22

23
24
25
26

27
28
29
30
31

32
33
34
35
36
37

38
39
40
41
42

Reviewers # 5, 8: Thank you for the appreciation! The best known lower bound is Q(y/DSA/T), based on [26] for
the SO-OMDP setting. Our upper bound O(D+/T'SA/T) in Theorem 3.1 matches the O(DS+/A/T) bound by [26]
for SO-OMDP. The best known upper bound for SO-OMDP is O(c\/T'SA/T) by [21], where ¢ < D is called the span,
a refined version of D in the SO-OMDP setting. The notion of span is inapplicable to MO-OMDP.

Reviewer # 6: Thank your for the comments! For a better appreciation on our contributions, we clarify as follows:

Justifying the objective function gy (5.1), (2.2), (2.3). We start by addressing (5.1). KPI stands for Key Performance
Index. For Target Set Objectives, specifying U = {w : wr > ppV1l < k < K} = Hszl[pk,oo) is sufficient
for ensuring V1.7 > pr whenever possible, thanks to the min, ¢y operator in (1). To see this, consider setting
Ly =...=Lg =0, Ly = 1. We claim that gyo(Vi.7) = —(1/2K) Y r_, max{pj, — Vi.r.,0}2. Indeed,

K K

_ 1 — 2 1 (7 2

gvo(Vi.r) = min Vi e — ugk = min Vier e — ug .
M (') 2K uEHk 1Pk ;00){I;(') } 2K uke[ﬂk,w){(!) }

For the kth summand, if Vl:T,k > Pks th; argmin is Vlmk and the summand = 0. Else, we have Vl:T,k < pg, the

argmin is pj, and the summand = (p, — Vi.7.x)?. Thus, the claim is proved.

Maximizing gyo(Vi.7) is equivalent to minimizing (1/2K) wK vy max{py — V1.7, 0}2. If the KPI p is achievable,
then the optimal policy would generate Vi1 for which V3. ..k > pi, for all k, yielding objective value gMo(V1) =0.
Otherwise, the shortfall of V.7 compared to p is minimized in the mean squared error sense.

(2.2): Any maximizer V1 “p of avo(Vi.r) = —(1/2K) Zk ; max{1l — V. Tk 0}? is Pareto-optimal. To see this, first
observe that the Vi.7 generated by any policy satisfies Vi.r € [0, 1]%, since V (s,a) € [0,1] always. Suppose the
contrary that there is a V1 .7, Where V1 Tk = V1 o vk, and V1 T > V1 T These mean that 0 < 1 — V1 T <

1-— 1:T7kV/<;, and0 <1 — Vi <1-— Vl:T71‘ Consequently, gvo(Vi.7) > gmo(V;:r), contradicting the maximality

of V' on gmo. Thus, V}*, is Pareto-optimal. Altogether, gmo with suitably chosen p, U captures Pareto-optimality.
Moreover, gvo captures the State Space Exploration problem, which goes beyond Pareto-optimality.

(2.3): Capturing Pareto-optimality allows us to model many real world problems. Our framework allows any smooth
concave ¢ and not just gno (App. D), which captures other applications such as Maximum Entropy Exploration [23].

The design and analysis of GTP: (5.2), (2.1), (2.4). We start by addressing (5.2). For instance (1b), we claim that
opt(Pr) = 0. In addition, the solution z*, defined as z*(s',rl) = 2*(s%,11) = 1/2 and z*(s,a) = 0 for all
other s, a, is optimal to (Pr4). Indeed, x* is feasible to (P) (recall p(s!|s!,rl) = p(s?|s%,11) = 1), and that

Zs’a v(s,a)x*(s,a) = ((1)) * x%(s2,11) + (é) * (s, rl) = Gg), and that gMO(ZS,a v(s,a)x*(s,a)) = 0.

The bad policy in Line 139, which causes V1.7 ~ (1/6,1/6) ", incurs Reg(T) = 0 — (—(1/6 — 1/2)?) = Q(1). The
Q(1) regret is caused by the ©(T') implicit switching cost, where the agent switches between s, s? (hence visits s") for
O(T) times in T time steps. In an MO-OMDP instance, the implicit switching cost occurs when the agent switches

form a recurrent class to another, and visits a state that does not contribute to the objective (like s") during the switch.

(2.1): GTP (see Lines 175-177) consists of the maintenance of distance measure ¥ in Line 13 in Algo 1, and the first
criterion ¥ < @ in Line 9 in Algo 1. GTP keeps the implicit switching cost bounded, while balances the contributions
by {Vi.7.% }1 . As said in Lines 188-193 for Fig 1b, GTP ensures the agent only switches between s, 52 for O(v/T)
times in 7 steps, and |V.7x — 0.5| = O(1/V/T) for k = 1,2, thus Reg(T') = O(1/+/T). GTP reduces the implicit
switching cost from ©(T') to O(+/T), by looping at each s', 52 for © (/) times before switching (cf. Lines 190-191).

(2.4): Lemma 4.1 follows from concentration inequalities, which are not our contributions. GTP is new, and its
design and analysis are our novel contributions. Compared to UCRL2 for SO-OMDPs, analysing TFW-UCRL2 for
MO-OMDPs requires crucial effort on bounding two costs: (i) the implicit switch cost (see Lemma 4.3) due to GTP.
(ii) there is a delay cost caused by GTP on the gradient updates. In Fig 1b, the delay cost is the O(1/+/T) error on
[Vi.r.r — 0.5]. The delay cost, included by eqn. (11), is discussed in Lines 244-248 and bounded by Proposition 4.2.
These switch and delay costs are not present in UCRL2, and their analyses certainly do not follow from the literature.

Reviewer # 8: In fact, the regret under Q = L/v/K (where L = Lo + maxy, | Ly|) is quite close to the optimal regret
by tuning Q. We chose Q = L//K to optimize the dependence on L, K in the regret order bound in Theorem
3.1. The regret could be improved by tuning () online, or by optimizing () in the actual regret bound. p, Lo, ..., Li
parameterize the objective function gy, which is assumed to be fixed, while () parameterizes the algo, so we only
consider tuning Q). If accepted, we will conduct the suggested empirical comparisons with [26, 28, 34] in their settings.

