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We thank all the reviewers for their helpful feedback and remarks, and for being unanimously positive about the
significance of the results: R1— "The authors are among the first to apply post-training quantization approaches to
4-bit and lower precision networks. The paper is interesting, and it has clear significance, creating a state of the art
for post-training quantization at 4 bits."; R2— "These contributions have a high level of significance since with small
overhead the method improves over standard quantization scheme."; R3— "The paper is clean, focused and novel.
Directly applicable to various area and research, well reflecting the current trend on quantized neural networks."

New results: Since submission, we combined our three-stage quantization pipeline with a loss-less compression scheme
that uses variable-length codewords to encode the quantized values (Huffman encoding). Thus, more common values
are assigned with fewer bits, which has two important advantages: (i) channels with different numerical precisions
can be combined in the same layer, enabling reduced hardware overhead for per-channel bit allocation; (ii) significant
reductions in memory bandwidth requirements could be achieved, with a minor accuracy loss (at most 0.5% of the
float32 baseline). For example, the average number of bits required to represent an activation value in a feature map
could be reduced to 2.2, 2.4, 3.1, 3.7, 4.1 and 4.4 bits for VGG, VGG-BN, Inception, Res18, Res50 and Res101,
respectively. We note for the sake of clarity that these new results were obtained in a post-training manner. We have
submitted the new code to the git repository and plan to update the final version of the paper.

Below we address the main suggestions for improvements mentioned by the reviewers (minor issues will be addressed).
If we address the comments of the reviewers, we kindly ask that they adjust their scores to reflect their positive opinion.

Referee 1: "My interpretation is that everything in this paper is post-training and pre-inference ...If not, it would
improve the clarity to state what is computed during runtime.” =—> The optimal clipping threshold and channel bit-width
allocations are calculated at runtime using Equations 6 and 11, respectively. We implicitly mention that in lines 72-73
but will add a more explicit note. Our recent simulations show that by running 32 calibration images to gather activation
statistics, the above two calculations can be done offline with little effect on overall accuracy. For 4-bit weights and
activations (4W4A), overall accuracy is still significantly improved over 4W4A baseline in all models: 61.8% vs 69.8%
(VGG); 59.8% vs. 71% (VGG-BN); 22.8% vs. 66.1% (Inception V3); 46.1% vs. 65.1% (Res18); 62.2% vs. 74.2%
(Res50); 64.3% vs. 76.1% (Res101). Git repository was updated with this important use-case.

"There are many fundamental questions outside of the current scope of this paper... 1. What is limit to quantization
without training? 2. Are we close or can they be much better with better methods?" = These are exciting open
questions. Our recent results (mentioned above) indicate we can get very low for some models e.g., 2.2 bits for VGG16.

Referee 2: "It is not clear what is the performance compare to other types of removal of outliers (e.g. simply removing
all values which are greater than £20)." =—> we compare and state the advantages of ACIQ over (Migacz, 2017) and
(Zhao et al., 2019) in lines 72-78 and provide a comparison against KLLD in the Appendix (Table 1). Other clipping
thresholds hurts accuracy, e.g. clipping values outside the interval [—20, 20] is associated with a significantly inferior
outcome compared to ACIQ in all models: 47.2% vs 70.1% (VGG); 44.9% vs. 72.1% (VGG-BN); 13.4% vs. 72.5%
(Inception V3); 25.6% vs. 66.6% (Res18); 15.4% vs. 72% (Res50); 24.7% vs. 72.7% (Res101). Git repository was
updated with this test.

"What is the performance for other types of quantization (filter-wise, layer-wise)?" —> Applying ACIQ for layer-wise
quantization improves results in all models: 64.3% vs. 70% (Res101); 67% vs. 71.2% (Res50); 63.7% vs. 66.5%
(Res18); 70.8% vs. 72.8% (Inception V3); 69.1% vs. 71.5% (VGG-BN); 69.9% vs 70.6% (VGG). Git repository was
updated with this test, and we plan to include this layer-wise comparison in the final version.

"What is the motivation for bias-correction?” —> Neural networks are known to be sensitive to shift in mean and
variance which builds up across layers, shifting all network statistics away from the learned distribution. If quantized
weights are unbiased with respect to original weights, the quantization error is unbiased and possesses the desirable
property that the expected rounding error is zero and thus cancels out in the layer’s output.

Referee 3: "during convolution, accumulation of different channel should be first matching step size, then accumulate.
How do you match step size, and where do you accumulate? (Int32? Float32?)" —> per-channel quantization is
handled as follows: (1) load activations and weights from memory at 4-bit precision; (2) multiply the 4-bit weights with
4-bit activations, which results with 8-bit products; (3) expand these 8-bit products into 16-bit representations (needed
for matching the different channel quantization step sizes); (4) finally, sum the products with Int32 accumulator.

"Is retraining after ACIQ better than without ACIQ? If yes, ACIQ may be the standard procedure for low-bit quantiza-
tion.” = This is a good question. We are planning to investigate the applicability of our techniques in full training
mode and will include this question in our study.

A difference visualization of the quantization step of the same tensor, each found by KLD and ACIQ. — Will add.
Compared to KLD, ACIQ has on average 15-20% smaller quantization step. Defining the mean quantization step ratio

p= % across all layers, we get p = 0.81,0.81, 0.8, 0.86 for Res18, Res50, Res101 and Inception, respectively.



