= �Tr[Ui~e0~e

†
0U

†
i
�]� Tr

h
(Ui~e0~e

†
0U

†
i
⌦Q)R

i
. (C.12)

To compute the partial derivative with respect to the parameters pi, we create a fake state using only
the unitary Ui, and compute the regularizer term as shown before:

@L

@↵k

= �Tr[PAk]� Tr


(P ⌦Q)

(Ak ⌦ IY)R

�

�
; (C.13)

@L

@�l
= Tr[QBl]� Tr


(P ⌦Q)

(IX ⌦Bl)R

�

�
. (C.14)

Clearly (Ak ⌦ IY)R and (IX ⌦Bl)R can be written as linear combinations of products of SWAP
and tensor products of Pauli matrices, because such form exists for Ak, Bl, R. Thus these gradients
can be measured as shown in Lemma C.2.
Regarding the gradients with respect to ✓i,j , we have

@L

@✓i,j
=
@ Tr[�(Ui⇢0U

†
i
)]

@✓i,j
�
@ Tr[⇠R(Ui⇢0U

†
i
⌦Q)]

@✓i,j
. (C.15)

The terms @ Tr[�(Ui⇢0U
†
i
)]

@✓i,j
,
@ Tr[⇠R(Ui⇢0U

†
i
⌦Q)]

@✓i,j
can be evaluated by modifying the quantum circuits

for Ui using with an ancillary control register, using previously known techniques [36, Section III. B].
This allows us to evaluate the partial derivatives of the loss function w.r.t. the ✓i,j parameters.

C.5 Computational Cost of Evaluating the Loss Function
Consider a quantum WGAN designed to learn an n-qubit target state with rank r; the generator hence
consists of r unitary matrices. Suppose that each unitary Ui is a composition of at most N fixed
unitary gates. Furthermore, assume that � and are parameterized as a linear combination of at most
M tensor products of Pauli matrices. The size of the network (the number of parameters) is thus
O(rNM).
The loss function consists of 3 terms:
• The expectation value of � measured on the state P .
• The expectation value of measured on the state Q.
• The expectation value of ⇠R measured on the state P ⌦Q.
The complexity of a quantum operation is quantified by the number of elementary gates required to
be performed on a quantum computer. We show that a single measurement of � on Ui⇢0U

†
i

, on Q,
and ⇠R on Ui⇢0U

†
i
⌦Q can be carried out using poly

�
n, k,N,M, log

�
1
✏

��
gates.

20

The expectation values can then be estimated by computing the empirical expectation on a batch of
measurements. These expectation values are combined as shown earlier in Supplemental Materials C.3
to obtain the expected values measured on P and P ⌦Q.
First, ⇠R can be approximated to precision ✏ via truncation of a Taylor series consisting of log

�
1
✏

�

terms. Thus ⇠R is approximated by a linear combination of poly
�
M, 1

✏

�
fixed Hermitian matrices of

the form ⌃ or SWAP ·⌃ where each ⌃ is a tensor product of 2-dimensional Hermitian matrices.
Second, by the Solovay-Kitaev theorem [15], any n-qubit unitary operator can be implemented to
precision ✏ using poly

�
log

�
n, 1

✏

��
gates. Similarly, any fixed n-qubit Hermitian matrix can be

measured using a circuit with poly
�
n, log

�
1
✏

��
gates. Consequently:

• can be measured on Q using M measurements of fixed tensor products of Pauli matrices,
therefore using poly

�
n,M, log

�
1
✏

��
gates.

• � can be measured on Ui⇢0U
†
i

for any i using M measurements of fixed tensor products of Pauli
matrices, therefore using poly

�
n,M, log

�
1
✏

��
gates.

• ⇠R can be measured on Ui⇢0U
†
i
⌦Q for any i using poly

�
M, 1

✏

�
measurements of fixed tensor

products of Pauli matrices, therefore using poly
�
n,M, log

�
1
✏

��
gates.

• Each unitary Ui can be applied by a composition of N fixed unitaries, therefore using
poly

�
n,N, log

�
1
✏

��
gates.

From Supplemental Materials C.4, it can be seen that the partial derivatives with respect to the
parameters p,↵,� are each computed by the same procedure as the loss function with some of
the variables restricted. Furthermore, the partial derivatives with respect to ✓i,j can be evaluated
using the circuit for Ui with an ancillary register and a constant number of extra gates [36]. Each
partial derivative therefore has the same complexity as the loss function. Since there are O(rNM)
parameters, the total gradient can be evaluated with a multiplicative overhead of O(rNM) compared
to evaluating the loss function.

D More Details on Experimental Results
Pure states We used the quantum WGAN to learn pure states consisting of 1, 2, 4, and 8 qubits. In
this case, the generator is fixed to be a single unitary. The parameters to be chosen in the training are
� (the weight of the regularizer) and ⌘g, ⌘d (the learning rates for the discriminator and generator
parameters, respectively). The training parameters for our experiments for learning pure states are
listed in Table 1.

Parameters 1 qubit 2 qubits 4 qubits 8 qubits
� 2 2 10 10

⌘ = ⌘g = ⌘d 10�1 10�1 10�1 10�2

Table 1: Parameters for learning pure states.

For 1,2, and 4 qubits, in addition to Figure 3, we also plot the average loss function for a number
of runs with random initializations in Figure 9 which shows the numerical stability of our quantum
WGAN.

Mixed states We also demonstrate the learning of mixed quantum states of rank 2 with 1, 2, and
3 qubits in Figure 4. The generator now consists of 2 unitary operators, and 2 real probability
parameters p1, p2 which are normalized to form a probability distribution using a softmax layer. The
learning rate for the probability parameters is denoted by ⌘p. The training parameters are listed in
Table 2.

Parameters 1 qubits 2 qubits 3 qubits

� 10 10 10
⌘d, ⌘g, ⌘p (10�1, 10�1, 10�1) (10�1, 10�1, 10�1) (10�1, 10�1, 10�1)

Table 2: Parameters for learning mixed states.

21

1 qubit 2 qubits

4 qubits 8 qubits

Figure 9: Average performance of learning pure states (1, 2, 4 qubits) where the black line is the average loss
over multi-runs with random initializations and the shaded area refers to the range of the loss.

Learning pure states with noise In a recent experiment result [48], a quantum-classical hybrid
training algorithm using the KL divergence between classical measurement outcomes as the loss
function on the canonical Bars-and-Stripes data set was performed on an ion-trap quantum computer.
Specifically, they use the generator in Figure 10. Even though the goal of [48] is to generate a classical
distribution, we still deem it as a good example of practically implementable quantum generator to
testify our quantum WGAN.

Z X Z XX XX XX

Z X Z XX XX XX

Z X Z XX XX XX

Z X Z XX XX XX

Figure 10: The generator circuit used in Ref. [48] where Z stands for the ei✓�z gate, X stands for the ei✓�x

gate, and XX stands for the ei✓�x⌦�x gate.

We use the same training parameters as in the noiseless case (Table 1). Furthermore, we add the
sampling noise (modeled as a Gaussian distribution with standard deviation �) which is a reasonable
approximation of the noise for the ion-trap machine [47]. Our results show that the quantum WGAN
can still learn a 4-qubit mixed state in the presence of this kind of noise. As is to be expected, noise
with higher degrees (i.e., higher �) increases the number of epochs required before the state is learned
successfully. The corresponding results are plotted in Figure 5.
Our finding also demonstrates the different outcomes between choosing different metrics as the
loss function. In particular, some of the training results reported in [48] demonstrate a KL distance
< 10�4 but the actual quantum fidelity is only about 0.16. On the other side, our quantum WGAN is
guaranteed to achieve close-to-1 fidelity all the time.

Application: Approximating Quantum Circuits The quantum Wasserstein GAN can be used to
approximate the behavior of quantum circuits with many gates using fewer quantum gates. Consider
a quantum circuit U0 over n qubits. It is well known [28] that there exists an isomorphism between n

22

qubit quantum circuits U and quantum states U such that

 U =
1

p
2n

2n�1X

i=0

(U ⌦ I)(~ei ⌦ ~ei) =
1

p
2n

2n�1X

i=0

(U(~ei)⌦ ~ei). (D.1)

The quantum Wasserstein GAN can be used to learn a smaller quantum circuit U1 such that U1

is close to U0 . This can be done by setting the real state to U0 , and using the GAN to learn to
generate it using a circuit of the form (U1 ⌦ I) applied to 1p

2n

P2n�1
i=0 (~ei ⌦ ~ei). The fidelity between

 U1 and U0 is given by the average output fidelity for uniformly chosen inputs to U1 and U0.
We apply these techniques to the quantum circuit that simulates the evolution of a quantum system in
the 1-dimensional nearest-neighbor Heisenberg model with a random magnetic field in the z-direction
(considered in [11]). The time evolution for time t is described by the unitary operator eiĤt with the
Hamiltonian Ĥ given by

Ĥ =
nX

j=1

⇣
�(j)
x
�(j+1)
x

+ �(j)
y
�(j+1)
y

+ �(j)
z
�(j+1)
z

+ h(j)�(j)
z

⌘
(D.2)

where �(j)
i

denotes the Pauli gate �i applied at the jth qubit, and the h(j)
2 [�h, h] are uniformly

chosen at random.
We study the specific case with t = n = 3 and h = 1, with a fixed target error of ✏ = 10�3 in the
spectral norm. Quantum circuits for simulating Hamiltonians that are represented as the sum of local
parts, eiHt = eit

P
L

i=1 ↵jHj , are obtained using kth order Suzuki product formulas S2k defined by

S2(�) =
LY

j=1

exp(↵jHj�/2)
1Y

j=L

exp(↵jHj�/2) (D.3)

S2k(�) = [S2k�2 (pk�)]
2 S2k�2 ((1� 4pk)�)

2 [S2k�2 (pk�)]
2 (D.4)

where pk = 1/
�
4� 41/(2k�1)

�
for k � 1.

We then approximate eiHt by
⇥
S2k

�
it

r

�⇤r. Obtaining error ✏ in the spectral norm requires r =
(Lt)1+1/2k

✏1/2k
. From (D.3), each evaluation of S2k requires (2L)5k�1 gates of the form eiHj✓ where ✓

is a real parameter. In the case of the Hamiltonian (D.2), it is the sum of 12 terms each of which is
the product of up to 2 Pauli matrices. Thus the kth order formula S2k yields a circuit for simulating
(D.2) requiring (24)5k�1 (36)1+1/2k

0.0011/2k
gates of the form ei✓� where � is a product of up to 2 Pauli

matrices. These are the gates used in the parameterization of our quantum Wasserstein GAN, and can
be implemented easily on ion trap quantum computers. The smallest circuit is obtained using S2 and
requires ⇠ 11900 gates.
Using the quantum Wasserstein GAN for 6-qubit pure states, we discovered a circuit for the above
task with 52 gates, an average output fidelity of 0.9999, and a worst case error 0.15. The worst case
input is not realistic, and thus the 52 gate circuit provides a very reasonable approximation in practice.

23

	Introduction
	Classical Wasserstein Distance & Wasserstein GANs
	Quantum Wasserstein Semimetric
	Quantum Wasserstein GAN
	Experimental Results
	Conclusion & Open Questions
	Preliminaries
	Quantum Information
	Matrix Arithmetics

	Properties of the Quantum Wasserstein Semimetric
	Proofs
	Regularized Quantum Wasserstein Distance

	More Details on Quantum Wasserstein GAN
	Parameterization of the Generator
	Parameterization of the Discriminator
	Estimating the Loss Function
	Direct Estimation of Gradients
	Computational Cost of Evaluating the Loss Function

	More Details on Experimental Results

