
Group Retention when Using Machine Learning in
Sequential Decision Making: the Interplay between

User Dynamics and Fairness

Xueru Zhang∗
University of Michigan, AnnArbor, USA

xueru@umich.edu

Mohammad Mahdi Khalili∗
University of Michigan, AnnArbor, USA

khalili@umich.edu

Cem Tekin
Bilkent University, Ankara, Turkey
cemtekin@ee.bilkent.edu.tr

Mingyan Liu
University of Michigan, AnnArbor, USA

mingyan@umich.edu

Abstract

Machine Learning (ML) models trained on data from multiple demographic groups
can inherit representation disparity [7] that may exist in the data: the model
may be less favorable to groups contributing less to the training process; this in
turn can degrade population retention in these groups over time, and exacerbate
representation disparity in the long run. In this study, we seek to understand the
interplay between ML decisions and the underlying group representation, how they
evolve in a sequential framework, and how the use of fairness criteria plays a role in
this process. We show that the representation disparity can easily worsen over time
under a natural user dynamics (arrival and departure) model when decisions are
made based on a commonly used objective and fairness criteria, resulting in some
groups diminishing entirely from the sample pool in the long run. It highlights
the fact that fairness criteria have to be defined while taking into consideration the
impact of decisions on user dynamics. Toward this end, we explain how a proper
fairness criterion can be selected based on a general user dynamics model.

1 Introduction

Machine learning models developed from real-world data can inherit pre-existing bias in the dataset.
When these models are used to inform decisions involving humans, it may exhibit similar discrimi-
nation against sensitive attributes (e.g., gender and race) [6, 14, 15]. Moreover, these decisions can
influence human actions, such that bias in the decision is then captured in the dataset used to train
future models. This closed feedback loop becomes self-reinforcing and can lead to highly undesirable
outcomes over time by allowing biases to perpetuate. For example, speech recognition products such
as Amazon’s Alexa and Google Home are shown to have accent bias against non-native speakers [6],
with native speakers experience much higher quality than non-native speakers. If this difference leads
to more native speakers using such products while driving away non-native speakers, then over time
the data used to train the model may become even more skewed toward native speakers, with fewer
and fewer non-native samples. Without intervention, the resulting model becomes even more accurate
for the former and less for the latter, which then reinforces their respective user experience [7].

To address the fairness issues, one commonly used approach is to impose fairness criteria such that
certain statistical measures (e.g., positive classification rate, false positive rate, etc.) across different
∗Equal contribution
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demographic groups are (approximately) equalized [1]. However, their effectiveness is studied mostly
in a static framework, where only the immediate impact of the learning algorithm is assessed but
not their long-term consequences. Consider an example where a lender decides whether or not to
approve a loan application based on the applicant’s credit score. Decisions satisfying an identical
true positive rate (equal opportunity) across different racial groups can make the outcome seem
fairer [5]. However, this can potentially result in more loans issued to less qualified applicants in
the group whose score distribution skews toward higher default risk. The lower repayment among
these individuals causes their future credit scores to drop, which moves the score distribution of that
group further toward high default risk [13]. This shows that intervention by imposing seemingly fair
decisions in the short term can lead to undesirable results in the long run.

In this paper we are particularly interested in understanding what happens to group representation
over time when models with fairness guarantee are used, and how it is affected when the underlying
feature distributions are also affected/reshaped by decisions. Toward this end, we introduce a user
retention model to capture users’ reaction (stay or leave) to the decision. We show that under relatively
mild and benign conditions, group representation disparity exacerbates over time and eventually
the disadvantaged groups may diminish entirely from the system. This condition unfortunately can
be easily satisfied when decisions are made based on a typical algorithm (e.g., taking objective as
minimizing the total loss) under some commonly used fairness criteria (e.g., statistical parity, equal
of opportunity, etc.). Moreover, this exacerbation continues to hold and can accelerate when feature
distributions are affected and change over time. A key observation is that if the factors equalized
by the fairness criterion do not match what drives user retention, then the difference in (perceived)
treatment will exacerbate representation disparity over time. Therefore, fairness has to be defined
with a good understanding of how users are affected by the decisions, which can be challenging in
practice as we typically have only incomplete/imperfect information. However, we show that if a
model for the user dynamics is available, then it is possible to find the proper fairness criterion that
mitigates representation disparity.

The impact of fairness intervention on both individuals and society has been studied in [7, 9, 10, 12,
13] and [7, 9, 13] are the most relevant to the present study. Specifically, [9, 13] focus on the impact
on reshaping features over two time steps, while we study the impact on group representation over
an infinite horizon. [7] studies group representation disparity in a sequential framework but without
inspecting the impact of fairness criteria or considering feature distributions reshaped by decision.
More on related work can be found in Appendix B.

The remainder of this paper is organized as follows. Section 2 formulates the problem. The impact of
various fairness criteria on group representation disparity is analyzed and presented in Section 3, as
well as potential mitigation. Experiments are presented in Section 4. Section 5 concludes the paper.
All proofs and a table of notations can be found in the appendices.

2 Problem Formulation

Consider two demographic groupsGa,Gb distinguished based on some sensitive attributeK ∈ {a, b}
(e.g., gender, race). An individual from either group has feature X ∈ Rd and label Y ∈ {0, 1}, both
can be time varying. Denote by Gjk ⊂ Gk the subgroup with label j, j ∈ {0, 1}, k ∈ {a, b}, f jk,t(x)

its feature distribution and αjk(t) the size of Gjk as a fraction of the entire population at time t. Then
αk(t) := α0

k(t) + α1
k(t) is the size of Gk as a fraction of the population and the difference between

αa(t) and αb(t) measures the representation disparity between two groups at time step t. Denote by

gjk,t =
αjk(t)

αk(t) the fraction of label j ∈ {0, 1} in group k at time t, then the distribution of X over Gk
is given by fk,t(x) = g1

k,tf
1
k,t(x) + g0

k,tf
0
k,t(x) and fa,t 6= fb,t.

Consider a sequential setting where the decision maker at each time makes a decision on each
individual based on feature x. Let hθ(x) be the decision rule parameterized by θ ∈ Rd and θk(t) be
the decision parameter for Gk at time t, k ∈ {a, b}. The goal of the decision maker at time t is to find
the best parameters θa(t), θb(t) such that the corresponding decisions about individuals from Ga, Gb
maximize its utility (or minimize its loss) in the current time. Within this context, the commonly
studied fair machine learning problem is the one-shot problem stated as follows, at time step t:

min
θa,θb

OOOt(θa, θb;αa(t), αb(t)) = αa(t)Oa,t(θa) + αb(t)Ob,t(θb) s.t. ΓC,t(θa, θb) = 0 , (1)
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whereOOOt(θa, θb;αa(t), αb(t)) is the overall objective of the decision maker at time t, which consists
of sub-objectives from two groups weighted by their group proportions.2 ΓC,t(θa, θb) = 0 charac-
terizes fairness constraint C, which requires the parity of certain statistical measure (e.g., positive
classification rate, false positive rate, etc.) across different demographic groups. Some commonly
used criteria will be elaborated in Section 3.1. Both Ok,t(θk) and ΓC,t(θa, θb) = 0 depend on fk,t(x).
The resulting solution (θa(t), θb(t)) will be referred to as the one-shot fair decision under fairness C,
where the optimality only holds for a single time step t.

In this study, we seek to understand how the group representation evolves in a sequential setting over
the long run when different fairness criteria are imposed. To do so, the impact of the current decision
on the size of the underlying population is modeled by the following discrete-time retention/attrition
dynamics. Denote by Nk(t) ∈ R+ the expected number of users in group k at time t:

Nk(t+ 1) = Nk(t) · πk,t(θk(t)) + βk ,∀k ∈ {a, b}, (2)

where πk,t(θk(t)) is the retention rate, i.e., the probability of a user fromGk who was in the system at
time t remaining in the system at time t+ 1. This is assumed to be a function of the user experience,
which could be the actual accuracy of the algorithm or their perceived (mis)treatment. This experience
is determined by the application and is different under different contexts. For instance, in domains of
speaker verification and medical diagnosis, it can be considered as the average loss, i.e., a user stays
if he/she can be classified correctly; in loan/job application scenarios, it can be the rejection rates,
i.e., user stays if he/she gets approval. βk is the expected number of exogenous arrivals to Gk and
is treated as a constant in our analysis, though our main conclusion holds when this is modeled as
a random variable. Accordingly, the relative group representation for time step t+ 1 is updated as
αk(t+ 1) = Nk(t+1)

Na(t+1)+Nb(t+1) ,∀k ∈ {a, b}.

For the remainder of this paper, αa(t)
αb(t)

is used to measure the group representation disparity at time t.
As αk(t) and fk,t(x) change over time, the one-shot problem (1) is also time varying. In the next
section, we examine what happens to αa(t)

αb(t)
when one-shot fair decisions are applied in each step.

3 Analysis of Group Representation Disparity in the Sequential Setting

Below we present results on the monotonic change of αa(t)
αb(t)

when applying one-shot fair decisions in
each step. It shows that the group representation disparity can worsen over time and may lead to the
extinction of one group under a monotonicity condition stated as follows.
Monotonicity Condition. Consider two one-shot problems defined in (1) with objectives
ÔOO(θa, θb; α̂a, α̂b) and ÕOO(θa, θb; α̃a, α̃b) over distributions f̂k(x), f̃k(x) respectively. Let (θ̂a, θ̂b),
(θ̃a, θ̃b) be the corresponding fair decisions. We say that two problems ÔOO and ÕOO satisfy the monotonic-
ity condition given a dynamic model if for any α̂a + α̂b = 1 and α̃a + α̃b = 1 such that α̂a

α̂b
< α̃a

α̃b
,

the resulting retention rates satisfy π̂a(θ̂a) < π̃a(θ̃a) and π̂b(θ̂b) > π̃b(θ̃b).

Note that this condition is defined over two one-shot problems and a given dynamic model. It is not
limited to specific families of objective or constraint functions; nor is it limited to one-dimensional
features. The only thing that matters is the group proportions within the system and the retention
rates determined by the decisions and the dynamics. It characterizes a situation where when one
group’s representation increases, the decision becomes more in favor of this group and less favorable
to the other, so that the retention rate is higher for the favored group and lower for the other.
Theorem 1. [Exacerbation of representation disparity] Consider a sequence of one-shot problems (1)
with objectiveOOOt(θa, θb;αa(t), αb(t)) at each time t. Let (θa(t), θb(t)) be the corresponding solution
and πk,t(θk(t)) be the resulting retention rate of Gk, k ∈ {a, b} under a dynamic model (2). If the
initial states satisfy Na(1)

Nb(1) = βa
βb

, Nk(2) > Nk(1),3 and one-shot problems in any two consecutive
time steps, i.e.,OOOt,OOOt+1, satisfy the monotonicity condition under the given dynamic model, then

2This is a typical formulation if the objective OOOt measures the average performance of decisions over
all samples, i.e., OOOt = 1

|Ga|+|Gb|
(
∑
i∈Ga O

i
t +

∑
i∈Gb

Oit) = 1
|Ga|+|Gb|

(|Ga|Oa,t + |Gb|Ob,t), where Oit
measures the performance of each sample i and Ok,t = 1

|Gk|
∑
i∈Gk

Oit is the average performance of Gk.
3This condition will always be satisfied when the system starts from a near empty state.
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the following holds. Let � denote either “ < ” or “ = ” or “ > ”, if πa,1(θa(1)) � πb,1(θb(1)), then
αa(t+1)
αb(t+1) �

αa(t)
αb(t)

and πa,t+1(θa(t+ 1)) � πa,t(θa(t)) � πb,t(θb(t)) � πb,t+1(θb(t+ 1)), ∀t.

Theorem 1 says that once a group’s proportion starts to change (increase or decrease), it will continue
to change in the same direction. This is because under the monotonicity condition, there is a feedback
loop between representation disparity and the one-shot decisions: the former drives the latter which
results in different user retention rates in the two groups, which then drives future representation.

The monotonicity condition can be satisfied under some commonly used objectives, dynamics and
fairness criteria. This is characterized in the following theorem.

Theorem 2. [A case satisfying monotonicity condition] Consider two one-shot problems defined in
(1) with objectives Õ(θa, θb; α̂a, α̂b) = α̂aOa(θa)+ α̂bOb(θb) and Ô(θa, θb; α̃a, α̃b) = α̃aOa(θa)+

α̃bOb(θb) over the same distribution fk(x) with α̂a + α̂b = 1 and α̃a + α̃b = 1. Let (θ̂a, θ̂b), (θ̃a, θ̃b)

be the corresponding solutions. Under the condition that Ok(θ̂k) 6= Ok(θ̃k) for all possible α̂k 6= α̃k,
if the dynamics satisfy πk(θk) = hk(Ok(θk)) for some decreasing function hk(·), then Õ and Ô
satisfy the monotonicity condition.

The above theorem identifies a class of cases satisfying the monotonicity condition; these are cases
where whenever the group proportion changes, the decision will cause the sub-objective function
value to change as well, and the sub-objective function value drives user departure.

For the rest of the paper we will focus on the one-dimensional setting. Some of the cases we consider
are special cases of Theorem 2 (Sec. 3.2). Others such as the time-varying feature distribution fk,t(x)
considered in Sec. 3.3 also satisfy the monotonicity condition but are not captured by Theorem 2.

3.1 The one-shot problem

Consider a binary classification problem based on featureX ∈ R. Let decision rule hθ(x) = 1(x ≥ θ)
be a threshold policy parameterized by θ ∈ R and L(y, hθ(x)) = 1(y 6= hθ(x)) the 0-1 loss incurred
by applying decision θ on individuals with data (x, y).

The goal of the decision maker at each time is to find a pair (θa(t), θb(t)) subject to criterion C
such that the total expected loss is minimized, i.e., OOOt(θa, θb;αa(t), αb(t)) = αa(t)La,t(θa) +

αb(t)Lb,t(θb), where Lk,t(θk) = g1
k,t

∫ θk
−∞ f1

k,t(x)dx + g0
k,t

∫∞
θk
f0
k,t(x)dx is the expected loss Gk

experiences at time t. Some examples of ΓC,t(θa, θb) are as follows and illustrated in Fig. 1.

1. Simple fair (Simple): ΓSimple,t = θa − θb. Imposing this criterion simply means we ensure
the same decision parameter is used for both groups.

2. Equal opportunity (EqOpt): ΓEqOpt,t =
∫∞
θa
f0
a,t(x)dx −

∫∞
θb
f0
b,t(x)dx. This requires the

false positive rate (FPR) be the same for different groups (Fig. 1(c)),4 i.e., Pr(hθa(X) =
1|Y = 0,K = a) = Pr(hθb(X) = 1|Y = 0,K = b).

3. Statistical parity (StatPar): ΓStatPar,t =
∫∞
θa
fa,t(x)dx −

∫∞
θb
fb,t(x)dx. This requires

different groups be given equal probability of being labelled 1 (Fig. 1(b)), i.e., Pr(hθa(X) =
1|K = a) = Pr(hθb(X) = 1|K = b).

4. Equalized loss (EqLos): ΓEqLos,t = La,t(θa) − Lb,t(θb). This requires that the expected
loss across different groups be equal (Fig. 1(d)).

Notice that for Simple, EqOpt and StatPar criteria, the following holds: ∀t, (θa, θb), and (θ′a, θ
′
b)

that satisfy ΓC,t(θa, θb) = ΓC,t(θ
′
a, θ
′
b) = 0, we have θa ≥ θ′a if and only if θb ≥ θ′b.

Some technical assumptions on the feature distributions are in order.
We assume f0

a,t(x), f1
a,t(x), f0

b,t(x), f1
b,t(x) have bounded support on

[a0
t , a

0
t ], [a1

t , a
1
t ], [b0t , b

0

t ] and [b1t , b
1

t ] respectively, and that f1
k,t(x) and

f0
k,t(x) overlap, i.e., a0

t < a1
t < a0

t < a1
t and b0t < b1t < b

0

t < b
1

t . The
main technical assumption is stated as follows.

k0
t k1

t k
0
t k

1
t

0.00

0.02

0.04

pr
ob

ab
ili

ty
de

ns
it

y

f 0
k,t(x)

f 1
k,t(x)

Fig. 2: f jk,t(x), k ∈ {a, b}

4Depending on the context, this criterion can also refer to equal false negative rate (FNR), true positive rate
(TPR), or true negative rate (TNR), but the analysis is essentially the same.
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(a) each f jk(x) for Gjk (b) Statistical parity (c) Equal opportunity (d) Equalized Loss

Fig. 1: For Ga, Gb with group proportions α1
a = 0.55, α0

a = 0.15, α1
b = 0.1, α0

b = 0.2, a pair of (θa, θb) is
fair under each criterion stated in Fig. 1(b)-1(d) requires the corresponding colored areas be equal.

Assumption 1. Let Ta,t = [a1
t , a

0
t ] (resp. Tb,t = [b1t , b

0

t ]) be the overlapping interval between f0
a,t(x)

and f1
a,t(x) (resp. f0

b,t(x) and f1
b,t(x)). Distribution f1

k,t(x) is strictly increasing and f0
k,t(x) is

strictly decreasing over Tk,t, ∀k ∈ {a, b}.

For bell-shaped feature distributions (e.g., Normal, Cauchy, etc.), Assumption 1 implies that f1
k,t(x)

and f0
k,t(x) are sufficiently separated. An example is shown in Fig. 2. As we show later, this

assumption helps us establish the monotonic convergence of decisions (θa(t), θb(t)) but is not
necessary for the convergence of group representation. We next find the one-shot decision to this
problem under Simple, EqOpt, and StatPar fairness criteria.

Lemma 1. Under Assumption 1, ∀k ∈ {a, b}, the optimal decision at time t for Gk without
considering fairness is

θ∗k(t) = arg min
θk

Lk,t(θk) =





k1
t , if g1

k,tf
1
k,t(k

1
t ) ≥ g0

k,tf
0
k,t(k

1
t )

δk,t, if g1
k,tf

1
k,t(k

1
t ) < g0

k,tf
0
k,t(k

1
t ) & g1

k,tf
1
k,t(k

0

t ) > g0
k,tf

0
k,t(k

0

t )

k
0

t , if g1
k,tf

1
k,t(k

0

t ) ≤ g0
k,tf

0
k,t(k

0

t )

where δk,t ∈ Tk,t is defined such that g1
k,tf

1
k,t(δk,t) = g0

k,tf
0
k,t(δk,t). Moreover, Lk,t(θk) is decreas-

ing in θk over [k0
t , θ
∗
k(t)] and increasing over [θ∗k(t), k

1

t ].

Below we will focus on the case when θ∗a(t) = δa,t and θ∗b (t) = δb,t, while analysis for the other
cases are essentially the same. For Simple, StatPar and EqOpt fairness, ∃ a strictly increasing
function φC,t, such that ΓC,t(φC,t(θb), θb) = 0. Denote by φ−1

C,t the inverse of φC,t. Without loss of
generality, we will assign group labels a and b such that φC,t(δb,t) < δa,t and φ−1

C,t(δa,t) > δb,t, ∀t. 5

Lemma 2. Under Simple, EqOpt, StatPar fairness criteria, one-shot fair decision at time t satisfies
(θ∗a(t), θ∗b (t)) = arg minθa,θb αa(t)La,t(θa)+αb(t)Lb,t(θb) ∈ {(θa, θb)|θa ∈ [φC,t(δb,t), δa,t], θb ∈
[δb,t, φ

−1
C,t(δa,t)],ΓC,t(θa, θb) = 0} 6= ∅ regardless of group proportions αa(t), αb(t).

Lemma 2 shows that given feature distributions fa,t(x), fb,t(x), although one-shot fair decisions can
be different under different group proportions αa(t), αb(t), these solutions are all bounded by the
same compact intervals (Fig. 3). Theorem 3 below describes the more specific relationship between
group representation αa(t)

αb(t)
and the corresponding one-shot decision (θa(t), θb(t)).

Theorem 3. [Impact of group representation disparity on the one-shot decision] Consider the
one-shot problem with group proportions αa(t), αb(t) at time step t, let (θa(t), θb(t)) be the corre-
sponding one-shot decision under either Simple, EqOpt or StatPar criterion. Under Assumption 1,
(θa(t), θb(t)) is unique and satisfies the following:

ΨC,t(θa(t), θb(t)) =
αa(t)

αb(t)
, (3)

where ΨC,t is some function increasing in θa(t) and θb(t), with details illustrated in Table 1.

5If the change of fa,t(x) and fb,t(x) w.r.t. the decisions follows the same rule (e.g., examples given in
Section 3.3), then this relationship holds ∀t.
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θa ∈ [a0t , a
1
t ], θb ∈ Tb,t θa ∈ Ta,t, θb ∈ Tb,t θa ∈ Ta,t, θb ∈ [b

0
t , b

1
t ]

EqOpt
(
g1b,t
g0
b,t

f1b,t(θb)

f0
b,t

(θb)
− 1
)
g0b,t
g0a,t

g1b,t

g0
b,t

f1b,t(θb)

f0
b,t

(θb)
−1

1−
g1a,t

g0a,t

f1a,t(θa)

f0a,t(θa)

g0b,t
g0a,t

StatPar 1− 2
g1
b,t

g0
b,t

f1
b,t

(θb)

f0
b,t

(θb)
+1

(
1− 2

g1
b,t

g0
b,t

f1
b,t

(θb)

f0
b,t

(θb)
+1

)(
2

1−
g1a,tf

1
a,t(θa)

g0a,tf
0
a,t(θa)

− 1
)

2

1−
g1a,t

g0a,t

f1a,t(θa)

f0a,t(θa)

− 1

Simple
g1b,tf

1
b,t(θb)−g

0
b,tf

0
b,t(θb)

g0a,tf
0
a,t(θa)−g

1
a,tf

1
a,t(θa)

Table 1: The form of ΨC,t(θa, θb) for C = EqOpt, StatPar, Simple.6

Note that under Assumption 1, both
g1k,tf

1
k,t(θk)

g0k,tf
0
k,t(θk)

and g1
k,tf

1
k,t(θk)− g0

k,tf
0
k,t(θk) are strictly increasing

in θk ∈ Tk,t, k ∈ {a, b}, and θa(t) = φC,t(θb(t)) for some strictly increasing function. According

to ΨC,t(θa, θb) given in Table 1, the larger αa(t)
αb(t)

results in the larger
g1k,tf

1
k,t(θk)

g0k,tf
0
k,t(θk)

and g1
k,tf

1
k,t(θk)−

g0
k,tf

0
k,t(θk), thus the larger θa(t) and θb(t). The above theorem characterizes the impact of the

underlying population on the one-shot decisions. Next we investigate how the one-shot decision
impacts the underlying population.

3.2 Participation dynamics

How a user reacts to the decision is captured by the retention dynamics (2) which is fully characterized
by the retention rate. Below we introduce two types of (perceived) mistreatment as examples when
the monotonicity condition is satisfied.

(1) User departure driven by model accuracy: Examples include discontinuing the use of products
viewed as error-prone, e.g., speech recognition software, or medical diagnostic tools. In these
cases, the determining factor is the classification error, i.e., users who experience low accuracy
have a higher probability of leaving the system. The retention rate at time t can be modeled as
πk,t(θk) = ν(Lk,t(θk)) for some strictly decreasing function ν(·) : [0, 1]→ [0, 1].

(2) User departure driven by intra-group disparity: Participation can also be affected by intra-
group disparity, that between users from the same demographic group but with different labels, i.e.,
Gjk for j ∈ {0, 1}. An example is in making financial assistance decisions where one expects to
see more awards given to those qualified than to those unqualified. Denote by Dk,t(θk) = Pr(Y =
1, hθk(X) = 1|K = k)−Pr(Y = 0, hθk(X) = 1|K = k) =

∫∞
θk

(
g1
kf

1
k,t(x)−g0

kf
0
k,t(x)

)
dx as intra-

group disparity of Gk at time t, then the retention rate can be modeled as πk,t(θk) = w(Dk,t(θk))
for some strictly increasing function w(·) mapping to [0, 1].

Theorem 4. Consider the one-shot problem (1) defined in Sec. 3.1 under either Simple, EqOpt or
StatPar criterion, and assume distributions fk,t(x) = fk(x) are fixed over time. Then the one-
shot problems in any two consecutive time steps, i.e.,OOOt,OOOt+1, satisfy the monotonicity condition
under dynamics (2) with πk(·) being either ν(Lk(·)) or w(Dk(·)).7 This implies that Theorem 1
holds and (θa(t), θb(t)) converges monotonically to a constant decision (θ∞a , θ

∞
b ). Furthermore,

lim
t→∞

αa(t)
αb(t)

= βa
βb

1−πb(θ∞b )
1−πa(θ∞a ) .

When distributions are fixed, the discrepancy between πa(θa(t)) and πb(θb(t)) increases over time
as (θa(t), θb(t)) changes. The process is illustrated in Fig. 3, where θa(t) ∈ [φC(δb), δa], θb(t) ∈
[δb, φ

−1
C (δa)] are constrained by the same interval ∀t. Left and right plots illustrate cases when

πk(θk) = ν(Lk(θk)) and πk(θk) = w(Dk(θk)) respectively.

Note that the case considered in Theorem 4 is a special case of Theorem 2, with distributions fk,t(x) =
fk(x) fixed, Ok(θk) = Lk(θk) and both dynamics πk(·) = ν(Lk(·)) and πk(·) = w(Dk(·)) some

6The cases represented by blank cells cannot happen. When C = Simple, the table only illustrates the result
when δa,t, δb,t ∈ Ta,t ∩ Tb,t 6= ∅.

7When fk,t(x) = fk(x), ∀t, subscript t is omitted in some notations (φC,t, δk,t, πk,t, etc.) for simplicity.
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decreasing functions of Lk(·).8 In this special case we obtain the additional result of monotonic
convergence of decisions, which holds due to Assumption 1.

Once αa(t)
αb(t)

starts to increase, the corre-
sponding one-shot solution (θa(t), θb(t))
also increases (Theorem 3), meaning that
θa(t) moves closer to θ∗a = δa and θb(t)
moves further away from θ∗b = δb (solid ar-
rows in Fig. 3). Consequently, La(θa(t))
and Db(θb(t)) decrease while Lb(θb(t))
and Da(θa(t)) increase. Under both dy-
namics, πa(θa(t)) increases and πb(θb(t))
decreases, resulting in the increase of
αa(t+1)
αb(t+1) ; the feedback loop becomes self-
reinforcing and representation disparity
worsens.
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bf0
b(x)

g1
bf1
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Fig. 3: Illustration of Lk(θk) and Dk(θk) w.r.t. θk: Each black
triangle represents the one-shot decision θk; size of the colored
area represents the value of Lk(θk) (left) orDk(θk) (right). Note
that for the right plot, there are two gray regions and the darker
one is for compensating the lighter one thus they are of the same
size; the smaller gray regions result in the larger Da(θa).

3.3 Impact of decisions on reshaping feature distributions

Our results so far show the potential adverse impact on group rep-
resentation when imposing certain fairness criterion, while their
underlying feature distributions are assumed fixed. Below we
examine what happens when decisions also affect feature distri-
butions over time, i.e., fk,t(x) = g1

k,tf
1
k,t(x) + g0

k,tf
0
k,t(x), which

is not captured by Theorem 2. We will focus on the dynamics
πk,t(θk) = ν(Lk,t(θk)). Since G0

k, G1
k may react differently to the

same θk, we consider two scenarios as illustrated in Fig. 4, which
shows the change in distribution from t to t + 1 when G1

k (resp.
G0
k) experiences the higher (resp. lower) loss at t than t− 1 (see

Appendix I for more detail): ∀j ∈ {0, 1},

k0
t k1

t k
0
t k

1
t
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k,t+1f

0
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1
k(x)

Case (i)

f j
k(x) gj

k,tf
j
k,t(x) gj
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j
k,t+1(x)

k0
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t k
0
t k

1
t
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0.03

0.05

de
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0
k,t(x) = g0

kf
1
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kf
0
k,t+1(x)

g1
kf

1
k,t+1(x)

Case (ii)

Fig. 4: Visualization of decisions
shaping feature distributions.

Case (i): f jk,t(x) = f jk(x) remain fixed but gjk,t changes over time given Gjk’s retention determined
by its perceived loss Ljk,t,

9 In other words, for i ∈ {0, 1} and t ≥ 2 such that Lik,t(θk(t)) <

Lik,t−1(θk(t− 1)), we have gik,t+1 > gik,t and g−ik,t+1 < g−ik,t, where −i := {0, 1} \ {i}.

Case (ii): gjk,t = gjk but for subgroup Gik that is less favored by the decision over time, its members
make extra effort such that f ik,t(x) skews toward the direction of lowering their losses.10 In other
words, for i ∈ {0, 1} and t ≥ 2 such that Lik,t(θk(t)) > Lik,t−1(θk(t − 1)), we have f ik,t+1(x) <

f ik,t(x), ∀x ∈ Tk, while f−ik,t+1(x) = f−ik,t(x), ∀x, where −i := {0, 1} \ {i}.
In both cases, under the condition that fk,t(x) is relatively insensitive to the change in one-shot
decisions, representation disparity can worsen and deterioration accelerates. The precise conditions
are formally given in Conditions 1 and 2 in Appendix I, which describes the case where the change
from fk,t(x) to fk,t+1(x) is sufficiently small while the change from αa(t)

αb(t)
to αa(t+1)

αb(t+1) and the
resulting decisions from θk(t) to θk(t+ 1) are sufficiently large. These conditions hold in scenarios
when the change in feature distributions induced by the one-shot decisions is a slow process.
Theorem 5. [Exacerbation in representation disparity can accelerate] Consider the one-shot problem
defined in (1) under either Simple, EqOpt or StatPar fairness criterion. Let the one-shot decision,
representation disparity and retention rate at time t be given by θfk (t), αfa(t)

αfb (t)
, and πfk,t(θ

f
k (t))

when distribution fk(x) is fixed ∀t. Let the same be denoted by θrk(t), αra(t)
αrb(t) , and πrk,t(θ

r
k(t))

when fk,t(x) changes according to either case (i) or (ii) defined above. Assume we start from the

8By Fig. 3, we have Dk(θ) = g1k − Lk(θ).
9Here L1

k,t(θk) =
∫ θk
−∞ f

1
k,t(x)dx and L0

k,t(θk) =
∫∞
θk
f0
k,t(x)dx.

10Suppose Assumption 1 holds for all f jk,t(x) and their support does not change, then f1
k,t(x) and f0

k,t(x)

overlap over Tk = [k1, k
0
], ∀t.
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same distribution fk,1(x) = fk(x). Under Conditions 1 and 2 in Appendix I, if πfa,1(θfa(1)) =

πra,1(θra(1)) � πfb,1(θfb (1)) = πrb,1(θrb (1)), then αra(t+1)
αrb(t+1) �

αra(t)
αrb(t) (disparity worsens) and αra(t+1)

αrb(t+1) �
αfa(t+1)

αfb (t+1)
(accelerates), ∀t, where � represents either “ < ”or “ > ”.

3.4 Potential mitigation & finding the proper fairness criterion from participation dynamics

The above results show that when the objective is to minimize the average loss over the entire
population, applying commonly used and seemingly fair decisions at each time can exacerbate
representation disparity over time under reasonable participation dynamics. It highlights the fact
that fairness has to be defined with a good understanding of how users are affected by the algorithm,
and how they may react to it. For instance, consider the dynamics with πk,t(θk) = ν(Lk,t(θk)),
then imposing EqLos fairness (Fig. 1(d)) at each time step would sustain group representations, i.e.,
lim
t→∞

αa(t)
αb(t)

= βa
βb

, as we are essentially equalizing departure when equalizing loss. In contrast, under
other fairness criteria the factors that are equalized do not match what drives departure, and different
losses incurred to different groups cause significant change in group representation over time.

In reality the true dynamics is likely a function of a mixture of factors given the application context,
and a proper fairness constraint C should be adopted accordingly. Below we illustrate a method for
finding the proper criterion from a general dynamics model defined below when fk,t(x) = fk(x),∀t:

Nk(t+ 1) = Λ(Nk(t), {πmk (θk(t))}Mm=1, βk), ∀k ∈ {a, b}, (4)
where user retention in Gk is driven by M different factors {πmk (θk(t))}Mm=1 (e.g. accuracy, true
positives, etc.) and each of them depends on decision θk(t). Constant βk is the intrinsic growth
rate while the actual arrivals may depend on πmk (θk(t)). The expected number of users at time
t+ 1 depends on users at t and new users; both may be effected by πmk (θk(t)). This relationship is
characterized by a general function Λ. Let Θ be the set of all possible decisions.
Assumption 2. ∃(θa, θb) ∈ Θ × Θ such that ∀k ∈ {a, b}, N̂k = Λ(N̂k, {πmk (θk)}Mm=1, βk) and
|Λ′(N̂k, {πmk (θk)}Mm=1, βk)| < 1 hold for some N̂k, i.e., dynamics (4) under some decision pairs
(θa, θb) have stable fixed points, where Λ′ denotes the derivative of Λ with respect to Nk.

To find the proper fairness constraint, let C be the set of decisions (θa, θb) that can sustain group
representation. It can be found via the following optimization problem; the set of feasible solutions is
guaranteed to be non-empty under Assumption 2.

C = arg min
(θa,θb)

∣∣∣Ña
Ñb
− βa
βb

∣∣∣ s.t. Ñk = Λ(Ñk, {πmk (θk)}Mm=1, βk) ∈ R+, θk ∈ Θ,∀k ∈ {a, b}.

The idea is to first select decision pairs whose
corresponding dynamics can lead to stable fixed
points (Ña, Ñb); then among them select those
that are best in sustaining group representation,
which may or may not be unique. Sometimes
guaranteeing the perfect fairness can be unre-
alistic and a relaxed version is preferred, in
which case all pairs (θa, θb) satisfying | Ña

Ñb
−

βa
βb
| ≤ min{| Ña

Ñb
− βa
βb
|}+∆ constitute the ∆-fair

set. An example under dynamics Nk(t + 1) =
Nk(t)π2

k(θk(t)) + βkπ
1
k(θk(t)) is illustrated in

Fig. 5, where all curves with ε ≤ ∆ βb
βa

consti-
tute ∆-fair set (perfect fairness set is given by
the deepest red curve with ε = 0). See Appendix
K for more details.

Fig. 5: Left plot: π2
k(θk) = ν(

∫∞
θk
fk(x)dx), π1

k(θk) =

ν(Lk(θk)); right plot: π2
k(θk) = ν(Lk(θk)), π1

k(θk) =
1, and ν(x) = 1− x. Value of each pair (θa, θb) corre-
sponds to | Ña

Ñb
− βa

βb
| measuring how well it can sustain

the group representation. All points (θa, θb) with the
same value of | Ña

Ñb
− βa

βb
| = βa

βb
ε form a curve of the

same color with ε ∈ [0, 1] shown in the color bar.

4 Experiments

We first performed a set of experiments on synthetic data where every Gjk, k ∈ {a, b}, j ∈ {0, 1}
follows the truncated normal (Fig. 2) distributions. A sequence of one-shot fair decisions are used
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and group representation changes over time according to dynamics (2) with πk(θk) = ν(Lk(θk)).
Parameter settings and more experimental results (e.g., sample paths, results under other dynamics
and when feature distributions are learned from data) are presented in Appendix L.
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Fig. 6: Each dot in Fig. 6(a)-6(d) represents the final group proportion limt→∞ αa(t) of one sample path under
a pair of arriving rates (βa, βb). If the group representation is sustained, then limt→∞ αa(t) = 1

1+βb/βa
for

each pair of (βa, βb), as shown in Fig. 6(d) under EqLos fairness. However, under Simple, StatPar and
EqOpt fairness, limt→∞ αa(t) = 1/(1 +

βb(1−ν(La(θ∞a )))

βa(1−ν(Lb(θ∞b )))
).

Fig. 6 illustrates the final group proportion (the converged state) limt→∞ αa(t) as a function of the
exogenous arrival sizes βa and βb under different fairness criteria. With the exception of EqLos

fairness, group representation is severely skewed in the long run,
with the system consisting mostly of Gb, even for scenarios when
Ga has larger arrival, i.e., βa > βb. Moreover, decisions under an
inappropriate fairness criterion (Simple, EqOpt or StatPar) can
result in poor robustness, where a minor change in βa and βb can
result in very different representation in the long run (Fig. 6(b)).

We also consider the dynamics presented in Fig. 5 and show the
effect of ∆ = εβaβb -fair decision found with method in Sec. 3.4
on αa(t). Each curve in Fig. 7 represents a sample path under
different ε where (θa(t), θb(t)) is from a small randomly selected
subset of ∆-fair set, ∀t (to model the situation where perfect
fairness is not feasible) and βa = βb. We observe that fairness
is always violated at the beginning in lower plot even with small
ε. This is because the fairness set is found based on stable fixed
points, which only concerns fairness in the long run.

We also trained binary classifiers over Adult dataset [4] by min-
imizing empirical loss where features are individual data points
such as sex, race, and nationality, and labels are their annual
income (≥ 50k or < 50k). Since the dataset does not reflect
dynamics, we employ (2) with πk(θk) = ν(Lk(θk)) and βa = βb.
We examine the monotonic convergence of representation dis-
parity under Simple, EqOpt (equalized false positive/negative
cost(FPC/FNC)) and EqLos, and consider cases where Ga, Gb
are distinguished by the three features mentioned above. These
results are shown in Fig. 8.
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Fig. 7: Effect of ∆-fair decisions
found with proposed method.
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Fig. 8: Illustration of group represen-
tation disparity using Adult dataset.

5 Conclusion

This paper characterizes the impact of fairness intervention on group representation in a sequential
setting. We show that the representation disparity can easily get exacerbated over time under relatively
mild conditions. Our results suggest that fairness has to be defined with a good understanding of
participation dynamics. Toward this end, we develop a method of selecting a proper fairness criterion
based on prior knowledge of participation dynamics. Note that we do not always have full knowledge
of participation dynamics; modeling dynamics from real-world measurements and finding a proper
fairness criterion based on the obtained model is a potential direction for future work.
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Appendix

A Notation table

Notation Description
Gk, k ∈ {a, b} two demographic groups
Gjk, j ∈ {0, 1} subgroup with label j in Gk
αjk(t) size of Gjk as a fraction of entire population at time t
αk(t) size of Gk as a fraction of entire population at time t, i.e., α0

a(t) +α1
k(t)

gjk,t fraction of subgroup with label j in Gk at time t, i.e., Pr(Y = j|K =

k) = αjk(t)/αk(t)

f jk,t(x) feature distribution of Gjkat time t, i.e., Pr(X = x|K = k, Y = j)
fk,t(x) feature distribution of Gk at time t, i.e., Pr(X = x|K = k) and

fk,t(x) = g1
k,tf

1
k,t(x) + g0

k,tf
0
k,t(x)

hθ(x) decision rule parameterized by θ
θk(t) decision parameter for Gk at time t
OOOt(θa, θb;αa(t), αb(t)) objective of one-shot problem at time t with group proportions

αa(t), αb(t)
Ok,t(θk) sub-objective of Gk at time t
ΓC,t(θa, θb) a fairness constraint imposed on θa and θb for two groups at time t
Nk(t) expected number of users from Gk at time t
πk,t(θk(t)) retention rate of Gk at time t when imposing decision θk(t)
βk number of exogenous arrivals to Gk at every time step
Lk,t(θk) expected loss incurred to Gk by taking decision θk at time t
Ljk,t(θk) expected loss incurred to Gjk by taking decision θk at time t

[kjt , k
j

t ] bounded support of distribution f jk,t(x)

Tk,t overlapping interval between f0
k,t(x) and f1

k,t(x) at time t, i.e., [k1
t , k

0

t ]
δk,t optimal decision for Gk at time t such that δk,t = arg minθ Lk,t(θ) and

satisfies g1
k,tf

1
k,t(δk) = g0

k,tf
0
k,t(δk)

φC,t(·) a increasing function determined by constraint ΓC,t(θa, θb) mapping θb
to θa, i.e., ΓC,t(φC,t(θb), θb)

Dk,t(θk) intra-group disparity of Gk at time t
πmk (θk) mth factor that drives user retention
Λ(·) dynamics model specifying the relationship between Nk(t + 1) and

Nk(t+ 1), βk, πmk (θk(t))

B Related Work

The impact of fairness interventions on both individuals and society, and the fairness in sequential
decision making have been studied in the literature. [13] constructs a one-step feedback model over
two consecutive time steps and characterizes the impact of fairness criteria (statistical parity and
equal of opportunity) on changing each individual’s feature and reshaping the entire population.
Similarly, [9] proposes an effort-based measure of unfairness and constructs an individual-level model
characterizing how an individual responds to the decisions based on it. The impact on the entire group
is then derived from it and the impacts of fairness intervention are examined. While both highlight
the importance of temporal modeling in evaluating the fairness, their main focus is on the adverse
impact on feature distribution, rather than on group representation disparity. In contrast, our work
focuses on the latter but also considers the impact of reshaping feature distributions. Moreover, we
formulate the long-term impact over infinite horizon while [9, 13] only inspect the impact over two
steps.

[7] also considers a sequential framework where the user departure is driven by model accuracy. It
adopts the objective of minimizing the loss of the group with the highest loss (instead of overall or
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average loss), which can prevent the extinction of any group from the system. It requires multiple
demographic groups use the same model and does not adopt any fairness criterion. In contrast, we
are more interested in the impact of various fairness criteria on representation disparity and if it is
possible to sustain the group representation by imposing any fairness criterion. Other differences
include the fact we consider the case when feature distributions are reshaped by the decisions (Section
3.3) and [7] does not.

[12] also constructs a two-stage model in the context of college admission, it shows that increasing
admission rate of a group can increase the overall qualification for this group overtime. [10] describes
a model in the context of labor market. They show that imposing the demographic parity constraint
can incentivize under-represented groups to invest in education, which leads to a better long-term
equilibrium.

Extensive studies on fairness in sequential decision making or online learning has been done [2,
3, 8, 11, 16, 17]. Most of them focus on proposing appropriate fairness notions to improve the
fairness-accuracy trade-off. To the best of our knowledge, none of them considers the impact of
fairness criteria on group representation disparity.

C Proof of Theorem 1

Theorem 1 is proved based on the following Lemma.
Lemma 3. Let a, b, za, zb be real constants, where a, b ∈ R+ and za, zb ∈ [0, 1]. If b ≥ a > 1,
zb − za > 1

a − 1
b and b < 1

1−zb are satisfied, then the following holds:

1 + za + az2
a

1 + zb + bz2
b

≤ 1 + aza
1 + bzb

(5)

Proof. Re-organizing (5) gives the following:

(1 + za + az2
a)(1 + bzb) ≤ (1 + zb + bz2

b )(1 + aza)

bzb + bzazb + za + abz2
azb + az2

a ≤ aza + zb + azazb + bz2
b + abz2

b za

Proving (5) is equivalent to showing the following:

0 ≤ (a− 1)
1

zb
+ (1− b) 1

za
+ b

zb
za
− aza

zb
+ a− b+ ab(zb − za)︸ ︷︷ ︸

term 1

Since zb − za > 1
a − 1

b , term 1 > a− b+ b− a = 0 holds. Therefore, proving (5) is equivalent to
showing:

az2
a + (1− a)za ≤ bz2

b + (1− b)zb (6)

Since b < 1
1−zb holds, implying zb > 1− 1

b .

Define a function g(z) = cz2 + (1− c)z, z ∈ [0, 1] under any constant c > 1. The following holds:

g(1− 1

c
) = 0; g(1) = 1

g′(z) = 2cz + 1− c; g′(1− 1
c ) = c− 1; g′′(z) = 2c

Since g′′(z) is a positive constant over z ∈ [0, 1], g′(z) is strictly increasing and g′(z) > 0 when
z ∈ (1− 1

c , 1], thus g(z) is increasing over z ∈ (1− 1
c , 1] from 0 to 1.

Now consider two functions ga(z) = az2 + (1 − a)z and gb(z) = bz2 + (1 − b)z with z ∈ [0, 1].
From the above analysis, ga(z) is increasing over (1− 1

a , 1] from 0 to 1 and gb(z) is increasing over
(1− 1

b , 1] from 0 to 1. Moreover, 1− 1
b ≥ 1− 1

a and g′′b (z) = 2b ≥ 2a = g′′a(z), i.e., the speed that
gb(z) increases over (1 − 1

b , 1] is NOT slower than the speed that ga(z) increases over (1 − 1
a , 1].

Since zb − za > 1
a − 1

b = (1− 1
b )− (1− 1

a ) and zb > 1− 1
b , ga(za) ≤ gb(zb) must hold.

Therefore, (6) is satisfied. Inequality (5) is proved.
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To simplify the notation, denote πk,t := πk,t(θk(t)). We will only present the case when � := “ < ”,
cases when � := “ > ” and � := “ = ” can be derived similarly and are omitted.

To prove Theorem 1, we prove the following statement using induction: If πa,1 < πb,1, then ∀t,
αa(t+1)
αb(t+1) <

αa(t)
αb(t)

and πa,t+1 < πa,t < πb,t < πb,t+1 hold under monotonicity condition. Moreover,

Nb(t) <
βb

1−πb,t ,∀t.
Base Case:

Since Na(1)
Nb(1) = βa

βb
. If πa,1 < πb,1, then αa(2)

αb(2) =
Na(1)πa,1+βa
Nb(1)πb,1+βb

< Na(1)
Nb(1) = αa(1)

αb(1) . Under monotonic-
ity condition, it results in πa,2 < πa,1 < πb,1 < πb,2. Moreover, since Nb(2) = Nb(1)πb,1 + βb >

Nb(1), implying Nb(1) < βb
1−πb,1 .

Induction Step:

Suppose αa(t+1)
αb(t+1) <

αa(t)
αb(t)

≤ βa
βb

, πa,t+1 < πa,t < πb,t < πb,t+1 and Nb(t) < βb
1−πb,t hold at time

t ≥ 1. Show that for time step t+ 1, αa(t+2)
αb(t+2) <

αa(t+1)
αb(t+1) ≤

βa
βb

, πa,t+2 < πa,t+1 < πb,t+1 < πb,t+2

and Nb(t+ 1) < βb
1−πb,t+1

also hold.

Denote Na(t) = caβa and Nb(t) = cbβb. Since Nk(t) = Nk(t− 1)πk,t−1 + βk > βk,∀t, it holds
that ca, cb > 1.

By hypothesis, αa(t)
αb(t)

≤ βa
βb

implies that cb ≥ ca > 1, and Nb(t) < βb
1−πb,t implies that cb < 1

1−πb,t .

Since Na(t+1)
Nb(t+1) =

Na(t)πa,t+βa
Nb(t)πb,t+βb

= βa
βb

caπa,t+1
cbπb,t+1 <

Na(t)
Nb(t)

= βa
βb

ca
cb

, re-organizing it gives πb,t − πa,t >
1
ca
− 1

cb
.

By Lemma 3, the following holds:

Na(t)π2
a,t + βa(1 + πa,t)

Nb(t)π2
b,t + βb(1 + πb,t)

=
βa
βb

1 + πa,t + caπ
2
a,t

1 + πb,t + cbπ2
b,t

≤ βa
βb

1 + caπa,t
1 + cbπb,t

=
Na(t+ 1)

Nb(t+ 1)
=
αa(t+ 1)

αb(t+ 1)

Since we suppose πa,t+1 < πa,t < πb,t < πb,t+1, we have:

Na(t)π2
a,t + βa(1 + πa,t)

Nb(t)π2
b,t + βb(1 + πb,t)

>
(Na(t)πa,t + βa)πa,t+1 + βa
(Nb(t)πb,t + βb)πb,t+1 + βb

=
αa(t+ 2)

αb(t+ 2)

It implies that αa(t+2)
αb(t+2) <

αa(t+1)
αb(t+1) .

By motonoticity condition, it results in πa,t+2 < πa,t+1 < πb,t+1 < πb,t+2.

Moreover, Nb(t+ 1) = Nb(t)πb,t + βb <
βbπb,t
1−πb,t + βb = βb

1−πb,t <
βb

1−πb,t+1
.

The statement holds for time t+ 1. This completes the proof.

D Proof of Theorem 2

Without loss of generality, let α̂a
α̂b

< α̃a
α̃b

. Since πk(θk) = hk(Ok(θk)) with hk(·) being a decreasing

function, showing that Õ and Ô satisfy Monotonicity condition is equivalent to showing that
Oa(θ̂a) > Oa(θ̃a), Ob(θ̂b) < Ob(θ̃b). Under the condition that Ok(θ̂k) 6= Ok(θ̃k) for any possible
α̂a 6= α̃a , prove by contradiction: suppose Oa(θ̂a) < Oa(θ̃a) holds, then Ob(θ̂b) > Ob(θ̃b) must
also hold otherwise (θ̂a, θ̂b) will be the solution to Õ.
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Because (θ̂a, θ̂b) is the optimal solution to Ô and (θ̃a, θ̃b) is the optimal solution to Õ, and Ob(θ̂b) >
Ob(θ̃b), the following holds:

α̂aOa(θ̂a) + α̂bOb(θ̂b) ≤ α̂aOa(θ̃a) + α̂bOb(θ̃b)→
Oa(θ̂a)−Oa(θ̃a)

Ob(θ̃b)−Ob(θ̂b)
≥ α̂b

α̂a

α̃aOa(θ̃a) + α̃bOb(θ̃b) ≤ α̃aOa(θ̂a) + α̃bOb(θ̂b)→
Oa(θ̂a)−Oa(θ̃a)

Ob(θ̃b)−Ob(θ̂b)
≤ α̃b

α̃a

It implies that α̂a
α̂b
≥ α̃a

α̃b
, which is a contradiction.

E Proof of Lemma 1

Starting from Appendix E until Appendix H, we simplify the notations by removing t from subscript,
i.e., Lk,t(θk) := Lk(θk), gjk,t := gjk, fk,t(x) := fk(x), f jk,t(x) := f jk(x), kjt := kj , k

j

t := k
j
,

φC,t := φC , ΓC,t := ΓC , δk,t := δk, Tk,t := Tk.

The loss for group k can be written as

Lk(θk) =

∫ θk

−∞
g1
kf

1
k (x)dx+

∫ ∞

θk

g0
kf

0
k (x)dx =





∫ k0
θk
g0
kf

0
k (x)dx, if θk ∈ [k0, k1]

∫ k0
θk
g0
kf

0
k (x)dx+

∫ θk
k1
g1
kf

1
k (x)dx, if θk ∈ [k1, k

0
]

∫ θk
k1
g1
kf

1
k (x)dx, if θk ∈ [k

0
, k

1
]

which is decreasing in θk over [k0, k1] and increasing over [k
0
, k

1
], the optimal solution θ∗k ∈ [k1, k

0
].

Taking derivative of Lk(θk) w.r.t. θk gives dLk(θk)
dθk

= g1
kf

1
k (θk) − g0

kf
0
k (θk), which is strictly

increasing over [k1, k
0
] under Assumption 1.

The optimal solution θ∗k = arg minθk Lk(θk) ∈ {k1, δk, k
0} can be thus found easily. Moreover,

Lk(θk) is decreasing in θk over [k0, θ∗k] and increasing over [θ∗k, k
1
].

F Proof of Lemma 2

Some notations are simplified by removing subscript t as mentioned in Appendix E.

We proof this Lemma by contradiction.

Let V = {(θa, θb)|θa ∈ [φC(δb), δa], θb ∈ [δb, φ
−1
C (δa)],ΓC(θa, θb) = 0}.

Note that for Simple, EqOpt, StatPar fairness, for any (θa, θb) and (θ′a, θ
′
b) that satisfy constraints

ΓC(θa, θb) = 0 and ΓC(θ
′
a, θ
′
b) = 0, θa ≥ θ′a if and only if θb ≥ θ′b. Suppose that (θ̌a, θ̌b) satisfies

ΓC(θ̌a, θ̌b) = 0 and (θ̌a, θ̌b) = arg minθa,θb αaLa(θa) + αbLb(θb) /∈ V , then one of the following
must hold: (1) θ̌a < φC(δb), θ̌b < δb; (2) θ̌a > δa, θ̌b > φ−1

C (δa). Consider two cases separately.

(1) θ̌a < φC(δb), θ̌b < δb

Since Lb(θ̌b) > Lb(δb), ∀αa, αb, to satisfy αaLa(θ̌a) + αbLb(θ̌b) < αaLa(φ(δb)) + αbLb(δb),
La(θ̌a) < La(φC(δb)) must hold. However, by Lemma 1, La(θa) is strictly decreasing on [a0, δa]
and strictly increasing on [δa, a

1]. Since θ̌a < φC(δb) < δa, this implies La(θ̌a) > La(φC(δb)).
Therefore, (θ̌a, θ̌b) cannot be the optimal pair.

(2) θ̌a > δa, θ̌b > φ−1
C (δa)

Since La(θ̌a) > La(δa), ∀αa, αb, to satisfy αaLa(θ̌a) + αbLb(θ̌b) < αaLa(δa) + αbLb(φ
−1
C (δa)),

Lb(θ̌b) < Lb(φ
−1
C (δa)) must hold. However, by Lemma 1, Lb(θb) is strictly decreasing on [b0, δb]

and strictly increasing on [δb, b
1
]. Since θ̌b > φ−1

C (δa) > δb, this implies Lb(θ̌b) > Lb(φ
−1
C (δa)).

Therefore, (θ̌a, θ̌b) cannot be the optimal pair.
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G Proof of Theorem 3

Some notations are simplified by removing subscript t as mentioned in Appendix E.

Proof of Theorem 3 is based on the following Lemma.
Lemma 4. Consider the one-shot problem (1) at some time step t, with group proportions given by
αa(t), αb(t). Under Assumption 1 the one-shot decision (θa(t), θb(t)) for this time step is unique
and satisfies the following:

(1) Under EqOpt fairness:

• If θa(t) ∈ [a0, a1], θb(t) ∈ [b1, b
0
], then αa(t)

αb(t)
= (

g1b
g0b

f1
b (θb(t))

f0
b (θb(t))

− 1)
g0b
g0a

.

• If θa(t) ∈ [a1, a0], θb(t) ∈ [b1, b
0
], then αa(t)

αb(t)
=

g1b
g0
b

f1b (θb(t))

f0
b
(θb(t))

−1

1− g
1
a
g0a

f1a(θa(t))

f0a(θa(t))

g0b
g0a

.

(2) Under StatPar fairness:

• If θa(t) ∈ [a0, a1], θb(t) ∈ [b1, b
0
], then αa(t)

αb(t)
= 1− 2

g1
b
g0
b

f1
b
(θb(t))

f0
b
(θb(t))

+1
.

• If θa(t) ∈ [a1, a0], θb(t) ∈ [b1, b
0
], then αa(t)

αb(t)
= (1− 2

g1
b
g0
b

f1
b
(θb(t))

f0
b
(θb(t))

+1
)( 2

1− g
1
af

1
a(θa(t))

g0af
0
a(θa(t))

− 1) .

• If θa(t) ∈ [a1, a0], θb(t) ∈ [b
0
, b

1
] , then αa(t)

αb(t)
= 2

1− g
1
af

1
a(θa(t))

g0af
0
a(θa(t))

− 1.

(3) Under Simple fairness:

• If we further assume δa, δb ∈ Ta ∩ Tb, then θa(t) = θb(t) ∈ [a1, b
0
] and αa(t)

αb(t)
=

g1bf
1
b (θb(t))−g0bf

0
b (θb(t))

g0af
0
a(θa(t))−g1af1

a(θa(t)) .

Proof. We focus on the case when g1
af

1
a (a1) < g0

af
0
a (a1) & g1

af
1
a (a0) > g0

af
0
a (a0) and g1

bf
1
b (b1) <

g0
bf

0
b (b1) & g1

bf
1
b (b

0
) > g0

bf
0
b (b

0
). That is, θ∗k = argminθLk(θ) = δk holds for k ∈ {a, b}.

Constraint ΓC(θa, θb) = 0 can be rewritten as θa = φC(θb) for some strictly increasing function φC .
The following holds:

dφC(θb)

dθb
= −

∂ΓC(θa,θb)
∂θb

∂ΓC(θa,θb)
∂θa

∣∣∣
θa=φC(θb)

=





f0
b (θb)

f0
a(φC(θb))

, C := EqOpt
g0bf

0
b (θb)+g

1
bf

1
b (θb)

g0af
0
a(φC(θb))+g1af

1
a(φC(θb))

, C := StaPar
1, C := Simple

The one-shot problem can be expressed with only one variable, either θa or θb. Here we express it in
terms of θb. At each round, decision maker finds θb(t) = arg minθb L

t(θb) = αa(t)La(φC(θb)) +

αb(t)Lb(θb) and θa(t) = φC(θb(t)). Since φC(δb) < δa ( φ−1
C (δa) > δb), when C := StatPar,

solution (θa(t), θb(t)) can be in one of the following three forms: (1) θa(t) ∈ [a0, a1], θb(t) ∈ [b1, b
0
];

(2) θa(t) ∈ [a1, a0], θb(t) ∈ [b1, b
0
]; (3) θa(t) ∈ [a1, a0], θb(t) ∈ [b

0
, b

1
]. When C := EqOpt,

solution (θa(t), θb(t)) can be either (1) or (2) listed above. In the following analysis, we simplify the
notation φC as φ when fairness criterion C is explicitly stated. For EqOpt and StatPar criteria, we
consider each case separately.

Case 1: θa(t) ∈ [a0, a1], θb(t) ∈ [b1, b
0
]

Let θmax
b = min{b0, φ−1

C (a1)} be the maximum value θb can take. Lt(θb) = αb(t)
∫ θb
b1
g1
bf

1
b (x)−

g0
bf

0
b (x)dx− αa(t)

∫ φC(θb)

a0
g0
af

0
a (x)dx+ αa(t)g0

a + αb(t)
∫ b0
b1
g0
bf

0
b (x)dx

Taking derivative w.r.t. θb gives

dLt(θb)

dθb
= αb(t)(g

1
bf

1
b (θb)− g0

bf
0
b (θb))− αa(t)g0

af
0
a (φC(θb))

dφC(θb)

dθb
.
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1. C := EqOpt
dLt(θb)
dθb

= αb(t)(g
1
bf

1
b (θb)− g0

bf
0
b (θb))− αa(t)g0

af
0
b (θb), since g1

bf
1
b (θb)− g0

bf
0
b (θb) is increasing

from negative to positive and f0
b (θb) is decreasing over [b1, b

0
], implying dLt(θb)

dθb
is increasing over

[b1, b
0
]. Based on the value of αa(t)

αb(t)
,

• If dL
t(θb)
dθb

|θb=θmax
b
≥ 0, then one-shot decision θb(t) satisfies αa(t)

αb(t)
= (

g1b
g0b

f1
b (θb(t))

f0
b (θb(t))

− 1)
g0b
g0a

and is
unique.

• If dL
t(θb)
dθb

< 0,∀θb ∈ [b1, θmax
b ], then θb(t) > θmax

b and (θa(t), θb(t)) does not satisfy Case 1.

2. C := StatPar
dLt(θb)
dθb

= αb(t)(g
1
bf

1
b (θb) − g0

bf
0
b (θb)) − αa(t)

g1bf
1
b (θb)+g

0
bf

0
b (θb)

1+
g1af

1
a(φ(θb))

g0af
0
a(φ(θb))

= (αb(t) − αa(t))g1
bf

1
b (θb) −

(αb(t) + αa(t))g0
bf

0
b (θb), where the last equality holds since f1

a (φ(θb)) = 0 over [a0, a1]. Since
dLt(θb)
dθb

|θb=b1 < 0, based on the value of αa(t)
αb(t)

,

• If ∃θ′b such that dL
t(θb)
dθb

|θb=θ′b ≥ 0, then one-shot decision θb(t) satisfies αa(t)
αb(t)

= 1− 2
g1
b
g0
b

f1
b
(θb(t))

f0
b
(θb(t))

+1

and is unique.

• If dL
t(θb)
dθb

< 0,∀θb ∈ [b1, θmax
b ], then θb(t) > θmax

b and (θa(t), θb(t)) does not satisfy Case 1.

Case 2: θa(t) ∈ [a1, a0], θb(t) ∈ [b1, b
0
]

Let θmax
b = min{b0, φ−1

C (a0)} and θmin
b = max{b1, φ−1

C (a1)} be the maximum and minimum value
that θb can take respectively. Lt(θb) = αb(t)

∫ θb
b1
g1
bf

1
b (x)− g0

bf
0
b (x)dx+ αa(t)

∫ φC(θb)

a1
g1
af

1
a (x)−

g0
af

0
a (x)dx+ αb(t)

∫ b0
b1
g0
bf

0
b (x)dx+ αa(t)

∫ a0
a1
g0
af

0
a (x)dx

Taking derivative w.r.t. θb gives

dLt(θb)

dθb
= αb(t)(g

1
bf

1
b (θb)− g0

bf
0
b (θb)) + αa(t)(g1

af
1
a (φC(θb))− g0

af
0
a (φC(θb)))

dφC(θb)

dθb
.

1. C := EqOpt

dLt(θb)
dθb

= ((g1
a
f1
a(φ(θb))
f0
a(φ(θb))

− g0
a)αa(t)− g0

bαb(t))f
0
b (θb) + g1

bf
1
b (θb)αb(t). Since dLt(θb)

dθb
|θb=θmax

b
> 0,

based on αa(t)
αb(t)

,

• If ∃θ′b such that dL
t(θb)
dθb

|θb=θ′b ≤ 0, then one-shot decision θb(t) satisfies αa(t)
αb(t)

=
1− g

1
b
g0
b

f1b (θb(t))

f0
b
(θb(t))

g1a
g0a

f1a(φ(θb(t)))

f0a(φ(θb(t)))
−1

g0b
g0a

and is unique.

• If dL
t(θb)
dθb

> 0,∀θb ∈ [θmin
b , θmax

b ], then θb(t) < θmin
b and (θa(t), θb(t)) does not satisfy Case 2.

2. C := StatPar
dLt(θb)
dθb

= αb(t)(g
1
bf

1
b (θb)− g0

bf
0
b (θb)) + αa(t)(g0

bf
0
b (θb) + g1

bf
1
b (θb))

g1af
1
a(φ(θb))−g0af

0
a(φ(θb))

g1af
1
a(φ(θb))+g0af

0
a(φ(θb))

.

• If ∃θb(t) such that dLt(θb)
dθb

|θb=θb(t) = 0, then it satisfies αa(t)
αb(t)

= (1 −
2

g1
b
g0
b

f1
b
(θb(t))

f0
b
(θb(t))

+1
)( 2

1− g
1
af

1
a(φ(θb(t)))

g0af
0
a(φ(θb(t)))

− 1) and is unique.

• If dL
t(θb)
dθb

> 0,∀θb ∈ [θmin
b , θmax

b ], then θb(t) < θmin
b and (θa(t), θb(t)) does not satisfy Case 2.

• If dL
t(θb)
dθb

< 0,∀θb ∈ [θmin
b , θmax

b ], then θb(t) > θmax
b and (θa(t), θb(t)) does not satisfy Case 2.
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Case 3: θa(t) ∈ [a1, a0], θb(t) ∈ [b
0
, b

1
]

Express Lt(θa, θb) as function of θa, the analysis will be similar to Case 1.

Let θmin
a = max{a1, φC(b

0
)} be the minimum value θa can take.

Lt(θa) = αa(t)
∫ θa
a1
g1
af

1
a (x)− g0

af
0
a (x)dx+ αb(t)

∫ φ−1
C (θa)

b1
g1
bf

1
b (x)dx+ αa(t)

∫ a0
a1
g0
af

0
a (x)dx

Taking derivative w.r.t. θa gives

dLt(θa)

dθa
= αa(t)(g1

af
1
a (θa)− g0

af
0
a (θa)) + αb(t)g

1
bf

1
b (φ−1
C (θa))

dφ−1
C (θa)

dθa
,

where C := StatPar.
dLt(θa)
dθa

= αa(t)(g1
af

1
a (θa)−g0

af
0
a (θa))+αb(t)

g1af
1
a(θa)+g0af

0
a(θa)

1+
g0
b
f0
b
(φ−1(θa))

g0
b
f0
b
(φ−1(θa))

= αa(t)(g1
af

1
a (θa)−g0

af
0
a (θa))+

αb(t)(g
1
af

1
a (θa) + g0

af
0
a (θa)), where the last equality holds since f0

b (φ−1(θa)) = 0 over [b
0
, b

1
].

Since dLt(θb)
dθb

|θb=a0 > 0, based on the value of αa(t)
αb(t)

,

• If ∃θ′a such that dL
t(θa)
dθa

|θa=θ′a ≤ 0, then one-shot decision θa(t) satisfies αa(t)
αb(t)

= 2

1− g
1
af

1
a(θa(t))

g0af
0
a(θa(t))

−1

and is unique.

• If dL
t(θa)
dθa

> 0,∀θa ∈ [b1, θmin
a ], then θa(t) < θmin

a and (θa(t), θb(t)) does not satisfy Case 3.

Now consider the case when C := Simple, where θa(t) = θb(t) = θ(t). Since δa > δb, suppose that
both δa, δb ∈ Ta ∩ Tb and according to Lemma 2, there could be only one case: θ(t) ∈ [a1, b

0
].

Taking derivative w.r.t. θ gives

dLt(θ)

dθ
= αb(t)(g

1
bf

1
b (θ)− g0

bf
0
b (θ)) + αa(t)(g1

af
1
a (θ)− g0

af
0
a (θ)).

dLt(θ)
dθ is increasing from negative to positive over [δb, δa], ∃θ(t) such that dL

t(θ)
dθ |θ=θ(t) = 0, and it

satisfies αa(t)
αb(t)

=
g1bf

1
b (θ(t))−g0bf

0
b (θ(t))

g0af
0
a(θ(t))−g1af1

a(θ(t)) .

By Lemma 2, θa(t) ∈ [φC(δb), δa], θb(t) ∈ [δb, φ
−1
C (δa)] hold. Under Assumption 1, f1

b f
1
b (θb) ≥

f0
b f

0
b (θb) for θb ∈ [δb, b

0
], f1

af
1
a (θa) ≤ f0

af
0
a (θa) for θa ∈ [a1, δa]. Moreover, f1

k (x) is increasing
and f0

k (x) is decreasing over Tk. According to Lemma 4, for each case, function ΨC(θa(t), θb(t)) is
increasing in θa(t) and θb(t).

H Proof of Theorem 4

Some notations are simplified by removing subscript t as mentioned in Appendix E.

Note that fk,t(x) = fk(x) is fixed. Consider two one-shot problems under the same distributions at
two consecutive time steps with group representation disparity α̃a

α̃b
and α̂a

α̂b
respectively. Let (θ̃a, θ̃b)

and (θ̂a, θ̂b) be the corresponding solutions.

According to Lemma 2, θ̃a, θ̂a ∈ [φC(δb), δa], θ̃b, θ̂b ∈ [δb, φ
−1
C (δa)] hold. Suppose α̃a(t)

α̃b(t)
> α̂a

α̂b
. By

Theorem 3, it implies that θ̃a > θ̂a, θ̃b > θ̂b.

Consider the dynamics with πk(θk) = ν(Lk(θk)), since Lk(θk) is decreasing over [k0, δk] and
increasing over [δk, k

1
], the larger one-shot decisions θa, θb would result in the larger retention

rate πa(θa) and the smaller πb(θb) as ν(·) is strictly decreasing. Therefore, πa(θ̃a) > πa(θ̂a) and
πb(θ̃b) < πb(θ̂b). Hence, Monotonicity condition is satisfied.
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Consider the dynamics with πk(θk) = w(Dk(θk)) where Dk(θk) =
∫∞
θk
g1
kf

1
k (x)− g0

kf
0
k (x)dx. The

following holds for Ga and Gb:

Da(θa) =

∫ ∞

δa

g1
af

1
a (x)− g0

af
0
a (x)dx+

∫ δa

θa

g1
af

1
a (x)− g0

af
0
a (x)dx

Db(θb) =

∫ ∞

δb

g1
bf

1
b (x)− g0

bf
0
b (x)dx−

∫ θb

δb

g1
bf

1
b (x)− g0

bf
0
b (x)dx

Since g1
af

1
a (x) ≤ g0

af
0
a (x) for x ≤ δa and g1

bf
1
b (x) ≥ g0

bf
0
b (x) for x ≥ δb, the larger θa, θb

will thus result in the larger πa(θa) and smaller πb(θb) as w(·) is strictly increasing. Therefore,
πa(θ̃a) > πa(θ̂a) and πb(θ̃b) < πb(θ̂b). Hence, Monotonicity condition is satisfied.

Combine with Theorem 1, αa(t)
αa(t) changes monotonically. By Theorem 3, the corresponding one-shot

fair decision (θa(t), θb(t)) also converges monotonically.

I Proof of Theorem 5

I.1 Lemmas

To begin, we first introduce some lemmas for two cases. Lemma 5 and 7 show that under the same
group representation αa, αb, the impact of reshaping distributions on the resulting one-shot decisions.
Lemma 6 and 8 demonstrate a sufficient condition on feature distributions and one-shot decisions of
two problems such that their expected losses satisfy certain conditions. The proof of these lemmas
are presented in Appendix J.

Case (i): fk,t(x) = g1
k,tf

1
k (x) + g0

k,tf
0
k (x):

Fraction of subgroup Gjk over Gk changes according to change of their own perceived loss Ljk, i.e.,
for i ∈ {0, 1} such that Lik,t(θk(t)) < Lik,t−1(θk(t− 1)), gik,t > gik,t−1 and g−ik,t < g−ik,t−1.

Lemma 5. Let (θ̂a, θ̂b), (θ̃a, θ̃b) be two pairs of decisions under any of EqOpt, StatPar, Simple
fairness criteria such that Ψ̂C(θ̂a, θ̂b) = Ψ̃C(θ̃a, θ̃b), where functions Ψ̂C , Ψ̃C have the form given
in Table 1 and are defined under feature distributions f̂k(x) = ĝ1

kf
1
k (x) + ĝ0

kf
0
k (x), f̃k(x) =

g̃1
kf

1
k (x) + g̃0

kf
0
k (x) respectively ∀k ∈ {a, b}. If ĝ1

k < g̃1
k and ĝ0

k > g̃0
k, then θ̂k > θ̃k will hold

∀k ∈ {a, b}.
Lemma 6. Consider two one-shot problems defined in (1) with objectives ÕOO(θa, θb; α̃a, α̃b) and
ÔOO(θa, θb; α̂a, α̂b), where ÕOO is defined over distributions f̃k(x) = g̃0

kf
0
k (x) + g̃1

kf
1
k (x) and ÔOO is

defined over distributions f̂k(x) = ĝ0
kf

0
k (x) + ĝ1

kf
1
k (x), k ∈ {a, b}. Let (θ̃a, θ̃b), (θ̂a, θ̂b) be the

corresponding one-shot decisions under any of Simple, EqOpt or StatPar fairness criteria. For
any ĝ0

k + ĝ1
k = 1 and g̃0

k + g̃1
k = 1 such that ĝ0

k > g̃0
k, ĝ1

k < g̃1
k, ∀k ∈ {a, b}, if θ̂a > θ̃a and θ̂b > θ̃b,

then L̂a(θ̂a) < L̃a(θ̃a) and L̂b(θ̂b) > L̃b(θ̃b) can be satisfied under the following condition:

|∆gk(L̃0
k(θ̃k)− L̃1

k(θ̃k))| < |
∫ θ̂k

θ̃k

ĝ0
kf

0
k (x)− ĝ1

kf
1
k (x)dx|, ∀k ∈ {a, b} (7)

where ∆gk = |ĝ0
k − g̃0

k| = |ĝ1
k − g̃1

k|.

Note that Condition (7) can be satisfied when: (1) ∆gk is sufficiently small; and (2) the difference in
the decision θ̂k − θ̃k is sufficiently large, which can be achieved if α̂k and α̃k are quite different.

Case (ii): fk,t(x) = g1
kf

1
k,t(x) + g0

kf
0
k,t(x)

Suppose L1
k,t(θk(t)) > L1

k,t−1(θk(t − 1)), i.e., G1
k is less and less favored by the decision over

time, then users from G1
k will make additional effort to improve their features so that f1

k,t(x) will
skew toward the direction of higher feature value, i.e., f1

k,t+1(x) < f1
k,t(x) for x with smaller value

(x ∈ Tk) while G0
k is assumed to be unaffected, i.e., f0

k,t+1(x) = f0
k,t(x). Similar statements hold
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when θk(t) < θk(t− 1) and G0
k is less and less favored. Moreover, assume that Assumption 1 holds

for any reshaped distributions and the support of f1
k,t(x) and f0

k,t(x) do not change over time.

∀t, let f0
k,t(x) and f1

k,t(x) overlap over Tk := [k1, k
0
].

Lemma 7. Let (θ̂a, θ̂b), (θ̃a, θ̃b) be two pairs of decisions under any of EqOpt, StatPar, Simple
fairness criteria such that Ψ̂C(θ̂a, θ̂b) = Ψ̃C(θ̃a, θ̃b), where functions Ψ̂C , Ψ̃C have the form given
in Table 1 and are defined under feature distributions f̂k(x) = g1

kf̂
1
k (x) + g0

kf̂
0
k (x), f̃k(x) =

g1
kf̃

1
k (x) + g0

kf̃
0
k (x) respectively ∀k ∈ {a, b}. If f̂0

k (x) = f̃0
k (x) and f̂1

k (x) < f̃1
k (x), ∀x ∈ Tk, then

θ̂k > θ̃k will hold ∀k ∈ {a, b}.
Lemma 8. Consider two one-shot problems defined in (1) with objectives ÕOO(θa, θb; α̃a, α̃b) and
ÔOO(θa, θb; α̂a, α̂b), where ÕOO is defined over distributions f̃k(x) = g0

kf̃
0
k (x) + g1

kf̃
1
k (x) and ÔOO is

defined over distributions f̂k(x) = g0
kf̂

0
k (x) + g1

kf̂
1
k (x), k ∈ {a, b}. Let (θ̃a, θ̃b), (θ̂a, θ̂b) be the

corresponding one-shot decisions under any of Simple, EqOpt or StatPar fairness criteria. For any
distributions f̃1

k , f̂1
k increasing over Tk and f̃0

k , f̂0
k decreasing over Tk such that f̂1

k (x) < f̃1
k (x) over

Tk and f̂0
k (x) = f̃0

k (x) = f0
k (x),∀x, ∀k ∈ {a, b}. if θ̂a > θ̃a and θ̂b > θ̃b, then L̂a(θ̂a) < L̃a(θ̃a)

holds. Moreover, L̂b(θ̂b) > L̃b(θ̃b) can be satisfied under the following condition:

∆f1
b g

1
b (max{θ̃b, δ̂b} − b1) <

∫ θ̂b

max{θ̃b,δ̂b}
g1
b f̂

1
b (x)− g0

b f̂
0
b (x)dx (8)

where ∆f1
b = maxx∈[b1,max{θ̃b,δ̂b}] |f̂

1
b (x)−f̃1

b (x)| and δ̂b is defined such that g0
b f̂

0
b (δ̂b) = g1

b f̂
1
b (δ̂b).

Note that Condition (8) can be satisfied when: (1) ∆f1
b is sufficiently small, which makes δ̂b close

to δ̃b and θ̃b = max{θ̃b, δ̂b} is more likely to hold; and (2) the difference in the decision θ̂b − θ̃b is
sufficiently large, which can be achieved if α̂k and α̃k are quite different.

I.2 Sufficient conditions

Below we formally state the sufficient condition under which Theorem 5 can hold.
Condition 1. [Sufficient condition for exacerbation] Condition 1 is satisfied if the following holds:

• under Case (i): Condition (7) is satisfied for objectivesOOOt andOOOt+1, ∀t ≥ 2, i.e.,

|∆gk,t+1(L0
k,t(θ

r
k(t))−L1

k,t(θ
r
k(t)))| < |

∫ θrk(t+1)

θrk(t)

g0
k,t+1f

0
k (x)−g1

k,t+1f
1
k (x)dx|, k ∈ {a, b}

with ∆gk,t+1 = |gjk,t+1 − g
j
k,t|, j ∈ {0, 1}.

• under Case (ii): Condition (8) is satisfied for objectivesOOOt andOOOt+1, ∀t ≥ 2, i.e.,

∆f1
b,t+1g

1
b (max{θrb (t), δb,t+1} − b1) <

∫ θrb (t+1)

max{θrb (t),δb,t+1}
g1
bf

1
b,t+1(x)− g0

bf
0
b,t+1(x)dx

with ∆f1
b,t+1 = maxx∈[b1,max{θrb (t),δb,t+1}] |f1

b,t+1(x)− f1
b,t(x)|.

Condition 2. [Sufficient condition for acceleration of exacerbation]

LetOOOft := OOOft (θa, θb;α
f
a(t), αfb (t)) be the objective of the one-shot problem at time t for the case

when distributions are fixed over time. Condition 2 is satisfied if the following holds:

• under Case (i): Condition (7) is satisfied for objectivesOOOt andOOOft , ∀t ≥ 2, i.e.,

|∆gk,t(L0
k,t(θ

f
k (t))− L1

k,t(θ
f
k (t)))| < |

∫ θrk(t)

θfk(t)

g0
k,tf

0
k (x)− g1

k,tf
1
k (x)dx|, k ∈ {a, b}

with ∆gk,t = gjk,t − g
j
k,1, j ∈ {0, 1}.
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• under Case (ii): Condition (8) is satisfied for objectivesOOOt andOOOft , ∀t ≥ 2, i.e.,

∆f1
b,tg

1
b (max{θfb (t), δb,t} − b1) <

∫ θrb (t)

max{θfb (t),δb,t}
g1
bf

1
b,t(x)− g0

bf
0
b,t(x)dx

with ∆f1
b,t = maxx∈[b1,max{θfb (t),δb,t}] |f

1
b,t(x)− f1

b,1(x)|.

Note that Condition 1 is likely to be satisfied when changing the decision from θk(t) to θk(t+1) results
in: (i) a minor change of fk,t+1(x) from fk,t(x); or/and (ii) a significant change of representation
disparity αa(t+1)

αb(t+1) from αa(t)
αb(t)

so that |θrk(t+ 1)− θrk(t)| is sufficiently large.

Condition 2 is likely to be satisfied if for any time step, (i) the change of fk,t(x) is minor as compared
to the fixed distribution, i.e., fk,1(x) at time t = 1; or/and (ii) the resulting decisions at same time
under two schemes are quite different, i.e., |θfk (t)− θrk(t)| is sufficiently large.

In other words, both requires that fk,t(x) is relatively insensitive to the change of one-shot decisions,
and this applies to scenarios where the impact of reshaping distributions is considered as a slow
process, e.g., change of credit score takes time and is a slow process.

I.3 Proof of main theorem

If fk,t(x) = fk(x) is fixed ∀t, then the relationship between αfa(t)

αfb (t)
and one-shot solutions

(θfa(t), θfb (t)) follows αfa(t)

αfb (t)
= ΨC,1(θfa(t), θfb (t)),∀t. If fk,t(x) varies over time, then αra(t)

αrb(t) =

ΨC,t(θ
r
a(t), θrb (t)),∀t. We consider that distributions start to change after individuals feel the

change of perceived decisions, i.e., fk,t(x) begins to change at time t = 3. In the following
∀k ∈ {a, b}, θfk (t) = θrk(t) = θk(t), πfk,t(θ

f
k (t)) = πrk,t(θ

r
k(t)) = πk,t(θk(t)) for t = 1, 2 and

αfa(t)

αfb (t)
=

αra(t)
αrb(t) = αa(t)

αb(t)
for t = 1, 2, 3.

Start from t = 1, if (θa(1), θb(1)) satisfies πa,1(θa(1)) > πb,1(θb(1)), then αa(2)
αb(2) > αa(1)

αb(1) and
θk(2) > θk(1) holds ∀k ∈ {a, b}, implying πa,2(θa(2)) > πa,1(θa(1)) > πb,1(θb(1)) > πb,2(θb(2))

(OOO1 andOOO2 satisfy monotonicity condition) and αa(3)
αb(3) >

αa(2)
αb(2) . Moreover, the change of decisions

begins to reshape the feature distributions in the next time step.

Consider two ways of reshaping distributions: Case (i) and Case (ii). For both cases, show that as long
as the change of distribution from fk,t−1(x) to fk,t(x) is relatively small w.r.t. the change of decision
from θk(t−2) to θk(t−1) (formally stated in Condition 1 and Condition 2), the following can hold for
any time step t ≥ 3: (i)OOOt andOOOt+1 satisfy monotonicity condition: πra,t+1(θra(t+1)) > πra,t(θ

r
a(t)),

πrb,t(θ
r
b (t)) > πrb,t+1(θrb (t + 1)) hold when αra(t+1)

αrb(t+1) >
αra(t)
αrb(t) ; (ii) group representation disparity

changes faster than case when distributions are fixed, i.e., α
r
a(t)
αrb(t) ≥

αfa(t)

αfb (t)
,∀t.

Since θk(2) > θk(1), within the same group Gk, subgroup G1
k (resp. G0

k) experiences the higher
(resp. lower) loss at time t = 2 than t = 1. Consider two types of change ∀k ∈ {a, b}:
• Case (i): g1

k,3 < g1
k,2 = g1

k,1 and g0
k,3 > g0

k,2 = g0
k,1.

• Case (ii): f0
k,3(x) = f0

k,2(x) = f0
k,1(x),∀x and f1

k,3(x) < f1
k,2(x) = f1

k,1(x),∀x ∈ Tk.

Prove the following by induction under Condition 1 and 2 (on the sensitivity of fk,t(x) w.r.t. the

change of decisions): For t > 3, α
r
a(t+1)
αrb(t+1) >

αfa(t+1)

αfb (t+1)
and αra(t+1)

αrb(t+1) >
αra(t)
αrb(t) hold, and ∀k ∈ {a, b}:

• Case (i): g1
k,t+1 < g1

k,t < g1
k,1 and g0

k,t+1 > g0
k,t > g0

k,1 are satisfied.

• Case (ii): f0
k,t+1(x) = f0

k,t(x) = f0
k,1(x),∀x and f1

k,t+1(x) < f1
k,t(x) < f1

k,1(x),∀x ∈ Tk.

Base case:

ΨC,t are defined under feature distributions fk,t(x) = g1
k,tf

1
k,t(x) + g0

k,tf
0
k,t(x), ∀k ∈ {a, b}. Define

a pair (θ̃a, θ̃b) such that the following holds:
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αa(3)
αb(3) = ΨC,1(θfa(3), θfb (3)) = ΨC,3(θra(3), θrb (3)) = ΨC,2(θ̃a, θ̃b) > ΨC,2(θra(2), θrb (2)) = αa(2)

αb(2) .

Then, we have ∀k ∈ {a, b}:
• Case (i): As g1

k,3 < g1
k,2 = g1

k,1 and g0
k,3 > g0

k,2 = g0
k,1, by Lemma 5, θrk(3) > θfk (3) = θ̃k holds.

• Case (ii): As f0
k,3(x) = f0

k,2(x) = f0
k,1(x),∀x and f1

k,3(x) < f1
k,2(x) < f1

k,1(x),∀x ∈ Tk, by
Lemma 7, θrk(3) > θfk (3) = θ̃k holds.

By Theorem 3, θ̃k > θrk(2) holds. It implies that θrk(3) > θfk (3) and θrk(3) > θrk(2).

Consider dynamics with πk,t(θk(t)) = ν(Lk,t(θk(t))). The following statements hold:

(1) Under Condition 1, La,3(θra(3)) < La,2(θra(2)) and Lb,3(θrb (3)) > Lb,2(θrb (2)) hold, implying
πra,3(θra(3)) > πra,2(θra(2)) > πrb,2(θrb (2)) > πrb,3(θrb (3)) and αra(4)

αrb(4) >
αra(3)
αrb(3) .

(2) Under Condition 2, La,3(θra(3)) < La,3(θfa(3)) and Lb,3(θrb (3)) > Lb,3(θfb (3)) hold, implying

πra,3(θra(3)) > πfa,3(θfa(3)) > πfb,3(θfb (3)) > πrb,3(θrb (3)) and αra(4)
αrb(4) >

αfa(4)

αfb (4)
.

(3) G1
k (resp. G0

k) experiences the higher (resp. lower) loss at t = 3 than t = 2, i.e., L1
k,3(θrk(3)) >

L1
k,2(θrk(2)) and L0

k,3(θrk(3)) < L0
k,2(θrk(2)),

• Case (i): g1
k,4 < g1

k,3 < g1
k,1 and g0

k,4 > g0
k,3 > g0

k,1 hold.

• Case (ii): f0
k,4(x) = f0

k,3(x) = f0
k,1(x),∀x and f1

k,4(x) < f1
k,3(x) < f1

k,1(x),∀x ∈ Tk hold.

Induction step:

Suppose at time t > 3, α
r
a(t+1)
αrb(t+1) >

αfa(t+1)

αfb (t+1)
and αra(t+1)

αrb(t+1) >
αra(t)
αrb(t) hold, and ∀k ∈ {a, b}:

• Case (i): g1
k,t+1 < g1

k,t < g1
k,1 and g0

k,t+1 > g0
k,t > g0

k,1 are satisfied.

• Case (ii): f0
k,t+1(x) = f0

k,t(x) = f0
k,1(x),∀x and f1

k,t+1(x) < f1
k,t(x) < f1

k,1(x),∀x ∈ Tk.

Then consider time step t+ 1.

Define pairs (θ̃a, θ̃b) and (θ̂a, θ̂b) such that the following holds:

αra(t+ 1)

αrb(t+ 1)
= ΨC,t+1(θra(t+ 1), θrb (t+ 1)) >





αfa(t+1)

αfb (t+1)
= ΨC,1(θfa(t+ 1), θfb (t+ 1)) = ΨC,t+1(θ̃a, θ̃b)

αra(t)
αrb(t) = ΨC,t(θ

r
a(t), θrb (t)) = ΨC,t+1(θ̂a, θ̂b)

According to the hypothesis, Under Case (i), θ̃k > θfk (t + 1) and θ̂k > θrk(t) hold by Lemma 5.
Under Case (ii), θ̃k > θfk (t+ 1) and θ̂k > θrk(t) hold by Lemma 7. By Theorem 3, θrk(t+ 1) > θ̃k
and θrk(t+ 1) > θ̂k hold. It implies that θrk(t+ 1) > θfk (t+ 1) and θrk(t+ 1) > θrk(t).

(1) Under Condition 1, La,t+1(θra(t+ 1)) < La,t(θ
r
a(t)) and Lb,t+1(θrb (t+ 1)) > Lb,t(θ

r
b (t))hold,

implying πra,t+1(θra(t+ 1)) > πra,t(θ
r
a(t)) > πrb,t(θ

r
b (t)) > πrb,t+1(θrb (t+ 1)) and αra(t+1)

αrb(t+1) >
αra(t)
αrb(t) :

OOOt andOOOt+1 satisfy monotonicity condition and representation disparity get exacerbated.

(2) Under Condition 2, La,t+1(θra(t+1)) < La,t+1(θfa(t+1)) andLb,t+1(θrb (t+1)) > Lb,t+1(θfb (t+

1)) hold, implying πra,t+1(θra(t+ 1)) > πfa,t+1(θfa(t+ 1)) > πfb,t+1(θfb (t+ 1)) > πrb,t+1(θrb (t+ 1))

and thus αra(t+1)
αrb(t+1) >

αfa(t+1)

αfb (t+1)
: the discrepancy between retention rates of two demographic groups

is larger at each time compared to the case when distributions are fixed, and if the disparity get
exacerbated, this exacerbation is accelerated under the reshaping.

(3) G1
k (resp. G0

k) experiences the higher (resp. lower) loss at t+ 1 than t, i.e., L1
k,t+1(θrk(t+ 1)) >

L1
k,t(θ

r
k(t)) and L0

k,t+1(θrk(t+ 1)) < L0
k,t(θ

r
k(t)). Therefore,

• Case (i): g1
k,t+2 < g1

k,t+1 < g1
k,1 and g0

k,t+2 > g0
k,t+1 > g0

k,1 hold.
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• Case (ii): f0
k,t+2(x) = f0

k,t+1(x) = f0
k,1(x),∀x and f1

k,t+2(x) < f1
k,t+1(x) < f1

k,1(x),∀x ∈ Tk
hold.

Proof is completed.

The case if πa,1(θa(1)) < πb,1(θb(1)) can be proved similarly and is omitted.

J Proof of Lemmas for Theorem 5

J.1 Proof of Lemma 5

f0
k (x) and f1

k (x) overlap over Tk := [k1, k
0
].

1. C := StatPar

To satisfy Ψ̂StatPar(θ̂a, θ̂b) = Ψ̃StatPar(θ̃a, θ̃b), ĝ
1
kf

1
k(θ̂k)

ĝ0kf
0
k(θ̂k)

=
g̃1kf

1
k(θ̃k)

g̃0kf
0
k(θ̃k)

should hold. Under Assumption

1, both ĝ1kf
1
k(·)

ĝ0kf
0
k(·) and g̃1kf

1
k(·)

g̃0kf
0
k(·) are strictly increasing over Tk. Since ∀k ∈ {a, b}, there is ĝ1kf

1
k(θk)

ĝ0kf
0
k(θk)

<

g̃1kf
1
k(θk)

g̃0kf
0
k(θk)

, ∀θk ∈ Tk. For all three possibilities in Table 1, θ̂k > θ̃k holds ∀k ∈ {a, b}.

2. C := EqOpt

Since L̃0
a(θa) = L̃0

b(θb) and L̂0
a(θa) = L̂0

b(θb) always hold for any (θa, θb) satisfying EqOpt criterion,

when change of ĝ0
k (or g̃0

k) is determined by θk only via L̂0
k(θk) (or L̃0

k(θk)), both ĝ0b
ĝ0a

= 1 and g̃0b
g̃0a

= 1

are satisfied. To satisfy Ψ̂EqOpt(θ̂a, θ̂b) = Ψ̃EqOpt(θ̃a, θ̃b), ĝ
1
kf

1
k(θ̂k)

ĝ0kf
0
k(θ̂k)

=
g̃1kf

1
k(θ̃k)

g̃0kf
0
k(θ̃k)

should hold, which is

same as the condition that should be satisfied in case when C := StatPar. Rest of the proof is thus
same as StatPar case and is omitted.

3. C := Simple

Simple fairness criterion requires that θ̂a = θ̂b = θ̂ and θ̃a = θ̃b = θ̃. In order to satisfy

Ψ̂Simple(θ̂a, θ̂b) = Ψ̃Simple(θ̃a, θ̃b), ĝ
1
bf

1
b (θ̂)−ĝ0bf

0
b (θ̂)

ĝ0af
0
a(θ̂)−ĝ1af1

a(θ̂)
=

g̃1bf
1
b (θ̃)−g̃0bf

0
b (θ̃)

g̃0af
0
a(θ̃)−g̃1af1

a(θ̃)
should hold. Under Assump-

tion 1, both ĝ1bf
1
b (·)−ĝ0bf

0
b (·)

ĝ0af
0
a(·)−ĝ1af1

a(·) and g̃1bf
1
b (·)−g̃0bf

0
b (·)

g̃0af
0
a(·)−g̃1af1

a(·) are strictly increasing over Tk. Since ∀k ∈ {a, b},
there is ĝ1bf

1
b (θ)−ĝ0bf

0
b (θ)

ĝ0af
0
a(θ)−ĝ1af1

a(θ) <
g̃1bf

1
b (θ)−g̃0bf

0
b (θ)

g̃0af
0
a(θ)−g̃1af1

a(θ) , ∀θ ∈ Ta ∩ Tb, implying that θ̂ > θ̃.

J.2 Proof of Lemma 6

Define ∆Ljk = |L̂jk(θ̂k) − L̃jk(θ̃k)|, j ∈ {0, 1}. Rewrite ĝ0
k = g̃0

k + ∆gk and ĝ1
k = g̃1

k −∆gk. For
k ∈ {a, b}, θ̂k > θ̃k holds, which implies that L̂1

k(θ̂k) = L̃1
k(θ̃k)+∆L1

k and L̂0
k(θ̂k) = L̃0

k(θ̃k)−∆L0
k.

Therefore,

L̂k(θ̂k)− L̃k(θ̃k) = ∆gk(L̃0
k(θ̃k)− L̃1

k(θ̃k))− (ĝ0
k∆L0

k − ĝ1
k∆L1

k), k ∈ {a, b}
since

∆L1
k =

∫ θ̂k

θ̃k

f1
k (x)dx; ∆L0

k =

∫ θ̂k

θ̃k

f0
k (x)dx

Define δ̂k such that ĝ0
kf

0
k (δ̂k) = ĝ1

kf
1
k (δ̂k), then ĝ0

af
0
a (x) > ĝ1

af
1
a (x) when x < δ̂a and ĝ0

bf
0
b (x) <

ĝ1
bf

1
b (x) when x > δ̂b. By Lemma 2, θ̂a < δ̂a and θ̂b > δ̂b hold, implying

ĝ0
k∆L0

k − ĝ1
k∆L1

k =

∫ θ̂k

θ̃k

ĝ0
kf

0
k (x)− ĝ1

kf
1
k (x)dx

{
> 0, k = a

< 0, k = b

If |∆gk(L̃0
k(θ̃k)− L̃1

k(θ̃k))| < |
∫ θ̂k
θ̃k
ĝ0
kf

0
k (x)− ĝ1

kf
1
k (x)dx| holds, then the sign of L̂k(θ̂k)− L̃k(θ̃k)

is determined by the sign of ĝ1
k∆L1

k − ĝ0
k∆L0

k. We have L̂a(θ̂a) < L̃a(θ̃a) and L̂b(θ̂b) > L̃b(θ̃b).
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J.3 Proof of Lemma 7

1. C := StatPar or C := EqOpt

To satisfy Ψ̂StatPar(θ̂a, θ̂b) = Ψ̃StatPar(θ̃a, θ̃b) or Ψ̂EqOpt(θ̂a, θ̂b) = Ψ̃EqOpt(θ̃a, θ̃b), g1kf̃
1
k(θ̃k)

g0kf̃
0
k(θ̃k)

=

g1kf̂
1
k(θ̂k)

g0kf̂
0
k(θ̂k)

<
g1kf̃

1
k(θ̂k)

g0kf̃
0
k(θ̂k)

should hold. Under Assumption 1, g1kf̃
1
k(·)

g0kf̃
0
k(·)

is strictly increasing over Tk.

θ̂k > θ̃k has to be satisfied.

2. C := Simple

Simple fairness criterion requires that θ̂a = θ̂b = θ̂ and θ̃a = θ̃b = θ̃. In order to satisfy

Ψ̂Simple(θ̂a, θ̂b) = Ψ̃Simple(θ̃a, θ̃b), g1b f̃
1
b (θ̃)−g0b f̃

0
b (θ̃)

g0af̃
0
a(θ̃)−g1af̃1

a(θ̃)
=

g1b f̂
1
b (θ̂)−g0b f̂

0
b (θ̂)

g0af̂
0
a(θ̂)−g1af̂1

a(θ̂)
<

g1b f̃
1
b (θ̂)−g0b f̃

0
b (θ̂)

g0af̃
0
a(θ̂)−g1af̃1

a(θ̂)
should

hold. Under Assumption 1, g
1
b f̃

1
b (·)−g0b f̃

0
b (·)

g0af̃
0
a(·)−g1af̃1

a(·)
is strictly increasing over Tk. For θ̂, θ̃ ∈ Ta ∩ Tb, θ̂ > θ̃

has to be satisfied.

J.4 Proof of Lemma 8

Define δ̂k such that g0
kf̂

0
k (δ̂k) = g1

kf̂
1
k (δ̂k). Then, g0

af̂
0
a (x) > g1

af̂
1
a (x) when x < δ̂a and g0

b f̂
0
b (x) <

g1
b f̂

1
b (x) when x > δ̂b.

Since θ̂k > θ̃k, we have

L̂0
k(θ̂k)− L̃0

k(θ̃k) = −
∫ θ̂k

θ̃k

f̃0
k (x)dx = −

∫ θ̂k

θ̃k

f̂0
k (x)dx

L̂1
k(θ̂k)− L̃1

k(θ̃k) =

∫ θ̂k

θ̃k

f̂1
k (x)dx−

∫ θ̃k

k1
(f̃1
k (x)− f̂1

k (x))dx

Therefore,

L̂k(θ̂k)− L̃k(θ̃k) =

∫ θ̂k

θ̃k

g1
kf̂

1
k (x)− g0

kf̂
0
k (x)dx− g1

k

∫ θ̃k

k1
(f̃1
k (x)− f̂1

k (x))dx

since θ̃a < θ̂a < δ̂a,
∫ θ̂a
θ̃a
g1
af̂

1
a (x) − g0

af̂
0
a (x)dx < 0 holds. Since f̃1

a (x) > f̂1
a (x) for x ∈ Ta, we

have g1
a

∫ θ̃a
a1

(f̃1
a (x)− f̂1

a (x))dx > 0. Therefore, L̂a(θ̂a) < L̃a(θ̃a).

When k = b, there are two possibilities: (i) θ̃b < δ̂b < θ̂b; (ii) δ̂b < θ̃b < θ̂b.

For case (i),

L̂b(θ̂b)− L̃b(θ̃b) =

∫ θ̂b

δ̂b

g1
b f̂

1
b (x)− g0

b f̂
0
b (x)dx

︸ ︷︷ ︸
term 1

+

∫ δ̂b

θ̃b

g1
b f̂

1
b (x)− g0

b f̂
0
b (x)dx

︸ ︷︷ ︸
term 2

+ g1
b

∫ θ̃b

b1
(f̂1
b (x)− f̃1

b (x))dx

︸ ︷︷ ︸
term 3

Since δ̃b < θ̃b < δ̂b and f̂0
b (x) = f̃0

b (x), for x ∈ [θ̃b, δ̂b], g1
b f̂

1
b (x)−g1

b f̃
1
b (x) < g1

b f̂
1
b (x)−g0

b f̂
0
b (x) <

0, we have 0 > term 2 + term 3 > g1
b

∫ δ̂b
b1

(f̂1
b (x)− f̃1

b (x))dx.

Define ∆1 = maxx∈[b1,δ̂b]
|f̂1
b (x) − f̃1

b (x)|. Since term 1 > 0, L̂b(θ̂b) > L̃b(θ̃b) holds only if the
following condition is satisfied:

∆1g
1
b (δ̂b − b1) <

∫ θ̂b

δ̂b

g1
b f̂

1
b (x)− g0

b f̂
0
b (x)dx
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For case (ii),

L̂b(θ̂b)− L̃b(θ̃b) =

∫ θ̂b

θ̃b

g1
b f̂

1
b (x)− g0

b f̂
0
b (x)dx

︸ ︷︷ ︸
term 1

+ g1
b

∫ θ̃b

b1
(f̂1
b (x)− f̃1

b (x))dx

︸ ︷︷ ︸
term 2

Define ∆2 = maxx∈[b1,θ̃b]
|f̂1
b (x) − f̃1

b (x)|. Similar to case (i), L̂b(θ̂b) > L̃b(θ̃b) holds only if the
following condition is satisfied:

∆2g
1
b (θ̃b − b1) <

∫ θ̂b

θ̃b

g1
b f̂

1
b (x)− g0

b f̂
0
b (x)dx

Combine two cases, let ∆f1
b = maxx∈[b1,max{θ̃b,δ̂b}] |f̂

1
b (x)− f̃1

b (x)|, L̂b(θ̂b) > L̃b(θ̃b) holds only
if the following condition is satisfied:

∆f1
b g

1
b (max{θ̃b, δ̂b} − b1) <

∫ θ̂b

max{θ̃b,δ̂b}
g1
b f̂

1
b (x)− g0

b f̂
0
b (x)dx

K More on examples of finding proper fairness constraints from dynamics

Example 1. [Linear first order model] is given by Nk(t + 1) = Nk(t)π2
k(θk(t)) + βkπ

1
k(θk(t)).

This is a general form of dynamics (2) where the arrivals can also depend on the decision. When
π1
k(θk(t)) = 1, then dynamics model will be reduced to (2). Ñk =

βkπ
1
k(θk)

1−π2
k(θk)

is the stable fixed point if

π2
k(θk) < 1 holds. Since | Ña

Ñb
− βa

βb
| = βa

βb
|π

1
a(θa)

π1
b (θb)

1−π2
b (θb)

1−π2
a(θa) − 1|, solution pair (θ∗a, θ

∗
b ) should satisfy

π1
a(θ∗a)

1−π2
a(θ∗a) =

π1
b (θ∗b )

1−π2
b (θ∗b )

. The constraint set that can sustain the group representation is given by:

C = {(θa, θb)|(θa, θb) ∈ Θ×Θ,
π1
a(θa)

1− π2
a(θa)

=
π1
b (θb)

1− π2
b (θb)

, π2
a(θa) < 1, π2

b (θb) < 1}.

Consider the case where departure is driven by positive rate π2
k(θk) = ν(

∫∞
θk
fk(x)dx) and arrival is

driven by error rate π1
k(θk) = ν(g0

k

∫∞
θk
f0
k (x)dx+ g1

k

∫ θk
−∞ f1

k (x)dx) = ν(Lk(θk)) where ν(·) is a
strictly decreasing function. This can be applied in lending scenario, where an applicant will stay as
long as he/she gets the loan (positive rate) regardless of his/her qualification. Since an unqualified
applicant who is issued the loan cannot repay, his/her credit score will be decreased which lowers the
chance to get a loan in the future [13]. Therefore, users may decide whether to apply for a loan based
on the error rate.

In Fig. 5, ∆-fair set is illustrated for the case when f jk(x), k ∈ {a, b}, j ∈ {0, 1} is truncated
normal distributed with parameters [σ0

a, σ
1
a, σ

0
b , σ

1
b ] = [5, 6, 6, 5], [k0, k1, k

0
, k

1
] = [5, 11, 20, 35],

[µ0
k, µ

1
k] = [10, 25] for k ∈ {a, b} and ν(x) = 1 − x. The left heat map illustrates the ∆-fair set

for the dynamics model mentioned above. On the other hand, the right heat map illustrates the
dynamics model introduced in Section 3.2 where the departure is driven by model accuracy, i.e.,
π2
k(θk) = ν(Lk(θk)) and π1

k(θk) = 1. Here, x-axis and y-axis represent θb and θa respectively. Each
pair (θa, θb) has a corresponding value of | Ña

Ñb
− βa

βb
| measuring how well it can sustain the group

representation. The colored area illustrates all the pairs such that | Ña
Ñb
− βa

βb
| ≤ βa

βb
. All (θa, θb) pairs

that have the same value of | Ña
Ñb
− βa
βb
| = βa

βb
ε form a curve of the same color, where the corresponding

value of ε ∈ [0, 1] is shown in the color bar. ∆-fair set is the union of all curves with ε ≤ ∆ βb
βa

.

Example 2. [Quadratic first order model] is given by Nk(t+ 1) = (Nk(t))2π1
k(θk(t)) + βk. Ñk =

1
2π1
k(θk)

−
√

1
4(π1

k(θk))2
− βk

π1
k(θk)

is the stable fixed point if π1
k(θa) < 1

4βk
holds. Since | Ña

Ñb
− βa

βb
| =

βa
βb
| βbπ

1
b (θb)

βaπ1
a(θa)

1−
√

1−4βaπ1
a(θa)

1−
√

1−4βbπ1
b (θb)

− 1|, then βaπ1
a(θ∗a) = βbπ

1
b (θ∗b ) should be satisfied. The constraint

set that can sustain the group representation is given by

C = {(θa, θb)|(θa, θb) ∈ Θ×Θ, βaπ
1
a(θa) = βbπ

1
b (θb), π

1
a(θa) <

1

4βa
, π1
b (θb) <

1

4βb
}.
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L Supplementary Material for the Experiments

L.1 Parameter settings

f jk(x) follows the truncated normal distribution, the supports of f jk(x), k ∈ {a, b}, j ∈ {0, 1} are
[a0, a1, a0, a1] = [−8, 5, 19, 35], [b0, b1, b

0
, b

1
] = [−6, 25, 9, 43], with the means [µ0

a, µ
1
a, µ

0
b , µ

1
b ] =

[4, 20, 8, 27] and standard deviations [σ0
a, σ

1
a, σ

0
b , σ

1
b ] = [5, 6, 3, 6]. The label proportions are g0

a =
0.4, g0

b = 0.6. The dynamics (2) uses ν(x) = 1− x.

L.2 Illustration of convergence of sample paths
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(b) Average total loss

Fig. 9: Sample paths for truncated normal example under different fairness criteria when βa + βb = 20000.
Group proportion αa(t) and average total loss are shown in Fig.9(a)9(b) respectively: solid lines are for the case
βa = βb, dashed lines for βa = 3βb, and dotted dashed lines for βa = βb/3.

Fig. 9 shows sample paths of the group proportion and average total loss using one-shot fair
decisions and different combinations of βa, βb under dynamics with πk,t(·) = ν(Lk,t(·)). In all cases
convergence is reached (we did not include the decisions θk(t) but convergence holds there as well).
In particular, under EqLos fairness, the group representation is sustained throughout the horizon. By
contrast, under other fairness constraints, even a “major” group (one with a larger arrival βk) can
be significantly marginalized over time (blue/green dashed line in Fig. 9(a)). This occurs when the
loss of the minor group happens to be smaller than that of the major group, which is determined by
feature distributions of the two groups (see Fig. 10). Whenever this is the case, the one-shot fair
decision will seek to increase the minor group’s proportion in order to drive down the average loss.
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(a) Feature distributions illustration
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Fig. 10: Change f0
b (x) by varying σ0

b ∈ {1, 2, 3, 4, 5, 6, 7}. As σ0
b increases, the overlap area with f1

b (x) also
increases as shown in Fig. 10(a). Fig. 10(b) shows the result under StatPar fairness. Given θa(t), the larger σ0

b

results in the larger Lb(θb(t)) and thus the smaller Gb’s retention rate.

L.3 Dynamics driven by other factors

To sustain the group representation, the key point is that the fairness definition should match the
factors that drive user departure and arrival. If adopt different dynamic models, different fairness

25



criteria should be adopted. Two examples with different dynamics and the performance of four
fairness criteria are demonstrated in Fig. 11.

(a) Users from Gk are driven by
false negative rate
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(b) Users from Gjk are driven
by their own perceived loss

Fig. 11: Sample paths under different dynamic models: Three cases are demonstrated including βa = βb
(solid curves); βa = 3βb (dashed curves); βa = βb/3 (dotted dash curves). Fig. 11(a) illustrates the
model where the user departure is driven by false negative rate: Nk(t + 1) = Nk(t)ν(FNk(θk(t))) + βk,
with FNk(θk(t)) =

∫∞
θk(t)

f0
k (x)dx. Under this model EqOpt is better at maintaining representation. Fig.

11(b) illustrates the model where the users from each sub-group Gjk are driven by their own perceived loss:
N j
k(t+ 1) = N j

k(t)ν(Ljk(θk(t))) + gjkβk, with Ljk(θk) being false positives for j = 0 and false negatives for
j = 1. Under this model none of the four criteria can maintain group representation.

L.4 When distributions are learned from users in the system

If f jk(x) is unknown to the decision maker and the decision is learned from users in the system, then
as users leave the system the decision can be more inaccurate and the exacerbation could potentially
get more severe. In order to illustrate this, we first modify the dynamic model such that the users’
arrivals are also effected by the model accuracy,11 i.e., Nk(t + 1) = (Nk(t) + βk)ν(Lk(θk(t))).
We compare the performance of two cases: (i) the Bayes optimal decisions are applied in every
round; and (ii) decisions in (t+ 1)th round are learned from the remaining users in tth round. The
empirical results are shown in Fig. 12 where each solid curve (resp. dashed curve) is a sample path
of case (i) (resp. case (ii)). Although βa = βb, Gb suffers a smaller loss at the beginning and starts
to dominate the overall objective gradually. It results in the less and less users from group Ga than
Gb in the sample pool and the model trained from minority group Ga suffers an additional loss due
to its insufficient samples. In contrast, as Gb dominates more in the objective and its loss may be
decreased compared with the case (i) (See Fig. 12(c)). As a consequence, the exacerbation in group
representation disparity gets more severe (See Fig. 12(a)).
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(c) Gb’s total population

Fig. 12: Impact of the classifier’s quality: dashed curves represent the results for decisions learned from users
(case (ii)), solid curves represent the results for Bayes optimal decisions (case (i)). It shows the exacerbation of
group disparity get more severe under case (ii) for Simple, EqOpt and StatPar criteria.

11The size of one group can decrease in this case, while the size of two groups is always increasing for the
dynamic (2).
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