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A Details on Modulation Operators

Attention based modulation has been widely used in modern deep learning models and has proved
its effectiveness across various tasks [12, 24, 25, 27]. Inspired by the previous works, we employed
attention to modulate the prior model. In concrete terms, attention over the outputs of all neurons
(Softmax) or a binary gating value (Sigmoid) on each neuron’s output is computed by the modulation
network. These modulation vectors τ are then used to scale the pre-activation of each neural network
layer Fθ, such that Fφ = Fθ ⊗ τ . Note that here ⊗ represents a channel-wise multiplication.

Feature-wise linear modulation (FiLM) has been proposed to modulate neural networks for achiev-
ing the conditioning effects of data from different modalities. We adopt FiLM as an option for
modulating our task network parameters. Specifically, the modulation vectors τ are divided into
two components τγ and τβ such that for a certain layer of the neural network with its pre-activation
Fθ, we would have Fφ = Fθ ⊗ τγ + τβ . It can be viewed as a more generic form of attention
mechanism. Please refer to [16] for the complete details. In a recent few-shot image classification
paper [13], FiLM modulation is used in a metric learning model and achieves high performance.
Similarly, employing FiLM modulation has been shown effective on a variety of tasks such as image
synthesis [1, 7, 8, 14], visual question answering [15, 16], style transfer [3], recognition [6, 23],
reading comprehension [2], etc.

B Further Discussion on Related Works

Discussions on Task-Specific Adaptation/Modulation. As mentioned in the related work of the
main text, some recent works [11, 13, 26] leverage the task-specific adaptation or modulation to
achieve few-shot image classification. Now we discuss about them in details. [13] propose to learn
a task-specific network that adapts the weight of the visual embedding networks via feature-wise
linear modulation (FiLM) [16]. Similarly, [26] learns to perform similar task-specific adaptation
for few-shot image classification via Transformer [22]. [11] learns a visual embedding network with
a task-specific metric and task-agnostic parameters, where the task-specific metric can be update
via a fixed steps of gradient updates similar to [4]. In contrast, we aim to leverage the power of
task-specific modulation to develop a more powerful model-agnostic meta-learning framework, which
is able to effectively adapt to tasks sampled from a multimodal task distribution. Note that our
proposed framework is capable of solving few-shot regression, classification, and reinforcement
learning tasks.

C Baselines

Since we aim to develop a general model-agnostic meta-learning framework, the comparison to
methods that achieved great performance on only an individual domain are omitted.

Image Classification. While Prototypical networks [19], Proto-MAML [21], and TADAM [13]
learn a metric space for comparing samples and therefore are not directly applicable to regression and
reinforcement learning domains, we believe it would be informative to evaluate those methods on our
multimodal image classification setting. For this purpose, we refer the readers to a recent work [21]
which presents extensive experiments on a similar multimodal setting with a wide range of methods,
including model-based (RNN-based) methods, model-agnostic meta-learners, and metric-based
methods.

Reinforcement Learning. We believe comparing MMAML to ProMP [18] on reinforcement
learning tasks highlights the advantage of using a separate modulation network in addition to the task
network, given that in the reinforcement learning setting MMAML uses ProMP as the optimization
algorithm. Besides ProMP, Bayesian MAML [9] presents an appealing baseline for multimodal
task distributions. We tried to run Bayesian MAML on our multimodal task distributions but had
technical difficulties with it. The source code for Bayesian MAML in classification and regression is
not publicly available.
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(a) 2-Mode Regression (b) 3-Mode Regression (c) 5-Mode Regression

Figure 1: tSNE plots of the task embeddings produced by our model from randomly sampled tasks for regression.
We choose to visualize the corresponding task embeddings of two modes, three modes and five modes.

D Additional Experimental Details

D.1 Regression

D.1.1 Setups

To form multimodal task distributions for regression, we consider a family of functions including
sinusoidal functions (in forms of A · sinw · x+ b + ε, with A ∈ [0.1, 5.0], w ∈ [0.5, 2.0] and
b ∈ [0, 2π]), linear functions (in forms of A · x + b, with A ∈ [−3, 3] and b ∈ [−3, 3]), quadratic
functions (in forms of A · (x− c)2 + b, with A ∈ [−0.15,−0.02] ∪ [0.02, 0.15], c ∈ [−3.0, 3.0] and
b ∈ [−3.0, 3.0] ), `1 norm function (in forms ofA · |x−c|+b, withA ∈ [−0.15,−0.02]∪ [0.02, 0.15],
c ∈ [−3.0, 3.0] and b ∈ [−3.0, 3.0]), and hyperbolic tangent function (in forms ofA · tanh(x−c)+b,
with A ∈ [−3.0, 3.0], c ∈ [−3.0, 3.0] and b ∈ [−3.0, 3.0]). Gaussian observation noise with µ = 0
and ε = 0.3 is added to each data point sampled from the target task. In all the experiments, K is set
to 5 and L is set to 10. We report the mean squared error (MSE) as the evaluation criterion. Due to
the multimodality and uncertainty, this setting is more challenging comparing to [5].

D.1.2 Models and Optimization

In the regression task, we trained a 4-layer fully connected neural network with the hidden dimensions
of 100 and ReLU non-linearity for each layer, as the base model for both MAML and MMAML. In
MMAML, an additional model with a Bidirectional LSTM of hidden size 40 is trained to generate
τ and to modulate each layer of the base model. We used the same hyper-parameter settings as the
regression experiments presented in [5] and used Adam [10] as the meta-optimizer. For all our
models, we train on 5 meta-train examples and evaluate on 10 meta-val examples to compute the loss.

D.1.3 Evaluation Protocol

In the evaluation of regression experiments, we samples 25,000 tasks for each task mode and evaluate
all models with 5 gradient steps during the adaptation (if applicable), with the adaptation learning
rate set to be the one models learned with. Therefore, the results for 2 mode experiments is computed
over 50,000 tasks, corresponding 3 mode experiment is computed over 75,000 tasks and 5 mode has
125,000 tasks in total. We evaluate all methods over the function range between -5 and 5, and report
the accumulated mean squared error as performance measures.

D.1.4 Effect of Modulation and Adaptation

We analyze the effect of modulation and adaptation steps on the regression experiments. Specifically,
we show both the qualitative and quantitative results on the 5-mode regression task, and plot the
induced function curves as well as measure the Mean Squared Error (MSE) after applying modulation
step or both modulation and adaptation step. Note that MMAML starts from a learned prior parameters
(denoted as prior params), and then sequentially performs modulation and adaptation steps. The
results are shown in the Figure 2 and Table 1. We see that while inference with prior parameters itself
induces high error, adding modulation as well as further adaptation can significantly reduce such
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Table 2: Dataset details.

Dataset Train classes Validation classes Test classes Image size Image channel Image content

OMNIGLOT 4112 688 1692 28 × 28 1 handwritten characters
MINI-IMAGENET 64 16 20 84 × 84 3 objects

FC100 64 16 20 32 × 32 3 objects
CUB 140 30 30 ∼ 500 × 500 3 birds

AIRCRAFT 70 15 15 ∼ 1-2 Mpixels 3 aircrafts

error. We can see that the modulation step is trying to seek a rough solution that captures the shape of
the target curve, and the gradient based adaptation step refines the induced curve.

Figure 2: 5-mode Regression: Visualization with
Linear & Quadratic Function.

Linear Quadratic

Table 1: 5-mode Regression: Performance mea-
sured in mean squared error (MSE).

MMAML MSE

Prior Params 17.299
+ Modulation 2.166
+ Adaptation 0.868

D.2 Image Classification

D.2.1 Meta-dataset

To create a meta-dataset by merging multiple datasets, we utilize five popular datasets: OMNIGLOT,
MINI-IMAGENET, FC100, CUB, and AIRCRAFT. The detailed information of all the datasets are
summarized in Table 2. To fit the images from all the datasets to a model, we resize all the images to
84× 84. The images randomly sampled from all the datasets are shown in Figure 3, demonstrating a
diverse set of modes.

(a) Omniglot (e) Aircraft(c) FC100(b) Mini-ImageNet (d) CUB

Figure 3: Examples of images from all the datasets.

D.2.2 Hyperparameters

We present the hyperparameters for all the experiments in Table 3. We use the same set of hyper-
parameters to train our model and MAML for all experiments, except that we use a smaller meta
batch-size for 20-way tasks and train the jobs for more iterations due to the limited memory of GPUs
that we have access to.

We use 15 examples per class for evaluating the post-update meta-gradient for all the experiments,
following [5, 17]. All the trainings use the Adam optimizer [10] with default hyperparameters.
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Table 3: Hyperparameters for multimodal few-shot image classification experiments. We experiment different
hyperparameters for each dataset for Multi-MAML. The dataset group Grayscale includes OMNIGLOT and
RGB includes MINI-IMAGENET and FC100, CUB, and AIRCRAFT.

Method Setup Dataset group Slow lr Fast lr Meta bach-size Number of updates Training iterations

MAML 5-way 1-shot

- 0.001 0.05 10 5 600005-way 5-shot

MMAML (ours) 5-way 1-shot
5-way 5-shot

MAML 20-way 1-shot

- 0.001 0.05 5 5 8000020-way 3-shot

MMAML (ours) 20-way 1-shot
20-way 3-shot

Multi-MAML

5-way 1-shot Grayscale

0.001

0.4 10 1

60000RGB 0.01 4 5

5-way 5-shot Grayscale 0.4 10 1
RGB 0.01 4 5

20-way 1-shot Grayscale 0.1 4 5

80000RGB 0.01 2 5

20-way 3-shot Grayscale 0.1 4 5
RGB 0.01 2 5

Table 4: The performance (classification accuracy) on the multimodal few-shot image classification with 2
modes on each dataset.

Setup Method Datasets
OMNIGLOT MINI-IMAGENET OVERALL

5-way 1-shot
MAML 89.24% 44.36% 66.80%

Multi-MAML 97.78% 35.91% 66.85%
MMAML (ours) 94.90% 44.95% 69.93%

5-way 5-shot
MAML 96.24% 59.35% 77.79%

Multi-MAML 98.48% 47.67% 73.07%
MMAML (ours) 98.47% 59.00% 78.73%

20-way 1-shot
MAML 55.36% 15.67% 35.52%

Multi-MAML 91.59% 14.71% 53.15%
MMAML (ours) 83.14% 12.47% 47.80%

For Multi-MAML, since we train a MAML model for each dataset, it gives us the freedom to use dif-
ferent sets of hyperparameters for different datasets We tried our best to find the best hyperparameters
for each dataset.

D.2.3 Network Architectures

Task Network. For the task network, we use the exactly same architecture as the MAML convolu-
tional network proposed in [5]. It consists of four convolutional layers with the channel size 32, 64,
128, and 256, respectively. All the convolutional layers have a kernel size of 3 and stride of 2. A batch
normalization layer follows each convolutional layer, followed by ReLU. With the input tensor size
of (n · k)× 84× 84× 3 for a n-way k-shot task, the output feature maps after the final convolutional
layer have a size of (n · k)× 6× 6× 256. The feature maps are then average pooled along spatial
dimensions, resulting feature vectors with a size of (n · k) × 256. A linear fully-connected layer
takes the feature vector as input, and produce a classification prediction with a size of n for n-way
classification tasks.

Task Encoder. For the task encoder, we use the exactly same architecture as the task network.
It consists of four convolutional layers with the channel size 32, 64, 128, and 256, respectively.
All the convolutional layers have a kernel size of 3, stride of 2, and use valid padding. A batch
normalization layer follows each convolutional layer, followed by ReLU. With the input tensor size
of (n · k)× 84× 84× 3 for a n-way k-shot task, the output feature maps after the final convolutional
layer have a size of (n · k)× 6× 6× 256. The feature maps are then average pooled along spatial
dimensions, resulting feature vectors with a size of (n·k)×256. To produce an aggregated embedding
vector from all the feature vectors representing all samples, we perform an average pooling, resulting
a feature vector with a size of 256. Finally, a fully-connected layer followed by ReLU takes the
feature vector as input, and produce a task embedding vector υ with a size of 128.
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Table 5: The performance (classification accuracy) on the multimodal few-shot image classification with 3
modes on each dataset.

Setup Method Datasets
OMNIGLOT MINI-IMAGENET FC100 OVERALL

5-way 1-shot
MAML 86.76% 43.27% 33.29% 54.55%

Multi-MAML 97.78% 35.91% 34.00% 55.90%
MMAML (ours) 93.67% 41.07% 33.67% 57.47%

5-way 5-shot
MAML 95.11% 61.48% 47.33% 67.97%

Multi-MAML 98.48% 47.67% 40.44% 62.20%
MMAML (ours) 99.56% 60.67% 50.22% 70.15%

20-way 1-shot
MAML 57.87% 15.06% 11.74% 28.22%

Multi-MAML 91.59% 14.71% 13.00% 39.77%
MMAML (ours) 85.00% 13.00% 10.81% 36.27%

Table 6: The performance (classification accuracy) on the multimodal few-shot image classification with 5
modes on each dataset.

Setup Method Datasets
OMNIGLOT MINI-IMAGENET FC100 CUB AIRCRAFT OVERALL

5-way 1-shot
MAML 83.63% 37.78% 33.70% 86.96% 36.74% 35.48%

Multi-MAML 97.78% 35.91% 34.00% 93.44% 32.03% 27.59%
MMAML (ours) 91.48% 42.89% 32.59% 93.56% 38.30% 36.82%

5-way 5-shot
MAML 89.41% 51.26% 43.41% 82.30% 45.80% 43.92%

Multi-MAML 98.48% 47.67% 40.44% 98.56% 45.70% 47.29%
MMAML (ours) 97.96% 51.29% 44.08% 97.88% 53.80% 51.53%

20-way 1-shot
MAML 59.10% 15.49% 11.75% 59.45% 16.31% 31.57%

Multi-MAML 91.59% 14.71% 13.00% 85.46% 18.87% 30.72%
MMAML (ours) 86.28% 14.35% 11.59% 91.86% 24.05% 30.89%

Modulation MLPs . Since the task network consists of four convolutional layers with the channel
size 32, 64, 128, and 256 and modulating each of them requires producing both τγ and τβ , we
employ four linear fully-connected layers to convert the task embedding vector υ to {τγ1 , τβ1

} (with
a dimension of 32), {τγ2 , τβ2

} (with a dimension of 64), {τγ3 , τβ3
} (with a dimension of 128), and

{τγ4 , τβ4
} (with a dimension of 256). Note the modulation for each layer is performed by θi�γi+βi,

where � denotes the Hadamard product.

D.3 Reinforcement Learning

D.3.1 Environments

The training curves for all environments are presented in Figure 5.

POINT MASS . We consider three variants of the POINT MASS environment with 2, 4, and 6
modes. The agent controls a point mass by outputting changes to the velocity. At every time step the
agent receives the negative euclidean distance to the goal as the reward. The goals are sampled from
a multimodal goal distribution by first selecting the mode center and then adding Gaussian noise to
the goal location. In the 4 mode variant the modes are the points (−5,−5), (−5, 5), (5,−5), (5, 5).
In the 2 mode variant the modes are the points (−5,−5), (5, 5). In the 6 mode variant the modes are
the vertices of a regular hexagon with at distance 5 from the origin. All variants have noise scale of
2.0. Visualizations of agent trajectories can be found in Figure 7.

REACHER . We consider three variants of the REACHER environment with 2, 4, and 6 modes. The
agent controls a 2-dimensional robot arm with three links simulated in the MuJoCo [20] simulator.
The goal distribution is similar to the goal distributions in POINT MASS but different parameters are
used to match the scale of the environment. The reward for the environment is

R(s, a) = −1 ∗ (xpoint − xgoal)2 − ‖a‖2

where xpoint is the location of the point of the arm, xgoal if the location of the goal and a is the
action chosen by the agent. The modes of the goal distribution in the 4 mode variant are located at
(−0.225,−0.225), (0.225,−0.225), (−0.225, 0.225), (0.225, 0.225) and the goal noise has scale of
0.1. In the 2 mode variant the modes are located at (−0.225,−0.225), (0.225, 0.225) and the noise
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(a) 2-mode classification (b) 3-mode classification (c) 5-mode classification

Figure 4: tSNE plots of task embeddings produced in multimodal few-shot image classification domain. (a)
2-mode 5-way 1-shot (b) 3-mode 5-way 1-shot (c) 5-mode 5-way 5-shot.

(a) POINT MASS 2 Modes (b) POINT MASS 4 Modes (c) POINT MASS 6 Modes

(a) REACHER 2 Modes (b) REACHER 4 Modes (c) REACHER 6 Modes

(a) ANT 2 Modes (a) ANT 4 Modes

Figure 5: Training curves for MMAML and ProMP in reinforcement learning environments. The curves
indicate the average return per episode after gradient-based updates and modulation. The shaded region indicates
standard deviation across three random seeds. The curves have been smoothed by averaging the values within a
window of 10 steps.

scale is 0.1. In the 6 mode variant the mode centers are the vertices of a regular hexagon with distance
to the origin of 0.318 and the noise scale is 0.1.

ANT . We consider two variants of the ANT environment with two and four modes. The agent
controls an ant robot with four limbs simulated in the MuJoCo [20] simulator. The reward for the
environment is

R(s, a) = −1 ∗ (xtorso − xgoal)2 − λcontrol ∗ ‖a‖2

where xtorso is the location of the torso of the robot, xgoal if the location of the goal, λcontrol = 0.1
is the weighting for the control cost and a is the action chosen by the agent. The modes of the goal
distribution in the 4 mode variant are located at (−4, 0), (−2, 3.46), (2, 3.46), (4.0, 0) and the goal
noise has scale of 0.8. In the 2 mode variant the modes are located at (−4.0, 0), (4.0, 0) and the noise
scale is 0.8.

D.3.2 Network Architectures and Hyperparameters

For all RL experiments we use a policy network with two 64-unit hidden layers. The modulation
network in RL tasks consists of a GRU-cell and post processing layers. The inputs to the GRU are
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Table 7: Hyperparameter settings for reinforcement learning.

Environment Algorithm Training Iterations Trajectory Length Slow lr Fast lr Inner Gradient Steps Clip eps

POINT MASS
MMAML

400 100 0.0005 0.01 2 0.1ProMP
Multi-ProMP

REACHER
MMAML

800 50 0.001 0.1 2 0.1ProMP
Multi-ProMP

ANT
MMAML

800 250 0.001 0.1 3 0.1ProMP
Multi-ProMP

the concatenated observations, actions and reward for each trajectory. The trajectories are processed
separately. An MLP is used to process the last hidden states of each trajectory. The outputs of the
MLPs are averaged and used by another MLP to compute the modulation vectors τ . All MLPs have a
single hidden layer of size 64.

We sample 40 tasks for each update step. For each gradient step for each task we sample 20
trajectories. The hyperparameters, which differ from setting to setting are presented in Table 7.

E Additional Experimental Results

E.1 Regression

We show visualization of embeddings for regression experiments with a varying number of task
modes as Figure 1. We observe a linear separation in the two task modes and three task modes
scenarios, which indicates that our method is capable of identifying data from different task modes.
On the visualization of five task mode, we observe that data from linear, transformed `1 norm and
hyperbolic tangent functions cluttered. This is due to the fact that those functions are very similar to
each other, especially with the Gaussian noise we added in the output space.

E.2 Image Classification

We provide the detailed performance of our method and the baselines on each individual dataset for
all 2, 3, and 5 mode experiments, shown in Table 4, Table 5, and Table 6, respectively. Note that the
main paper presents the overall performance (the last columns of each table) on each of 2, 3, and 5
mode experiments.

We found the results on OMNIGLOT and MINI-IMAGENET demonstrate similar tendency shown
in [21]. Note that the performance of OMNIGLOT and FC100 might be slightly different from the
results reported in the related papers because (1) all the images are resized and tiled along the spatial
dimensions, (2) different hyperparamters are used, and (3) different numbers of training iterations.

Additional tSNE plots for predicted task embeddings of 2-mode 5-way 1-shot classification, 3-mode
5-way 1-shot classification, and 5-mode 20-way 1-shot classification are shown in Figure 4.

E.3 Reinforcement Learning

Additional trajectories sampled from the 2D navigation environment are presented in Figure 7.
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Data Points Ground Truth MAML MultiMAML MMAML

Sinusoidal Linear Quadratic Transformed `1 Norm Tanh

Figure 6: Additional qualitative results of the regression tasks. MMAML after adaptation vs. other posterior
models.

Figure 7: Additional trajectories sampled from the point mass environment with MMAML and
ProMP for six tasks. The contour plots represents the multimodal task distribution. The stars mark
the start and goal locations. The curves depict five trajectories sampled using each method after zero,
one and two update steps. In the figure, the modulation step takes place between the initial policy and
the step after one update.
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