A  Proofs

Proof of Proposition 1. w(F(z)) satisfies: (i) non-decreasing since both w(-) and F'(-) are non-
decreasing; (ii) xll)rfoow(F(x)) =w xgrfooF(x)) = 1’x£Ime(F(x)) = w(xgr_nooF(x)) =0;

and (iii) right continuous since both w(-) and F(-) are continuous. Thus, as shown in Theorem 1.2.2
in [7], w(F(x)) is a cumulative distribution function.

Proof of Lemma 1. First, notice that wpory(P(E)) = iiglo(wpo]_y(P(E) + Asa,b) —
wpory (P(E); a,b))/A. Denote P(E) to be y. Then, wpory () = jgiﬁ’{ (y2— 2(“;1)y+%) +1=
2
e (v =52+ (5 = 95) + L Letu = |y — “51. Then, w'(y) = 28 (u? + (§ -
2
%)) +1 = f(uw). f'lu) = ggiﬁiu > 0. Therefore, f(u) is a monotonically increasing

function of w. Thus, the lemma follows.

Proof of Lemma 2. Recall that we are given a family of models { My | 6 € [0,1]} whose losses
{£(0) | 6 € [0,1]} are parameterized by . For all 6 € [0, 1], £(6) follows a Bernoulli distribution:

P (e(a) =1- (199)1/2> =0,P (z(a) =1+ (&)Uj =1-0.

The mean and variance of the losses are the same, i.e. E[¢((8)] = 1 and Var(¢()) = 1. Thus, the
skewness of £(6) is

Skewness(¢(0)) = 29021_19) .

1/2
Denote aig = 1 — (%)1/2, Bp =1+ (%) and ag < 1 < By.

Ry (0(0); w) = ag(w(0) — w(0)) + Bo(w(1) — w(B)) = agw(0) + Fo(1 — w(0)).?

Then, for different polynomial form of CPT probability weighting function w; and ws,
Ry (€(0);w1) — Ru(€(0); w2) = (B — ag)(wa(6) — w1 (0)).

Suppose that the probability weighting functions w;, ws have the parametric form suggested by
Equation 3 with parameter a1, b; and as, by respectively. If a; = ay = % and by < by, then
w1 (6) > wz(0) on [0,.5) and wy (0) < w2() on (.5,1].

* If0 < 6 < .5, then Ry (0;w1) < Rpr(0;w2).
e If .5 < 0 <1, then RH(H;'LUQ) < RH(H;U)l).

Proof of Lemma 3. First, notice that wyr(0) = 0 and wyr(1) = 1. The fixed point of wyr is § because
wrr(1/2) = 1/2. Since wip(y) = —1/2In(y - (1 — y)) > 0 for all z € [0, 1], wyy is monotonically
increasing. Notice that wif(y) = m Since wif(y) < Oforall y € [0, 1) and wit(y) > 0 for all
y € (3, 1], wiy is monotonically decreasing on [0, ) and monotonically increasing on (3, 1]. Thus,
wir € Wepr.

3The loss distribution is discrete in this case. We have used the CPT-weighted rank-dependent utility of a
discrete random variable to obtain the human risk [5].
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Connection between wyr and wpory. Let y = F(£) and wip(y) = dwg;y)

weory (¥;1/2,1In2) = 4y — 6y° + 3y + (—41In2y® 4+ 61n2y* — 2In2y)
=4y® — 6y + 3y + g(y)
~ 4y’ — 6y + 3y +9(1/2) + ¢'(1/2)(y — 1/2)
=4y — 6y + 3y + (In2y — In2/2)
= wr(1/2) +upe(1/2)(y — 172) + U2 gy g MUy gy
~ wrr(y).

The first approximation is done by the first order Taylor expansion of g(y) around 1/2 and the second
approximation is done through the third order Taylor expansion of wyr around 1/2.

B Optimization of EHRM

Optimally optimizing empirical human-aligned risk is an interesting open question. However, the
heuristic approach described in Section 3 performs relatively well in the experiments. Figure 4 and 5
show the empirical human risk (at training time) of experiments in Section 5.1 and 5.3 respectively.
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Figure 4: Using a fixed learning rate .05 and optimization method described in Section 3, empirical
human risk of the experiments in Section 5.1 converge within 100 iterations.
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Figure 5: Using the optimization method described in Section 5.3, empirical human risk of the
experiment (Section 5.3) converges in 100 epochs.

C Fairness Metrics

Denote true positive rate as TPR, false positive rate as FPR, false negative rate as FNG, covariate as
X € X and label as Y € {0, 1}. As suggested by [2], we define the below fairness metrics in terms
of the privileged group G; C X and unprivileged group G, C A’
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. Statistical Parity Difference: P(Y = 1|X € G3) — P(Y = 1|X € Gy).

. . P(Y=1|X€G2)
. Disparate Impact: PY=1[Xech)"

. Equal Opportunity Difference: TPR(G2) — TPR(G?).

. Average Odds Difference: 1 (FPR(G2) — FPR(G1) + (TPR(G2) — TPR(G1))).

. Theil Index: £ 3" % ln(%) where b; = Y; — Y; + 1 and p=L13" b Y, is the
prediction of X; and n is the number of samples.

6. False Negative Rate Difference: FNR(G5) — FNR(G1 ).

S S

D Model Configuration

The model configuration for the gender classification task (Section 5.3) is as follows: 3 convolutional
layers (with number of output channels (6, 16, 16) respectively, kernel size (5, 5, 6) respectively and
a 2 x 2 max-pooling on the outputs of the first layer), followed by two fully connected layers (the first
has 120 hidden units and the second is the output layer with 2 output units); all activation functions
are ReL.U and all convolutional layers use stride 1.
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