
Reviewers # 5, 8: Thank you for the appreciation! The best known lower bound is Ω(
√
DSA/T ), based on [26] for1

the SO-OMDP setting. Our upper bound Õ(D
√

ΓSA/T ) in Theorem 3.1 matches the Õ(DS
√
A/T ) bound by [26]2

for SO-OMDP. The best known upper bound for SO-OMDP is Õ(c
√

ΓSA/T ) by [21], where c ≤ D is called the span,3

a refined version of D in the SO-OMDP setting. The notion of span is inapplicable to MO-OMDP.4

Reviewer # 6: Thank your for the comments! For a better appreciation on our contributions, we clarify as follows:5

Justifying the objective function gMO (5.1), (2.2), (2.3). We start by addressing (5.1). KPI stands for Key Performance
Index. For Target Set Objectives, specifying U = {w : wk ≥ ρk∀1 ≤ k ≤ K} =

∏K
k=1[ρk,∞) is sufficient

for ensuring V̄1:T,k ≥ ρk whenever possible, thanks to the minu∈U operator in (1). To see this, consider setting
L1 = . . . = LK = 0, L0 = 1. We claim that gMO(V̄1:T ) = −(1/2K)

∑K
k=1 max{ρk − V̄1:T,k, 0}2. Indeed,

gMO(V̄1:T ) = − 1

2K
min

u∈
∏K

k=1[ρk,∞)

{
K∑
k=1

(V̄1:T,k − uk)2

}
= − 1

2K

K∑
k=1

min
uk∈[ρk,∞)

{
(V̄1:T,k − uk)2

}
.

For the kth summand, if V̄1:T,k ≥ ρk, the argmin is V̄1:T,k and the summand = 0. Else, we have V̄1:T,k < ρk, the6

argmin is ρk and the summand = (ρk − V̄1:T,k)2. Thus, the claim is proved.7

Maximizing gMO(V̄1:T ) is equivalent to minimizing (1/2K)
∑K
k=1 max{ρk − V̄1:T,k, 0}2. If the KPI ρ is achievable,8

then the optimal policy would generate V̄1:T for which V̄1:T,k ≥ ρk for all k, yielding objective value gMO(V̄1:T ) = 0.9

Otherwise, the shortfall of V̄1:T compared to ρ is minimized in the mean squared error sense.10

(2.2): Any maximizer V̄ ∗1:T of gMO(V̄1:T ) = −(1/2K)
∑K
k=1 max{1− V̄1:T,k, 0}2 is Pareto-optimal. To see this, first11

observe that the V̄1:T generated by any policy satisfies V̄1:T ∈ [0, 1]K , since V (s, a) ∈ [0, 1] always. Suppose the12

contrary that there is a Ṽ1:T , where Ṽ1:T,k ≥ V̄ ∗1:T,k∀k, and Ṽ1:T,1 > V̄ ∗1:T,1. These mean that 0 ≤ 1 − Ṽ1:T,k ≤13

1− V̄ ∗1:T,k∀k, and 0 ≤ 1− Ṽ1:T,1 < 1− V̄ ∗1:T,1. Consequently, gMO(Ṽ1:T ) > gMO(V̄ ∗1:T ), contradicting the maximality14

of V̄ ∗1:T on gMO. Thus, V̄ ∗1:T is Pareto-optimal. Altogether, gMO with suitably chosen ρ, U captures Pareto-optimality.15

Moreover, gMO captures the State Space Exploration problem, which goes beyond Pareto-optimality.16

(2.3): Capturing Pareto-optimality allows us to model many real world problems. Our framework allows any smooth17

concave g and not just gMO (App. D), which captures other applications such as Maximum Entropy Exploration [23].18

The design and analysis of GTP: (5.2), (2.1), (2.4). We start by addressing (5.2). For instance (1b), we claim that19

opt(PM) = 0. In addition, the solution x∗, defined as x∗(s1, rl) = x∗(s2, ll) = 1/2 and x∗(s, a) = 0 for all20

other s, a, is optimal to (PM). Indeed, x∗ is feasible to (PM) (recall p(s1|s1, rl) = p(s2|s2, ll) = 1), and that21 ∑
s,a v(s, a)x∗(s, a) =

(
0
1

)
∗ x∗(s2, ll) +

(
1
0

)
∗ x∗(s1, rl) =

(
1/2
1/2

)
, and that gMO(

∑
s,a v(s, a)x∗(s, a)) = 0.22

The bad policy in Line 139, which causes V̄1:T ≈ (1/6, 1/6)>, incurs Reg(T ) = 0− (−(1/6− 1/2)2) = Ω(1). The23

Ω(1) regret is caused by the Θ(T ) implicit switching cost, where the agent switches between s1, s2 (hence visits s0) for24

Θ(T ) times in T time steps. In an MO-OMDP instance, the implicit switching cost occurs when the agent switches25

form a recurrent class to another, and visits a state that does not contribute to the objective (like s0) during the switch.26

(2.1): GTP (see Lines 175-177) consists of the maintenance of distance measure Ψ in Line 13 in Algo 1, and the first27

criterion Ψ < Q in Line 9 in Algo 1. GTP keeps the implicit switching cost bounded, while balances the contributions28

by {V̄1:T,k}Kk=1. As said in Lines 188-193 for Fig 1b, GTP ensures the agent only switches between s1, s2 for O(
√
T )29

times in T steps, and |V̄1:T,k − 0.5| = O(1/
√
T ) for k = 1, 2, thus Reg(T ) = O(1/

√
T ). GTP reduces the implicit30

switching cost from Θ(T ) to O(
√
T ), by looping at each s1, s2 for Θ(

√
t) times before switching (cf. Lines 190-191).31

(2.4): Lemma 4.1 follows from concentration inequalities, which are not our contributions. GTP is new, and its32

design and analysis are our novel contributions. Compared to UCRL2 for SO-OMDPs, analysing TFW-UCRL2 for33

MO-OMDPs requires crucial effort on bounding two costs: (i) the implicit switch cost (see Lemma 4.3) due to GTP.34

(ii) there is a delay cost caused by GTP on the gradient updates. In Fig 1b, the delay cost is the O(1/
√
T ) error on35

|V̄1:T,k − 0.5|. The delay cost, included by eqn. (11), is discussed in Lines 244-248 and bounded by Proposition 4.2.36

These switch and delay costs are not present in UCRL2, and their analyses certainly do not follow from the literature.37

Reviewer # 8: In fact, the regret under Q = L̄/
√
K (where L̄ = L0 + maxk |Lk|) is quite close to the optimal regret38

by tuning Q. We chose Q = L̄/
√
K to optimize the dependence on L̄,K in the regret order bound in Theorem39

3.1. The regret could be improved by tuning Q online, or by optimizing Q in the actual regret bound. ρ, L0, . . . , LK40

parameterize the objective function gMO, which is assumed to be fixed, while Q parameterizes the algo, so we only41

consider tuning Q. If accepted, we will conduct the suggested empirical comparisons with [26, 28, 34] in their settings.42


