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Outline. Appendix A provides pseudocodes of representation learning and spectral clustering steps of
S5C and analysis of time and memory complexity. In Appendix B, we present results on deterministic
data model that lead to the proof of Theorem 1. In Appendix C, we present results on random data
model that lead to the proof of Theorem 2. In Appendix D, we show how to adjust both theorems to
the case when data points are randomly selected. Details of experimental setup are given in Appendix
E. We assume dim(S`) = d for all ` ∈ L only for the simplicity of notation.

Appendix A: S5C algorithm

Pseudocodes

We restate the optimization problem of S5C:

minimize
(Cji)j∈[N]∈RN

1

2

∥∥∥∥∥∥xi −
∑
j∈[N ]

Cjixj

∥∥∥∥∥∥
2

2

+ λ
∑
j∈[N ]

|Cji| , subject to Cji = 0,∀j ∈ {i} ∪ ([N ] \ S) ,

(1)

where S ⊂ [N ] denotes indices of selected subsamples. For completeness, pseudocode of representa-
tion learning step of S5C is given in Algorithm 1. Pseudocode of spectral clustering step is given in
Algorithm 2.

Time and memory complexity

First, we consider computational cost in the selective sampling part of the Algorithm 1 (lines 2-8)
which solves B LASSO problems for each t ∈ [T ], where B is cardinality of I , and T is the number
of iterations. Each LASSO problem consists ofO (|S|) parameters and the design matrix ofO (|S|M)
elements. By utilizing standard solvers of LASSO based on coordinate descent methods such as
GLMNET [1] with a fixed tolerance, the solution can be obtained in O(|S|M) computational time.
Since we solve BT LASSO problems in total and |S| = O (T ), resulting computational time is
O
(
T 2BM

)
. Memory complexity amounts to the memory required for each LASSO problem and

takes only O (TM) space. Computing gi′i takes O (NBT ) time complexity and O (NB) space
complexity. Finally, in line 9 of Algorithm 1, we solve N LASSO problems that consist of O (T )
parameters and the design matrix with O (TM) elements, which requires dominant computational
time and space. However, this step is very easy to parallelize. In total, in the representation learning
step S5C method has O ((TB +N)TM) time and O (TM +NB) memory complexity in total.

In the spectral clustering step, the key observation to reduce computation is that C and hence,
W = |C| + |C|> have only O (TN) number of non-zero elements. As a result, a matrix-vector
product can be performed in O(TN) time and space complexity. Therefore, we only require
O ((L+ T )N) for computing L eigenvectors. We note that step 2 of Algorithm 2 which computes
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Algorithm 1 Representation learning step in S5C

Require: Dataset (x1, . . . ,xN ) ∈ RM×N , hyperparameter λ, number of iterations T , batch size B
1: S ← ∅
2: for t ∈ [T ] do
3: Randomly sample I ⊂ [N ] such that |I| = B
4: Obtain (Cji)j∈[N ] by solving (1) for i ∈ I
5: gi′i ← med

{
0,
〈
xi′ ,

∑
j∈S\{i} Cjixj − xi

〉
± λ
}

for (i′, i) ∈ ([N ] \ S)× I
6: i+ ← argmaxi′∈[N ]\S

N−1
|I\{i′}|

∑
i∈I\{i′} g

2
i′i

7: if
∑
i∈I\{i+} g

2
i+i
6= 0 then

8: S ← S ∪ {i+}
9: Obtain C by solving (1) for all i ∈ [N ]

10: W← |C|+ |C|>

Algorithm 2 Spectral clustering step in S5C

Require: Affinity matrix W ∈ RN×N , number of clusters L ∈ N, error tolerance ε ∈ R,
1: D← diag (W1)

2: LS ← IN −D−
1
2WD−

1
2

3: LM ← 2IN − LS
4: Initialize V ∈ RN×L such that V>V = IL
5: while ‖V −Vprev‖F /

√
LN ≥ ε do

6: Vprev ← V
7: V← LMV
8: Orthogonalize V by QR factorization
9: Normalize each row of V to unit length

10: Apply K-means clustering on V

Laplacian matrix is not dominant in terms of both time and space complexity, as computing D
requires only O(TN) time and the resulting matrix can be expressed by N -dimensional vector. In
order to produce eigenvectors in lines 5-8 matrix multiplication and QR decomposition haveO(TNL)
and O(NL2) time in each iteration, respectively. Finally, with a fixed tolerance ε, required time
is O

(
log ε−1

)
iterations. Therefore, spectral clustering step has O

(
(T + L)LN log ε−1

)
time and

O (TN) space complexity.

Appendix B: Deterministic data model

For the completeness, we first restate Theorem 1.

Theorem 1. Assume that data X ∈ RM×N with normalized columns and subspaces {S`}`∈[L]

are given. We define `(i) so that the subspace corresponding to i-th data is S`(i) and S` =
{i ∈ [N ]|`(i) = `}. Assume that |S`| = N/L and dimS` = d, for all ` ∈ [L]. X[S`] denotes
the subset which corresponds to data in S`. We define

ř = min
`
ř(X[S`]), µ = max

` 6=`′
µ (X[S`],X[S`′ ]) . (2)

If it holds that

0 < µ ≤ λ < ř, T ≥ 2

(
1 +

L

d

(
log(2Lδ−1)

))
dL, (3)

then, S5C of T iterations with hyperparameter λ has subspace detection property with at least
probability 1− δ.

The proof of the theorem follows from three lemmas which we state and prove below. All lemmas
use the same assumptions and definitions from the statement of Theorem 1.
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Lemma 1. Define for any S ⊂ [N ] and i ∈ [N ],

cS = (cSj )j∈[N ] = argmin
(cj)j∈[N]∈RN

1

2

∥∥∥∥∥∥xi −
∑

j∈S\{i}

cjxj

∥∥∥∥∥∥
2

2

+ λ
∑

j∈S\{i}

|cj | , (4)

where xi is i-th column of X. If it holds that

µ ≤ λ, (5)

then, cS∩S`(i) induces cS , i.e.,

cSj =

{
c
S∩S`(i)

j j ∈ S`(i),
0 j /∈ S`(i).

(6)

Proof. For any S ⊂ [N ] and i ∈ [N ], define c = (cj)j as follows:

cj =

{
c
S∩S`(i)

j j ∈ S`(i),
0 j /∈ S`(i).

(7)

Then, for the lemma to be true, c has to satisfy the following optimality condition∣∣∣∣∣∣
〈
xi′ ,

∑
j∈S\{i}

cjxj − xi

〉∣∣∣∣∣∣ ≤ λ, (8)

for all i′ ∈ S such that `(i′) 6= `(i). This follows from∣∣∣∣∣∣
〈
xi′ ,

∑
j∈S\{i}

cjxj − xi

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
〈
xi′ ,

∑
j∈(S∩S`(i))\{i}

c
S∩S`(i)

j xj − xi

〉∣∣∣∣∣∣∣ (9)

≤ µ

∥∥∥∥∥∥∥
∑

j∈(S∩S`(i))\{i}

c
S∩S`(i)

j xj − xi

∥∥∥∥∥∥∥
2

(10)

≤ µ ≤ λ. (11)

The second last inequality holds from the following inequality.

1

2

∥∥∥∥∥∥∥xi −
∑

j∈(S∩S`(i))\{i}

c
S∩S`(i)

j xj

∥∥∥∥∥∥∥
2

2

(12)

≤ 1

2

∥∥∥∥∥∥∥xi −
∑

j∈(S∩S`(i))\{i}

c
S∩S`(i)

j xj

∥∥∥∥∥∥∥
2

2

+ λ
∑

j∈(S∩S`(i))\{i}

∣∣∣cS∩S`(i)

j

∣∣∣ (13)

≤ 1

2
‖xi − 0‖22 + λ

∑
j∈S\{i}

|0| = 1

2
. (14)

Therefore, c defined in (7) is the optimal solution cS .

Lemma 2. Let singleton {it} be the set of random samples I and St be the set of selected subsamples
S at t-th iteration of Algorithm 1 of S5C. For t ∈ [T ], t-th iteration of S5C is said to be expanding if
and only if the following is satisfied:∑

`

dim(S` ∩ span(St+1)) = 1 +
∑
`

dim(S` ∩ span(St)). (15)

If it satisfies that
∣∣S`(it) ∩ St∣∣ < d, then t-th iteration of S5C is expanding.
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Proof. At t-th iterations of Algorithm 1, the subsample to be added is expressed as

argmax
i′

∣∣∣med{〈xi′ , rSt
it

〉
± λ, 0

}∣∣∣ ,
where

rSt
it

=
∑

j∈St\{it}

cSt
jit

xj − xit , (16)

cSt
it

= (cSt
jit

)j∈[N ] = argmin
(cj)j∈RN

1

2

∥∥∥∥∥∥xit −
∑

j∈St\{it}

cjxj

∥∥∥∥∥∥
2

2

+ λ
∑

j∈St\{it}

|cj | . (17)

Therefore, it is sufficient to show

max
i′

∣∣∣med{〈xi′ , rSt
it

〉
± λ, 0

}∣∣∣ > 0, (18)

and

argmax
i′

∣∣∣med{〈xi′ , rSt
it

〉
± λ, 0

}∣∣∣ ∈ S`(it). (19)

By Lemma 1, c
St∩S`(i)

i′ induces cSt

i′ for any i′, which means that cSt

i′it
= 0 and that∣∣∣med{〈xi′ , rSt

it

〉
± λ, 0

}∣∣∣ = 0 for i′ ∈ St \ S`(it). This means that any i′ such that `(i′) 6= `(it) is
not chosen as maximizer in (19).

Now we show there exists j such that ∣∣∣〈xj , rSt
it

〉∣∣∣ > λ, (20)

and that `(j) = `(it). The assumption ř > 0 means that any d points in S` are linearly independent.
Therefore,

∣∣S`(it) ∩ St∣∣ < d immediately implies that

dim(S` ∩ span(St ∪ {j})) = dim(S` ∩ span(St)) + 1, (21)

for any j ∈ S`(it) \ St. For any set J ⊂ S`(it) such that
∣∣(S`(it) ∩ St) ∪ J∣∣ = d and

(bj)j∈(S`(i)∩St)∪J ∈ {+1,−1}d, {bjxj}j∈(S`(it)
∩St)∪J forms a facet in S`(it). By definition of

ř, we see ∣∣∣∣∣∣
〈
xj′ ,

∑
j∈(S`(it)

∩St)∪J

αjxj

〉∣∣∣∣∣∣ ≥ ř, (22)

for any αj such that
∑
j∈(S`(it)

∩St)∪Jαj = 1, αj ≥ 0. Therefore,

∣∣∣〈xj′ , rSt

it

〉∣∣∣ =

∣∣∣∣∣∣
〈
xj′ ,

∑
j∈St\{it}

cSt
jit

xj − xit

〉∣∣∣∣∣∣ (23)

=

∣∣∣∣∣∣
〈
xj′ ,

∑
j∈(St∩S`(it)

)\{it}

cSt
jit

xj − xit

〉∣∣∣∣∣∣ (24)

≥

 ∑
j∈(St∩S`(it)

)\{it}

∣∣∣cSt
jit

∣∣∣+ 1

 ř ≥ ř > λ. (25)

Therefore, (20) holds and it implies (18) and (19).

Lemma 3. Assume that |S`| = N/L and dimS` = d, for all ` ∈ [L] and that T is large enough to sat-
isfy T ≥ 2

(
1 + L

d

(
log(2Lδ−1)

))
dL. Let IT = {it}t∈[T ], where singleton {it} is the set of random

samples I at t-th iteration of Algorithm 1 of S5C. Then, the probability of event {min` |S` ∩ IT | ≥ d}
is at least 1− δ.
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Proof.

P
{

min
`∈[L]

|S` ∩ IT | ≥ d
}

= 1− P
{

min
`∈[L]

|S` ∩ IT | < d

}
(26)

= 1− P
⋃
`∈[L]

{|S` ∩ IT | < d} (27)

≥ 1− LP {|S` ∩ IT | < d} , (28)

for any ` ∈ [L]. For a fixed ` ∈ [L], we define random variables {ξt}t∈[T ] as

ξt =

{
1 it ∈ S`
0 otherwise.

(29)

Then
∑T
t=1 ξt = |S` ∩ IT |. ξts are independent and has expectation of L−1 for all t. By Hoeffding’s

inequality, it follows

P
{∣∣∣∣∑t ξt

T
− L−1

∣∣∣∣ ≥ τ} ≤ 2 exp

(
−τ

2T

2

)
. (30)

Since
∑
t ξt = |S` ∩ IT | < d implies L−1 −

∑
t ξt
T ≥ τ in which τ = L−1 − d

T , we see

P {|S` ∩ IT | < d} ≤ 2 exp

(
−
(
L−1 − d

T

)2
T

2

)
. (31)

Let α be a positive number that satisfies T = (1 + α)dL. Then,
(
L−1 − d

T

)2
T =

(1 + α)
(

1− 1
1+α

)2

L−1d ≥ (α − 1)L−1d. From the assumption on the size of T , we see

α − 1 ≥ 2Ld−1 log(2Lδ−1). Therefore, P {|S` ∩ IT | < d} ≤ (2L)
−1
δ. Substituting this to (28),

we complete the proof.

Now we prove Theorem 1.

Proof of Theorem 1

Proof. From Lemma 2, t-th iteration of S5C is expanding as long as S`(it) < d. From Lemma 3,
iterations are expanding at least d times for each ` ∈ [L] with probability at least 1− δ. Therefore,
|S` ∩ ST | ≥ d for all ` ∈ [L]. Finally, we check SDP of the final solution i-th column of which is
cST
i . For any i ∈ [N ], we see c

ST∩S`(i)

i induces cST
i as stated in Lemma 1. Therefore, the second

condition of SDP holds true. The first condition, cST
i 6= 0 for any i ∈ [N ], holds true from the fact

that the optimality condition for ci = 0 does not hold true. It can be seen as follows:∥∥∥∥∥ ∂

∂ci

1

2
‖xi −XT ci‖2

∣∣∣∣
ci=0

∥∥∥∥∥
∞

=
∥∥X>T xi∥∥∞ ≥ max

j∈ST∩S`(i)

|〈xj ,xi〉| ≥ ř > λ. (32)

Here XT denotes a matrix in which each column is xi for i ∈ ST . Therefore, the output of S5C
algorithm satisfies SDP with probability at least 1− δ.

Appendix C: Random data model

We restate Theorem 2 for completeness.

Theorem 2. Assume that data X ∈ RM×N is drawn from semi-random model in which subspaces
{S`}`∈[L] are given. We define

ρ =
N

dL
, a = min

` 6=`′
aff(S`,S`′). (33)

5



If it holds that

4 < log ρ < 4d, a ≤ λ < 1

8

√
log ρ

d
, T ≥ 2

(
1 +

L

d

(
log(2Lδ−1)

))
dL, (34)

then, S5C of T iterations with hyperparameter λ has subspace detection property with at least
probability 1− δ − L exp(−d√ρ).

The proof of the theorem follows from Theorem 1 and Lemma 4. Lemma 4 uses the same assumptions
and definitions from the statement of Theorem 2. The basic structure of this lemma is based on
Lemma 3.1 in [2], but also contains the modification introduced in section 7.2.1 in [3].

Lemma 4. Assume that {Pi}i∈[m] are random vector on Sd−1 and K = conv(±P1, . . . , Pm). If
4 < log ρ < 4d, where ρ = m

d , then, it holds that

ř(K) >
1

8

√
log ρ

d
, (35)

with probability greater than 1− e−d
√
ρ.

Proof. First observe that, with probability 1, the facets of K are simplices. Let {Qi}i∈[d] ⊂
{±Pi}i∈[m] and denote a unit vector orthogonal to conv({Qi}i∈[d]) by θ({Qi}i∈[d]).

If ř(K) > α for α ∈ (0, 1), it implies that there exists {Qi}i∈[d] such that K ⊂{
x ∈ Sd−1

∣∣∣ ∣∣∣〈θ({Qi}i∈[d]), x
〉∣∣∣ ≤ α}. It further implies that

∣∣∣〈θ({Qi}i∈[d]), Pi′
〉∣∣∣ ≤ α for all

i′ ∈ [m]. Therefore,

P {ř(K) > α} ≤ P
⋃

{Qi}i∈[d]

⋂
i′∈[m]

{∣∣∣〈θ({Qi}i∈[d]), Pi′
〉∣∣∣ ≤ α} . (36)

For fixed {Qi}i∈[d], let I =
{
i′ ∈ [m]

∣∣∣Pi′ ∈ {Qi}i∈[d] or − Pi′ ∈ {Qi}i∈[d]

}
. Then,

P
⋂

i′∈[m]

{∣∣∣〈θ({Qi}i∈[d]), Pi′
〉∣∣∣ ≤ α} ≤ P

⋂
i′∈[m]\I

{∣∣∣〈θ({Qi}i∈[d]), Pi′
〉∣∣∣ ≤ α} (37)

=
∏

i′∈[m]\I

P
{∣∣∣〈θ({Qi}i∈[d]), Pi′

〉∣∣∣ ≤ α} (38)

= (P {|〈θ, P1〉| ≤ α})m−d , (39)

for arbitrary θ ∈ Sd−1 due to the independence of events
{∣∣∣〈θ({Qi}i∈[d]), Pi′

〉∣∣∣ ≤ α}. Let

Sd−1(r) = 2π
d
2 rd−1

Γ( d
2 )

be the area of the surface of d-dimensional sphere with radius r. It is known that

P {〈θ, P1〉 > α} =

∫ 1

α
Sd−2(

√
1− x2) dx√

1−x2

Sd−1(1)
(40)

=
Sd−2(1)

Sd−1(1)

∫ 1

α

(√
1− x2

)d−3

dx. (41)

=
Γ(d2 )

√
πΓ(d−1

2 )

∫ 1

α

(
1− x2

) d−3
2 dx. (42)
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Therefore, for 0 ≤ α ≤ 1
4 ,

P {|〈θ, P1〉| > α} =
2Γ(d2 )
√
πΓ(d−1

2 )

∫ 1

α

(
1− x2

) d−3
2 dx (43)

≥
2Γ(d2 )
√
πΓ(d−1

2 )

∫ 2α

α

(
1− x2

) d−3
2 dx (44)

≥
2Γ(d2 )
√
πΓ(d−1

2 )
α
(
1− 4α2

) d−3
2 (45)

≥ 1

π

(
1− 4α2

) d−3
2 (46)

≥ 1

π
exp

(
−4dα2

)
. (47)

Therefore, setting ρ = m
d , we see

P {ř(K) > α} ≤ P
⋃

{Qi}i∈[d]

⋂
i∈[m]

{∣∣∣〈θ({Qi}i∈[d]), Pi

〉∣∣∣ ≤ α} (48)

≤
∑

{Qi}i∈[d]

P
⋂
i∈[m]

{∣∣∣〈θ({Qi}i∈[d]), Pi

〉∣∣∣ ≤ α} (49)

≤
(

2m

d

)(
1− 1

π
exp(−4α2d)

)m−d
(50)

≤
(

2me

d

)d(
exp

(
− 1

π
exp(−4α2d)

))m−d
(51)

= exp

(
d

(
log(2ρe)− (ρ− 1)

π
exp

(
−4α2d

)))
. (52)

Let α =
√

s log ρ
d . Then, α < 1

4 implies ρ < e
d

16s . Then, (52) is rewritten as follows:

P

{
ř(K) >

√
s log ρ

d

}
≤ exp

(
d

(
log(2ρe)− ρ− 1

π
ρ−4s

))
. (53)

Since it holds that

log(2ρe)− ρ− 1

π
ρ−4s ≤ −√ρ⇔ log(2ρe) +

1

π
ρ−4s +

√
ρ ≤ ρ1−4s, (54)

when s < 1
8 there exists ρ that satisfy this inequality. In case s = 1

64 this inquality satisfies if e4 < ρ.
This implies our main claim

P

{
ř(K) >

1

8

√
log ρ

d

}
≤ exp (−d√ρ) , (55)

holds as long as e4 ≤ ρ ≤ e4d.

Now we prove Theorem 2.

Proof of Theorem 2

Proof. Condition a ≤ λ implies µ ≤ λ from µ ≤ min` 6=`′ aff(S`,S`′). From Lemma 4, we can see

that condition λ < 1
8

√
log ρ
d implies λ < ř with probability greater than 1 − L exp(−d√ρ) when

4 < log ρ < 4d is satisfied by the union bound of the probability. Therefore, we obtain the conclusion
from the result of Theorem 1.
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Appendix D: Random sampling case

In this Appendix, we show that randomly sampled subsamples also enjoy SDP similar to Theorem
1 and Theorem 2 for selective subsamples. This broadens the applicability of our analysis to other
works such as SSSC[4, 5]. We first formally state the proposition as follows.
Proposition 3 (Compatible proposition to Theorem 1). Assume that data X ∈ RM×N with normal-
ized columns and subspaces {S`}`∈[L] are given. We define `(i) so that the subspace corresponding
to i-th data is S`(i) and S` = {i ∈ [N ]|`(i) = `}. Assume that |S`| = N/L and dimS` = d, for all
` ∈ [L]. X[S`] denotes the subset which corresponds to data in S`. We define

ř = min
`
ř(X[S`]), µ = max

` 6=`′
µ (X[S`],X[S`′ ]) , (56)

and assume λ satisfies

0 < µ ≤ λ < ř. (57)

Let S′T be a set of the indices of randomly chosen subsamples with cardinality T among [N ], where

T ≥ 2

(
1 +

L

d

(
log(2Lδ−1)

))
dL (58)

Then, consider the following problem:

minimize
(Cji)j∈[N]∈RN

1

2

∥∥∥∥∥∥xi −
∑
j∈[N ]

Cjixj

∥∥∥∥∥∥
2

2

+ λ
∑
j∈[N ]

|Cji|

subject to Cji = 0,∀j ∈ {i} ∪ ([N ] \ S′T ) , (59)

Then, the matrix formed by the solutions C∗ = (C∗ji)ji satisfies SDP with the probability at least
1− δ.

Proof. From Lemma 3, we can see that if T ≥ 2
(
1 + L

d

(
log(2Lδ−1)

))
dL, the following holds:

P
{

min
`
|S` ∩ S′T | ≥ d

}
≥ 1− δ. (60)

Then, we check SDP of the solution similarly as in the proof of Theorem 1.

The compatible proposition to Theorem 2 can be proven similarly as the argument above.
Proposition 4 (Compatible proposition to Theorem 2). Assume that data X ∈ RM×N is drawn from
semi-random model in which subspaces {S`}`∈[L] are given. We define

ρ =
N

dL
, a = min

` 6=`′
aff(S`,S`′). (61)

Assume that λ and ρ satisfies

4 < log ρ < 4d, a ≤ λ < 1

8

√
log ρ

d
. (62)

Let S′T be a set of the indices of randomly chosen subsamples with cardinality T among [N ], where

T ≥ 2

(
1 +

L

d

(
log(2Lδ−1)

))
dL. (63)

Then consider the following problem:

minimize
(Cji)j∈[N]∈RN

1

2

∥∥∥∥∥∥xi −
∑
j∈[N ]

Cjixj

∥∥∥∥∥∥
2

2

+ λ
∑
j∈[N ]

|Cji|

subject to Cji = 0,∀j ∈ {i} ∪ ([N ] \ S′T ) , (64)

Then, the matrix formed by the solutions C∗ = (C∗ji)ji satisfies SDP with the probability at least
1− δ − L exp(−d√ρ).
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Proof. By the same argument of Theorem 2, conditions

4 < log ρ < 4d, a ≤ λ < 1

8

√
log ρ

d
, (65)

imply that

P {µ ≤ λ < ř} ≥ 1− L exp(−d√ρ). (66)

Therefore, Proposition 1 implies Proposition 2 by the union bound of the probability.

Appendix E: Experimental setup

In all experiments, we carefully tuned the parameters of all algorithms. For S5C and SSSC [4, 5]
we tuned the parameter λ in [2−1, 2−10] with exponential step 2. The batch size B in our method
was set to 1. For Nyström [6] and AKK [7] parameter γ was tested in [2−13, 23] with exponential
step 4. Parameter α in SSC [8] was chosen in set {5, 10, 20, 50, 80, 100, 200, 500, 800}. To make
EnSC-ORGEN [9] comparable to other SSC algorithms, we set `2 norm regularizer to small value
(0.001) and optimize sparsity regularizer in the same range as ours. We denote this algorithm by
SSC-ORGEN. For SSC-OMP [10] we optimize number of neighbors in range [3, 17] with step 2. For
all compared methods, we use the source codes provided by the authors. If the authors provide best
parameters for a dataset, we report result obtained with these parameters. To ensure a fair comparison,
we set number of subsamples to the value of 20 times number of clusters for all methods having
that parameter. All the experiments were executed on Linux (CentOS 6.4) machines with 96 GB
memory and Intel Xeon X5690 CPU (3.47 GHz). Execution codes of all algorithms are implemented
in MATLAB and excuted by MATLAB 2016b.

Table 1 shows summary of benchmark datasets.

Table 1: Datasets summary: number of data points (N ), number of dimensions (M ) and number of
clusters (L).

Dataset N M L
Yale B 2432 2016 38
COIL-100 7200 1024 100
Letter-rec 20000 16 26
CIFAR-10 60000 3072 10
MNIST 70000 784 10
Devanagari 92000 1024 46
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