
A Proofs

Proof of Proposition 1. w(F (x)) satisfies: (i) non-decreasing since both w(·) and F (·) are non-

decreasing; (ii) lim
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and (iii) right continuous since both w(·) and F (·) are continuous. Thus, as shown in Theorem 1.2.2
in [7], w(F (x)) is a cumulative distribution function.

Proof of Lemma 1. First, notice that wPOLY(P (E))0 = lim
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a2�a+1u � 0. Therefore, f(u) is a monotonically increasing
function of u. Thus, the lemma follows.

Proof of Lemma 2. Recall that we are given a family of models {M✓ | ✓ 2 [0, 1]} whose losses
{`(✓) | ✓ 2 [0, 1]} are parameterized by ✓. For all ✓ 2 [0, 1], `(✓) follows a Bernoulli distribution:
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The mean and variance of the losses are the same, i.e. E[`(✓)] = 1 and Var(`(✓)) = 1. Thus, the
skewness of `(✓) is

Skewness(`(✓)) =
2✓ � 1p
✓(1� ✓)

.

Denote ↵✓ = 1�
�
1�✓
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�1/2, �✓ = 1 +
⇣
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and ↵✓  1  �✓.

RH(`(✓);w) = ↵✓(w(✓)� w(0)) + �✓(w(1)� w(✓)) = ↵✓w(✓) + �✓(1� w(✓)).3

Then, for different polynomial form of CPT probability weighting function w1 and w2,

RH(`(✓);w1)�RH(`(✓);w2) = (�✓ � ↵✓)(w2(✓)� w1(✓)).

Suppose that the probability weighting functions w1, w2 have the parametric form suggested by
Equation 3 with parameter a1, b1 and a2, b2 respectively. If a1 = a2 = 1

2 and b1 < b2, then
w1(✓) > w2(✓) on [0, .5) and w1(✓) < w2(✓) on (.5, 1].

• If 0  ✓ < .5, then RH(✓;w1) < RH(✓;w2).

• If .5 < ✓  1, then RH(✓;w2) < RH(✓;w1).

Proof of Lemma 3. First, notice that wIT(0) = 0 and wIT(1) = 1. The fixed point of wIT is 1
2 because

wIT(1/2) = 1/2. Since w0
IT(y) = �1/2 ln(y · (1� y)) > 0 for all x 2 [0, 1], wIT is monotonically
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wIT 2 WCPT.

3The loss distribution is discrete in this case. We have used the CPT-weighted rank-dependent utility of a
discrete random variable to obtain the human risk [5].
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Connection between wIT and wPOLY. Let y = F (`) and w0
IT(y) =
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.
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The first approximation is done by the first order Taylor expansion of g(y) around 1/2 and the second
approximation is done through the third order Taylor expansion of wIT around 1/2.

B Optimization of EHRM

Optimally optimizing empirical human-aligned risk is an interesting open question. However, the
heuristic approach described in Section 3 performs relatively well in the experiments. Figure 4 and 5
show the empirical human risk (at training time) of experiments in Section 5.1 and 5.3 respectively.

(a) a = .5, b = .4 (b) a = .5, b = .8

Figure 4: Using a fixed learning rate .05 and optimization method described in Section 3, empirical
human risk of the experiments in Section 5.1 converge within 100 iterations.

(a) a = .5, b = .3

Figure 5: Using the optimization method described in Section 5.3, empirical human risk of the
experiment (Section 5.3) converges in 100 epochs.

C Fairness Metrics

Denote true positive rate as TPR, false positive rate as FPR, false negative rate as FNG, covariate as
X 2 X and label as Y 2 {0, 1}. As suggested by [2], we define the below fairness metrics in terms
of the privileged group G1 ✓ X and unprivileged group G2 ✓ X :
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1. Statistical Parity Difference: P (Y = 1|X 2 G2)� P (Y = 1|X 2 G1).

2. Disparate Impact: P (Y=1|X2G2)
P (Y=1|X2G1)

.

3. Equal Opportunity Difference: TPR(G2)� TPR(G1).
4. Average Odds Difference: 1

2 (FPR(G2)� FPR(G1) + (TPR(G2)� TPR(G1))).

5. Theil Index: 1
n

P
n

i=1
bi
µ
ln( bi

µ
) where bi = bYi � Yi + 1 and µ = 1

n

P
n

i=1 bi. bYi is the
prediction of Xi and n is the number of samples.

6. False Negative Rate Difference: FNR(G2)� FNR(G1).

D Model Configuration

The model configuration for the gender classification task (Section 5.3) is as follows: 3 convolutional
layers (with number of output channels (6, 16, 16) respectively, kernel size (5, 5, 6) respectively and
a 2⇥ 2 max-pooling on the outputs of the first layer), followed by two fully connected layers (the first
has 120 hidden units and the second is the output layer with 2 output units); all activation functions
are ReLU and all convolutional layers use stride 1.
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