
Deep Active Learning with a Neural Architecture
Search - Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

1 Related Work1

Active learning has attracted considerable attention since the early days of machine learning.2

The literature on active learning in the context of classical models such as SVMs is extensive3

[3, 6, 22, 2, 1, 11], and clearly beyond the scope of this paper. Active learning of deep neural4

models, as we consider here, has hardly been considered to date. Among the prominent related5

results, we note Gal et al. [8], who presented active learning algorithms for deep models based on6

a Bayesian Monte-Carlo dropout (MC-dropout) technique for estimating uncertainty. Wang et al.7

[23] applied the well-known softmax response (SR) idea supplemented with pseudo-labeling (self-8

labeling of highly confident points) for active learning. Sener and Savarese [20] and Geifman and9

El-Yaniv [9] proposed using coresets on the neural embedding space and then exploiting the coreset10

loss of unlabeled points as a proxy for their uncertainty. A major deficiency of most of these results11

is that the active learning algorithms were applied with a neural architecture that is already known12

to work well for the learning problem at hand. This hindsight knowledge is, of course, unavailable13

in a true active learning setting. To mitigate this problematic aspect, in [9] it was suggested that the14

active learning be applied only over the “long tail”; namely, to initially utilize a large labeled training15

sample to optimize the neural architecture, and only then to start the active learning process. This16

partial remedy suffers from two deficiencies. First, it cannot be implemented in small learning prob-17

lems where the number of labeled instances is small (e.g., smaller than the “long tail”). Secondly, in18

Geifman and El-Yaniv’s solution, the architecture is fixed after it has been initially optimized. This19

means that the final model, which may require a larger architecture, is likely to be sub-optimal.20

Here, we initiate the discussion of architecture optimization in active learning within the context of21

deep neural models. Surprisingly, the problem of hyperparameter selection in classical models (such22

as SVMs) has not been discussed for the most part. One exception is the work of Huang et al. [11]23

who briefly considered this problem in the context of linear models and showed that active learning24

performance curves can be significantly enhanced using a proper choice of (fixed) hyperparameters.25

Huang et al. however, chose the hyperparameters in hindsight. In contrast, we consider a dynamic26

optimization of neural architectures during the active learning session.27

In neural architecture search (NAS), the goal is to devise algorithms that automatically optimize28

the neural architecture for a given problem. Several NAS papers have recently proposed a number29

of approaches. In [24], a reinforcement learning algorithm was used to optimize the architecture30

of a neural network. In [25], a genetic algorithm is used to optimize the structure of two types of31

“blocks” (a combination of neural network layers and building components) that have been used32

for constructing architectures. The number of blocks comprising the full architecture was manually33

optimized. It was observed that the optimal number of blocks is mostly dependent on the size of the34

training set. More efficient optimization techniques were proposed in [14, 18, 19, 16]. In all these35

works, the architecture search algorithms were focused on optimizing the structure of one (or two)36

blocks that were manually connected together to span the full architecture. The algorithm proposed37

in [15] optimizes both the block structure and the number of blocks simultaneously.38

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



When considering NAS for fully-connected networks, [4] proposed an algorithm that iteratively39

adds neurons to an existing layer or to initiate a new layer. Their algorithm iteratively optimizes the40

width and depth of a network. For a comprehensive survey on NAS techniques, see [5]. To the best41

of our knowledge, no work has been done on architecture searches for active learning.42

2 Experimental Design and Details43

2.1 Datasets44

CIFAR-10. The CIFAR-10 dataset [13] is an image classification dataset containing 50,000 training45

images and 10,000 test images that are classified into 10 categories. The image size is 32× 32× 346

pixels (RGB images).47

CIFAR-100. The CIFAR-100 dataset [13] is an image classification dataset containing 50,000 train-48

ing images and 10,000 test images that are classified into 100 categories. The image size is 32×32×349

pixels (RGB images).50

Street View House Numbers (SVHN). The SVHN dataset [17] is an image classification dataset51

containing 73,257 training images and 26,032 test images classified into 10 classes representing52

digits. The images are digits of house numbers cropped and aligned, taken from the Google Street53

View service. Image size is 32× 32× 3 pixels.54

2.2 Architectures and Hyperparameters55

We used an architecture search space that is based on the Resnet architecture [10]. The initial block56

contains a convolutional layer with filter size of 3 × 3 and depth of 64, followed by a max-pooling57

layer having a spatial size of 3 × 3 and strides of 2. The basic block contains two convolutional58

layers of size 3 × 3 followed by a ReLU activation. A residual connection is added before the59

activation of the second convolutional layer, and a batch normalization [12] is used after each layer.60

The classification block contains an average pooling layer that reduces the spatial dimension to61

1 × 1, and a fully connected classification layer followed by softmax. The search space is defined62

according to the formulation in Section 3, and spans all architectures in the range A(Br, 1, 1) to63

A(Br, 12, 5).64

As a baseline, we chose two fixed architectures. The first architecture was the one optimized for65

the first active round (optimized over the initial seed of labeled points), and which coincidentally66

happened to be A(Br, 1, 2) on all tested datasets. The second architecture was the well-known67

Resnet-18, denoted as A(Br, 2, 4), which is some middle point in our search grid.68

We trained all models using stochastic gradient descent (SGD) with a batch size of 128 and momen-69

tum of 0.9 for 200 epochs. We used a learning rate of 0.1, with a learning rate multiplicative decay70

of 0.1 after epochs 100 and 150. Since we were dealing with different sizes of training sets along71

the active learning process, the epoch size kept changing. We fixed the size of an epoch to be 50,00072

instances (by oversampling), regardless of the current size of the training set St. A weight decay of73

5e-4 was used, and standard data augmentation was applied containing horizontal flips, four pixel74

shifts and up to 15-degree rotations.75

The active learning was implemented with an initial labeled training seed (k) of 2000 instances. The76

active mini-batch size (b) was initialized to 2000 instances and updated to 5000 after reaching 1000077

labeled instances. The maximal budget was set to 50,000 for all datasets1. For time efficiency rea-78

sons, the iNAS algorithm was implemented with TiNAS = 1, and the training of new architectures79

in iNAS was early-stopped after 50 epochs, similar to what was done in [21].80

2.3 Query Functions81

We applied the following three well known query functions.82

Softmax Response. The softmax response method (SR) simply estimates prediction confidence83

(the inverse of uncertainty) by the maximum softmax value of the instance. In the batch pool-based84

active learning setting that we consider here, we simply query labels for the least confident b points.85

1SVHN contains 73,256 instances and was, therefore, trimmed to 50000.

2



(a) CIFAR-10 (b) CIFAR-100

Figure 1: Comparison of active-iNAS to coreset of Sener and Savarese [20] across two datasets, (a) CIFAR-10,
(b) CIFAR-100. In black (solid) – active-iNAS, red (dashed) – coreset (Sener and Savarese).

MC-dropout [8, 7]. The points in the pool are ordered based on their prediction uncertainty esti-86

mated by MC-dropout and queried in that order. The MC-dropout was implemented with p = 0.587

for the dropout rate and 100 feed-forward iterations for each sample.88

Coreset [20, 9]. The coreset method was implemented as follows. For a trained model f , we denote89

the output of the representation layer (the layer before the last) as φf . For every sample x ∈ U ,90

its coreset loss is measured as minx′∈S(d(φf (x
′), φf (x)), where d is the l2 euclidean distance. We91

iteratively sampled the point with the highest coreset loss with respect to the latest set S, b times.92

2.4 Code for Active-iNAS93

The code for all the experiments performed in the paper can be found in the following (anonymized)94

link. https://github.com/anonygit32/active inas95

3 Direct Comparison to Other Work96

We compare performance of active-iNAS to two other deep active learning papers. We begin by97

considering the algorithm proposed by Sener and Savarese [20] in the the last ICLR . To compare98

apples to apples we use the setting proposed by these authors and apply their active training schedule99

consisting of five active rounds applied with 5,000, 10,000, 15,000, 20,000, and 50,000 labeled100

points; see [20] for details. Their algorithm is based on the coreset query function (that has also101

been discussed in our paper) to train a deep model with the VGG-16 architecture whose selection102

considerations were not discussed. In our comparison, we use the results reported in [20] for the103

CIFAR-10 and CIFAR-100 datasets. The learning curves in Figure 1 show their reported results104

(dashed, red) and ours (solid, black) applied with the softmax response. Obviously, active-iNAS is a105

clear winner. It is clearly evident that the active-iNAS outperforms the coreset of [20] on all budgets.106

Motivated by similar prior-knowledge considerations as discussed here, Geifman and El-Yaniv [9]107

proposed the “long tail” active learning setting in which a (relatively large) labeled set is initially108

queried at random (i.e., passively) and used for acquiring “prior knowledge” (e.g., to select an ar-109

chitecture). As Sener and Savarese, these authors also proposed to utilize the the coreset idea to110

form a querying function. Here we compare their results to our approach, in which active learning111

is operated from the start of the active session with iNAS. Is it the case that a large labeled training112

set can be used to acquire sufficient knowledge to select a useful architecture? Can our approach113

compete with such knowledge?114

The results are presented in Figure 2 showing active-iNAS applied with softmax response (solid115

black), with coreset (dashed green) and the long-tail algorithm (dotted red). Here again, winners are116

clearly identified. It is striking that the first 25,000 was that were passively sampled by “long-tail”117

, achieved similar accuracy to 10000 points actively queried by active-iNAS in CIFAR-10 (and less118

than 15000 points for CIFAR-100). Concluding that the active-iNAS achieves better accuracy for119

any budget compared to the long tail setting.120

3

https://github.com/anonygit32/active_inas


(a) CIFAR-10 (b) CIFAR-100

Figure 2: Comparison of active-iNAS to coreset of Geifman and El-Yaniv [9] across two datasets, (a) CIFAR-
10, (b) CIFAR-100. In black (solid) – active-iNAS over softmax response, green (dashed) – active-iNAS over
coresets and red (dotted) – coreset (Geifman and El-Yaniv).

References121

[1] Maria-Florina Balcan and Phil Long. Active and passive learning of linear separators under log-concave122

distributions. In Conference on Learning Theory, pages 288–316, 2013.123

[2] Yoram Baram, Ran El Yaniv, and Kobi Luz. Online choice of active learning algorithms. Journal of124

Machine Learning Research, 5(Mar):255–291, 2004.125

[3] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning,126

15(2):201–221, 1994.127

[4] Corinna Cortes, Xavi Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Adanet: Adaptive128

structural learning of artificial neural networks. arXiv preprint arXiv:1607.01097, 2016.129

[5] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. arXiv130

preprint arXiv:1808.05377, 2018.131

[6] Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Information, prediction, and Query by Committee. In132

Advances in Neural Information Processing Systems (NIPS) 5, pages 483–490, 1993.133

[7] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncer-134

tainty in deep learning. In international conference on machine learning, pages 1050–1059, 2016.135

[8] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. arXiv136

preprint arXiv:1703.02910, 2017.137

[9] Yonatan Geifman and Ran El-Yaniv. Deep active learning over the long tail. arXiv preprint138

arXiv:1711.00941, 2017.139

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.140

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.141

[11] Tzu-Kuo Huang, Alekh Agarwal, Daniel J Hsu, John Langford, and Robert E Schapire. Efficient and142

parsimonious agnostic active learning. In Advances in Neural Information Processing Systems, pages143

2755–2763, 2015.144

[12] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing145

internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.146

[13] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.147

[14] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,148

and Kevin Murphy. Progressive neural architecture search. arXiv preprint arXiv:1712.00559, 2017.149

[15] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hierarchi-150

cal representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.151

4



[16] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv152

preprint arXiv:1806.09055, 2018.153

[17] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading154

digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and155

unsupervised feature learning, volume 2011, page 5, 2011.156

[18] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture search157

via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.158

[19] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier159

architecture search. arXiv preprint arXiv:1802.01548, 2018.160

[20] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach.161

In International Conference on Learning Representations, 2018.162

[21] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet: Platform-aware163

neural architecture search for mobile. arXiv preprint arXiv:1807.11626, 2018.164

[22] Simon Tong and Daphne Koller. Support vector machine active learning with applications to text classi-165

fication. Journal of machine learning research, 2(Nov):45–66, 2001.166

[23] Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. Cost-effective active learning for deep167

image classification. IEEE Transactions on Circuits and Systems for Video Technology, 2016.168

[24] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint169

arXiv:1611.01578, 2016.170

[25] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for171

scalable image recognition. arXiv preprint arXiv:1707.07012, 2(6), 2017.172

5


	Related Work
	Experimental Design and Details
	Datasets
	Architectures and Hyperparameters
	Query Functions
	Code for Active-iNAS

	Direct Comparison to Other Work

