
Overview

The appendices are organised as follows. Appendix A provides additional details on the experiments
in Section 4. Appendix B details our implementation of VAT [32] adapted for L1 adversarial
robustness. Appendix C provides additional details on the 80m@N dataset generation procedure.
Appendix D details code release. Appendix E includes additional experiments for the adversarial
evaluation of our trained models, as well as checks against gradient masking. Finally, we include the
proof of Theorem 1 in Appendix G.

A Experimental Details

A.1 Implementation notes

Model architecture. For all experiments, we use variants of wide residual networks (WRNs) [52].
In Section 4.1, we use a WRN of width 2 and depth 28 for SVHN and a WRN of width 8 and depth
28 for CIFAR-10. We explore increasing the depth of the network (while keeping width to be 8) to
34, 70 and 106 in Section 4.2.2.

Data preprocessing. We use standard data augmentation techniques for images. For CIFAR-10,
4-pixel padding is used before performing random crops of size 32x32 and random left-right flip. For
SVHN, 4-pixel padding is also employed before random crops of size 32x32 followed by random
color distortions.

Pseudocode. We provide pseudocode for our particular implementations of each UAT variant. To
simplify notation, when writing (x, y) ⇠ Um, the target y is always the fixed target pseudo-label
(which is unused in UAT-OT). Recall that these pseudo labels are obtained from a model trained on
Sn alone. L̂advand L̂OT are the empirical estimates of the robust loss from [30] (as in UAT-FT) and
LOT respectively, as defined in the next section.

Algorithm 1 UAT-OT update
Input: Weight hyperparameter �, batch sizes bs and bu

Sample bs labeled examples (xs,ys) ⇠ Sn and bu unlabeled examples (xu,yu) ⇠ Um

Compute loss L = L̂adv(xs,ys; ✓) + �( bs
bu
)L̂OT (xu,yu; ✓)

Update with gradient g = r✓L

Algorithm 2 UAT-FT update
Input: Batch sizes bs and bu

Sample bs labeled examples (xs,ys) ⇠ Sn and bu unlabeled examples (xu,yu) ⇠ Um

Merge x = [xs;xu]; y = [ys;yu]
Compute loss L = L̂adv(x,y; ✓)
Update with gradient g = r✓L

Algorithm 3 UAT++ update
Input: Weight hyperparameter �, batch size bs and bu

Sample bs labeled examples (xs,ys) ⇠ Sn and bu unlabeled examples (xu,yu) ⇠ Um

Merge x = [xs;xu]; y = [ys;yu]
Compute loss L = L̂adv(x,y; ✓) + �L̂OT (x,y; ✓)
Update with gradient g = r✓L
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Loss implementations. In the above, the empirical estimates of the losses are defined as follows:

L̂adv(x,y; ✓) =
1

|(x,y)|

|(x,y)|X

i=1

sup
x0
i2N✏(xi)

xent(yi, p✓(·|x0
i
))

L̂OT (x,y; ✓) =
1

|(x,y)|

|(x,y)|X

i=1

sup
x0
i2N✏(xi)

D(p
✓̂
(.|xi), p✓(.|x0

i
))

We always approximate each maximization with 10-steps of PGD, as described in Appendix A.3. For
L̂OT , there are two implementational details of the attack which are not obvious from the pseudocode.

• When computing L̂OT in UAT-OT, we solve the adversarial optimization with a “hard-
label” rather than “soft-label” attack. That is, rather than maximizing the KL directly, we
take the hard label ŷ = argmaxy p✓(y|x) and run a PGD attack using ŷ as the label. We
suspect this is because when p✓(y|x) is not completely one-hot, we are maximizing a convex
objective. There are (at least) two issues due to this. First, the gradient of the KL, evaluated
at x, is 0, since p(y|x) is the global minimum. Second, if the random initialization x

0

causes p(ŷ|x0) > p(ŷ|x), then the gradient will encourage increasing p(ŷ|x0), rather than
decreasing it. While previous work in [54] finds that initializing to a random perturbation
of x allows PGD to effectively maximize the KL, using hard labels worked better in our
experiments.

• When computing L̂OT in UAT++, we reuse the adversarial example computed to maximize
L̂adv , for computational efficiency.

In both cases, the model loss is still a KL divergence.

Loss weights. For all experiments, we used � = 5 for both UAT-OT and UAT++. We fixed these
values based on early experiments.

Differences with distribution shift. For our off-distribution experiment in Section 4.2.2, we make
two changes to accomodate distribution shift. First, we compute the loss on the labeled and unlabeled
examples using separate forward passes through the network. Without batch norm, this has no
effect on the computation. With batch norm, we observe this helps slightly, perhaps because the
off-distribution unlabeled data degrades the local batch statistics. Second, we downweight the loss
of unlabeled examples by a factor of bs/bu (this corresponds to averaging the loss across examples
within each separate batch, rather than summing). We suspect that while label noise has little effect,
distribution shift degrades performance, and so focusing more on in-distribution examples is helpful.

Batch sizes. Throughout Section 4.1, we use batch sizes proportional to the dataset size. In other
words, given labeled and unlabeled datasets Sn and Um, for a total batch size of B = 128, we use
bs = BN/(N + M) and bu = BM/(N + M). This ensures we perform an equal number of passes
through each dataset, and helps avoid overfitting the (small) labeled dataset. For our high data regime
experiment in Section 4.2.2, we use fixed bs = 512 and bu = 4096.

Optimization. We use the SGD with momentum optimizer for all training jobs. For all training jobs,
we use weight decay (L2 regularization) weighted by 5 ⇥ 10�4.

In Section 4.1.1, we use a total batch size of 128, for 25K steps with an initial learning rate of 0.2
which is decreased by a factor 10 at iterations 15K, 18K and 20K. This schedule was fine-tuned
using the validation set.

In Section 4.2, we use the same learning rate schedule of [54]’s public repository is used for CIFAR-10,
i.e. initiate with 0.2, then dividing by 10 after 15K and 22K steps.

A.2 Negative results and observations

We note several observations we made while running experiments. Note that these are much less
carefully examined than the results reported in the main paper. Indeed, we suspect that some of these
observations may be specific to our specific training setup. However, we include these as we believe
they may nonetheless be helpful for future researchers:
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• We merge (pseudo)-labeled and unlabeled batches when possible, since this improved robust
accuracy, particularly in the small-data regime (when using smaller batch sizes) We suspect
this is due to more reliable local batch statistics in batch normalization, since with small
batch sizes, the labeled batch can be quite small.

• We found learning rate schedules to be particularly important. For example, in Table 1, the
primary difference between our reimplementation of adversarial training, and the implemen-
tation in [30] is we use the significantly shorter schedule from [54], which improves robust
accuracy by ~3%.

• With our current choices for �, we notice a strong regularizing effect from L̂OT . While
UAT-FT reaches nearly 100% train robust accuracy by the end of training, the same schedule
used with UAT-OT or UAT++ stays below 80% train robust accuracy.

• When using L̂OT on unsupervised data, we noticed it was necessary to either use fixed
parameters ✓̂ for computing the target prediction, or to also use fixed targets on the unlabeled
data. When both these are missing, the model would learn to predict a uniform class
distribution for images in the unsupervised dataset. While such models achieve high training
accuracy, test set accuracy stays close to random, even on unperturbed images. On labeled
data, both versions with and without backpropagating into target predictions work fine, as
reported in [54].

• We tried combining UAT with the recent semi-supervised UDA method [50] but did not see
significant improvements in adversarial accuracy.

• We experimented with alternative normalization strategies such as InstanceNorm [47] and
GroupNorm [49], but observed slightly worse results.

A.3 Projected gradient descent (PGD) details

We provide additional details on our untargeted PGD attack, which we use for adversarial training.
The untargeted attack optimizes the margin loss objective proposed in [9]

J
adv
✓

(x) = Z(x, ✓)y � max
i 6=y

Z(x, ✓)i ,

where Z(x, ✓)i denotes the logit for class i, predicted by model ✓ on input x, and y denotes the true
label. The margin loss is negative if and only if x is misclassified.

We optimize this objective with projected gradient descent [26, 30] using the Adam optimizer [24].
Consistent with prior work (e.g. [9, 29]), we find these modifications to improve attack convergence
speed when compared to using the negative cross-entropy loss or vanilla gradient updates. During
training, we perform 10 steps of optimization, as in [54].

B Implementation note on VAT baseline implementation

Recall that for UAT-OT, we use the loss introduced in [32] and also used in [54]

LOT

unsup(✓) = E
x⇠P (X)

sup
x02N✏(x)

D(p
✓̂
(.|x), p✓(.|x0)), (3)

where D is the Kullback-Leibler divergence, and ✓̂ indicates a fixed copy of the parameters ✓ in order
to stop the gradients from propagating.

In practice, computing the optimal perturbation x
0 (in supx02N✏(x)) cannot be achieved in closed

form, hence approximations have to be proposed. In [32], the authors start from a second order Taylor
approximation of D(p

✓̂
(.|x), p✓(.|x0)), then use a combination of finite differences to efficiently

approximate the Hessian and power iteration method to find an estimate of the optimal perturbation.
Their end goal being standard generalization, they observe that only one iteration of the power
method is sufficient for good performance. This specific procedure (Hessian approximation and
eigenvector estimation though power method) is specifically tailored to the case where the chosen
specification for the adversary corresponds to the L2 ball: N✏(x) = {x

0 : kx
0 � xk2  ✏}, whereas

we focus on the L1 ball type of constraints.
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For fair comparison, we adapt their algorithm to the L1 ball by replacing the previously mentioned
procedure by one step of FGSM with learning rate equal to ✏.

UAT-OT mainly differs from VAT in the fact that we instead use 10 steps of PGD to estimate x
0.

Looking at Figure 1 in the main paper, UAT-OT clearly outperforms VAT, indicating that when it
comes to adversarial generalization, one has to use a stronger adversary to generate the perturbation.

C Dataset Details

We detail the procedure used to generate the 80m@N datasets, used for experiments in Section 4.2.
To remove exact and near duplicate images, we follow [15] and use the GIST image descriptors [34]
provided with the 80 Million Tiny Images dataset [44]. For every image, we compute the L2 distance
to its nearest neighbor in the CIFAR-10 test set, as measured in GIST feature space, and remove
all images within distance 0.28, totalling roughly one million images. Following this, we manually
checked for near duplicates, by random sampling and visualizing L2 nearest neighbors. In our initial
version of this paper, we removed only exact duplicates, which produced robust accuracies roughly
0.5 - 2% higher across all experiments.

For filtering, we use a WRN-28-10 [52] model trained on CIFAR-10, which achieves 96.0% accuracy
on the CIFAR-10 test set. Following the procedure used for the original CIFAR-10 dataset [25], for
each class in CIFAR-10, we use hyponyms of the class name, based on the Wordnet hierarchy [31].
This leaves roughly 2 million images remaining, though the class distribution is highly non-uniform
(of these, 1 million correspond to the “dog” class, while just 50000 correspond to “deer” or “frog”).
For each image, we record the probability assigned by the pretrained model to the associated class.
We restrictto images with associated probability over 0.5, and take the top N/10 images per class.
For the 80m@500K dataset, some classes contain less than 50K such examples. In this case, we
randomly duplicate examples, to maintain class balance. Finally, we note that although we use
a simple procedure here, and did not experiment with alternatives, we believe developing better
procedures to exploit uncurated data is an important and underexplored research direction.

D Code Release

Example usage of our best performing model (WRN-106 trained with UAT++ on 80m@200K) as
well as all the 80m@N datasets we used to train our models can be found on our github repository.2

E Adversarial Evaluation Details

E.1 Multitargeted attack evaluation

We evaluate using the MultiTargetedattack proposed in [19], which we have found to be sig-
nificantly stronger than commonly used PGD attacks, at the cost of increased computation. The
MultiTargeted implementation is equivalent to the untargeted attack described above, but rather
than performing a single optimization, instead runs a targeted attack against each possible class, and
returns the image which minimizes the untargeted loss. The targeted margin loss is

J
adv
✓

(x) = Z(x, ✓)y � Z(x, ✓)t ,

where t is the target class. We use 200 steps with 20 random restarts for each class.

We have found the MultiTargeted attack to reliably outperform untargeted PGD attacks, which in
turn reliably outperform FGSM20. In ensuring the strongest results for untargeted PGD, we found
that using 200 steps with 20 random restarts slightly outperforms 100 steps with 1000 random restarts,
and hence report results using the former. For example, for our strongest model, trained on the
80m@200K dataset, the FGSM20adversarial accuracy is 63.65%, the untargeted PGD adversarial
accuracy is 61.10%, and the MultiTargeted adversarial accuracy is 56.30%.

2https://github.com/deepmind/deepmind-research/tree/master/unsupervised_
adversarial_training
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E.2 SPSA evaluation

As an additional check against gradient masking [1, 46], we run a gradient-free attack, SPSA [46],
against our strongest model, UAT++ trained on the 80m@200K unsupervised dataset. For SPSA,
we use a batch size of 8192 with 40 iterations. We obtain 64.9% adversarial accuracy, similar to the
61.1% obtained by untargeted PGD. We further observe in Figure 4 that SPSA and PGD reliably
converge to similar loss values, and that SPSA rarely outperforms PGD. This provides additional
evidence that the model’s strong performance is not due to gradient masking.
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Figure 4: Analysis of gradient masking with SPSA: We compare the final values of the margin
loss across different images, between PGD and SPSA. Each point represents a single image, which
is misclassified when J

adv
✓

(x) < 0. Overall, we find that SPSA and PGD converge to similarly
adversarial perturbations (points close to the line y = x). We observe relatively few images where
SPSA outperformed PGD (below the line, shown in red). The upward bend in the dots to the left of
�3 are an artifact due to the fact that we terminate the SPSA attack early, once we find any image
with margin loss below �3.

E.3 Loss landscape analysis

As another check against gradient masking, we look at the adversarial loss landscape from our
strongest model. We examine the loss surfaces for four images where the MultiTargeted attack
succeeded, but untargeted PGD attack, with 200 steps and 20 restarts, did not. Figure 5 shows the
untargeted adversarial loss (optimized by PGD) around the nominal image from CIFAR-10. In these
loss landscapes, we vary the input along a linear space defined by the worse perturbations found by
PGD and a random direction. The u and v axes represent the magnitude of the perturbation added
in each of these directions respectively and the z axis represents the loss. For figures on the right
hand side of Figure 5, they show a top-view of the loss landscape and indicates that a large portion
of L1 ball around the nominal image pushes the PGD solution towards the right (rather than the
bottom). We observe that the loss landscape is rather smooth, which provides (weak) additional
evidence that the strong performance is not due to gradient masking.

E.4 Attack convergence analysis

As another check against gradient masking, we analyzed the convergence of PGD. Figure 6 shows
convergence of untargeted PGD across different random restarts for our strongest model, though we
also observe similar patterns across other models. We observed that on randomly selected images,
PGD quickly converges, and that the final loss values across random restarts are tightly clustered,
indicating PGD likely converges to near-optimal perturbations. Figure 6a shows randomly selected
images, and is consistent with what we observe across images where MultiTargeted and PGD
agree. In the fraction of cases where MultiTargeted succeeded but PGD did not, we can find
evidence of gradient masking on some images through random restarts. In Figure 6b, there are two
images where the final loss varies across different random restarts.
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F Additional Experimental Results

L2 robustness. We ran several short experiments to ensure our results hold for L2 in addition to L1
robustness. We use 4K labeled and 32K unlabeled examples. On CIFAR-10 at L2 radius ✏ = 0.87,
which encloses the L1 ✏ = 4/255 ball, the purely supervised model achieves 32.7% robust accuracy,
the supervised oracle achieves 53.9%, and UAT almost matches this, with 55.2% robust accuracy.
This represents a 21% absolute gain from using unlabeled data, which captures over 90% of the
oracle improvement, without using additional labels. We observe similar results for ✏ = 0.435, which
encloses the L1 ✏ = 2/255 ball, of 47.3% / 70.3% / 66.3% for the purely supervised baseline,
supervised oracle, and UAT, respectively.

Number of necessary labels. To study the minimum number of labels required while maintaining
robustness, we also train CIFAR-10 models using fewer labels. In the body of the paper, we report
that with 4K labels (and 32K unlabeled examples), UAT achieves 54.1% robust accuracy, compared to
55.5% for the supervised oracle which uses 36K labeled examples. We also trained models using 2K
and 1K labels, which yield robust accuracies of 51.9% and 47.7% respectively. Thus, there is some
loss of robustness – with 4K labels, UAT almost exactly matches the performance of the supervised
oracle, with only a 1.4% gap, whereas with 2K and 1K labels, the gap is larger. However, even in this
regime, UAT still achieves significant adversarial robustness.

G Proof of Theorem 1

G.1 Preliminaries

We first provide the following two concentration inequalities which we will use to bound our main
quantities of interest.
Lemma 3 (Concentration of �-squared distribution). Let X ⇠ N (0, �2

In). Then, provided ↵
2

>

2n�
2,

P(kXk2 � ↵
2)  e

�↵
2
/(20�

2)
.

Proof. The result follows from application of Lemma 1 from [28].

Lemma 4. Let X ⇠ N (0, �2
Im) in Rm. Then

P( 1
m

kXk1 � a)  2m exp�ma
2

2�2

Proof. Forming the Chernoff bound with t = ma

�2 , we have:

P( 1
m

kXk1 � a)  exp�ma
2

�2 E[exp
a

�2
kXk1]

= exp�ma
2

�2

⇣
E[exp

a

�2
|X1|]

⌘m

= exp�ma
2

�2

✓
exp

a
2

2�2
(1 + erf a

�
p

2
)

◆m

= exp�ma
2

�2
exp

ma
2

2�2

⇣
(1 + erf a

�
p

2
)
⌘m

 2m exp�ma
2

2�2

G.2 Main Proof

To bound the robustness, there are two main quantities of interest. First, we need to bound the norm
of z = 1

m

P
m

i=1 ŷixi, which controls the smoothness of the classifier (Lemma 5). Second, we need
to bound the inner product hz, ✓

⇤i, which controls how well the classifier fits the data (Lemma 6).
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The main difficulty is that
P

m

i=1 ŷixi is not Gaussian distributed. In particular, while
P

m

i=1 yixi

follows a Gaussian distribution, our quantity of interest does not, due to the dependence of ŷi on xi.

Lemma 5. Given a (✓?
, �) Gaussian model in Rd, let h : Rd ! {�1,+1} be any classifier.

If z = 1
m

P
m

i=1 ŷixi is the sample mean vector of m i.i.d. samples based on predicted classes
ŷi = h(xi), then we have

P
 

kzk2 � (1 + c)k✓
⇤k2 + 2�

r
d

m

!
 e

�6
p

d/5
,

with c =
p

20�

k✓⇤k

qp
d

m
+ log 2.

Proof. We have
�����
1

m

mX
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ŷixi

�����
2

=

�����
1

m

mX

i=1

ŷi(yi✓
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�����
2

 k✓
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m

mX
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�����
1
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mX

i=1

ŷizi
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2
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1

m

mX
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ŷizi

�����
2

,

where zi ⇠ N (0, �2
I). We therefore have

P
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1
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2
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[
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Observe that
P

m

i=1 sizi ⇠ N (0, m�
2). Now, using the concentration of measure result, whenever
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⇤k �

q
2
m
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Hence, we obtain
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q
d

m
. Then, we have
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Lemma 6. Under the conditions of Lemma 5, let p = E[I[h(x) = y]] denote the accuracy of
classifier h. Then we have

P
 

hz, ✓
⇤i 

�
7
4p � 1

�
k✓

⇤k2 �
p
2k✓

⇤k�

r
log(1/�)

m
+ log 2

!
 (0.995)mp + �.

Proof. We write

P (hŵ, ✓
⇤i  t) = P

 
h 1
m

mX
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!
= P
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m
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,

where zi are N (0, �2
I). The expression inside the probability is equal to
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We bound this expression from below with
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(That is, we consider the worst-case scenario where the random variables ŷi are given by the negative
of the sign of hzi, ✓

⇤i). We therefore get that
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We treat the first term. Let t =
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⇤k2. The first probability term is hence given by
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using a Chernoff bound.

We have the following concentration bound on the `1 norm of the Gaussian vectors U ⇠
N (0, k✓

⇤k2
�

2):
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by applying Lemma 4. We set t
0 =

p
2k✓
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q
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m
+ log 2, and when plugging in the above

formula, we obtain
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m
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0
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Hence, we obtain the desired bound.

We now use these results to achieve the final result in Theorem 1. In what follows, we assume:

• (x1, y1), . . . , (xm, ym) are drawn i.i.d. from a (✓?
, �) Gaussian model in Rd with mean

norm k✓
?k2 =

p
d

• h : Rd ! {�1,+1} is a base classifier with accuracy p >
3
4 , where p = E[I[h(x) = y]]

• z 2 Rd is the sample mean vector z = 1
m

P
m

i=1 ŷixi, where ŷi = h(xi)
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• ŵ 2 Rd is the unit vector in the direction of z, i.e., ŵ = z/kzk2

• c denotes the constant in Lemma 5
Lemma 7. Under these assumptions,

P
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hŵ, ✓

?i 
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�p
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p
d + 2m�2 log 2

(1 + c)
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is bounded above by exp(�6
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d/5) + (0.995)mp + exp(�d/2�2).

Proof. By Lemma 6, we have

P
"
hz, ✓

⇤i �
�

7
4p � 1

�
k✓k2 �

p
2k✓k�

r
log(1/�)

m
+ log 2

#
� 1 � (0.995)mp � �.

Further, by Lemma 5, we have
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,

Conditioning on both events with � = exp(�d/2�2), the overall failure probability is bounded by
exp(�6

p
d/5) + (0.995)mp + exp(�d/2�2). Then, we have
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For ease of reference, we provide a relevant lemma proved in [41].
Lemma 8 ([41]). Assume a (✓?

, �)-Gaussian model. Let p � 1, " � 0 be robustness parameters,
and let ŵ be a unit vector such that hŵ, ✓

?i � " kŵk⇤
p
., where k·k⇤

p
is the dual norm of k·k

p
. Then

the linear classifier fŵ has `
"
p
-robust classification error at most
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Lemma 9. With probability at least 1 � [exp(�6
p

d/5) + (0.995)mp + exp(�d/2�2)], the linear
classifier fŵ has `

"
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Proof. We follow the approach used for Theorem 21 in [41]. Define
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By Lemma 7, we have that hŵ, ✓
?i � ↵ with probability at least 1 � [exp(�6

p
d/5) + (0.995)mp +

exp(�d/2�2)].
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� (hŵ, ✓

?i � "
p

d)2

2�2

!
.

Since
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the robust classification error is bounded above by �, as desired.

Lemma 10. Assume �  1
32d

1/4 and p > 0.99. Then, with probability at least 1� [exp(�6
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Proof. We first apply Lemma 9 which gives a `
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The remainder is simple algebraic manipulation. First, we consider the case where "  1
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The resulting robustness is
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Next, we consider the case where 1
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4 . We again bound c:
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The resulting robustness is
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as desired.

Corollary 11. Let (x0, y0) and (x1, y1), . . . , (xm, ym) be drawn i.i.d. from a (✓?
, �) Gaussian model

with corruption parameter p and mean norm
p

d. Let ŵsup = y0x0. Let z 2 Rd be the sample
mean z = 1

m

P
m

i=1 ŷixi, where ŷi = fŵsup(xi). Let the UAT-FT estimator ŵ 2 Rd be the unit
vector in the direction of z, i.e., ŵ = z/kzk2. Assume �  1

32d
1/4. Then, with probability at least

1� [exp(� 6
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Using the given restriction on �, we can invoke Corollary 19 from [41] with � = 0.01. Thus,
with probability at least 1 � 2 exp(� d

8�2+1) ), the classification error p of the base classifier fŵsup

is less than 0.01. Conditioning on this event, we can invoke Lemma 10 with m as given, which
yields a robust classification error of fŵ of at most 0.01, with probability at least 1 � [exp(� 6

p
d

5 ) +
(0.996)m + exp(� d

2�2 ).

A union bound gives the desired total failure probability.
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Figure 5: Adversarial loss landscapes around the nominal images. It is generated by varying the
input to the model, starting from the original input image toward either the worst attack found using
PGD (u direction) or the one found using a random direction (v direction). For the figures on the left
hand side, the z axis represents the loss. For both panels, the diamond-shape represents the projected
L1 ball of size ✏ = 8/255 around the nominal image.
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(a) Convergence on randomly sampled images

(b) Convergence on images where MultiTargeted attack succeeded but untargeted PGD did not

Figure 6: Convergence of PGD. Each plot shows the convergence of the adversary loss on the same
image, across 20 random restarts. On randomly sampled images (top), the loss converges to tightly
clustered values. On images where PGD did not find optimal perturbations (bottom), we observe
variation in perturbation strength across different restarts for two images in the bottom row.
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