
A Theoretical Analysis

This section provides more details regarding the theoretical analysis of the main paper to prove the
existence of unique optimal values as well as convergence of the value iteration scheme.

A.1 Proof of Proposition 2 from the Main Paper

Proof. Following [5, 51, 18], let’s start by defining Pπbehave : S × S → [0, 1] and gq,πbehave : S → R:

Pπbehave(s, s
�) := Eπbehave(a|s) [P(s�|s,a)] ,

gq,πbehave(s) := Eπbehave(a|s)

�
αR(s,a) + βEP(s�|s,a)

�
log

q(a|s�, s)
πbehave(a|s)

��
.

We can then express the Bellman operator Bq,πbehave in vectorized form yielding Bq,πbehaveV = gq,πbehave+

γPπbehaveV . Defining B
(i)
q,πbehave as short-hand notation for applying Bq,πbehave to a value vector V i-times

consecutively (i = 0 leaves V unaffected), we arrive at:

V (q,πbehave) := lim
i→∞

B(i)
q,πbehave

V = lim
i→∞

i−1�

t=0

γtP t
πbehave

gq,πbehave + γiP i
πbehave

V
� �� �

→0

,

where P t
πbehave

denotes the t-times multiplication of Pπbehave with itself (P 0
πbehave

is the identity matrix).
This means that the convergence of Bq,πbehave does not depend on the initial value vector V , therefore:

Bq,πbehaveV
(q,πbehave) = gq,πbehave + γPπbehave lim

i→∞

i−1�

t=0

γtP t
πbehave

gq,πbehave

= γ0P 0
πbehave

gq,πbehave + lim
i→∞

i�

t=1

γtP t
πbehave

gq,πbehave

= lim
i→∞

i−1�

t=0

γtP t
πbehave

gq,πbehave + γiP i
πbehave

gq,πbehave� �� �
→0

= V (q,πbehave),

proving that V (q,πbehave) is a fixed point of Bq,πbehave . The uniqueness proof follows next. Assume
there was another fixed point V � of Bq,πbehave , then limi→∞ B

(i)
q,πbehaveV

� = V (q,πbehave) because the
convergence behavior of Bq,πbehave does not depend on the initial V �, hence V � = V (q,πbehave). �

A.2 Proof of Proposition 3 from the Main Paper

Proof. Proving Proposition 3 from the main paper is similar to the maximum channel capacity
problem from information theory [59, 10, 16]. The proof follows hence similar steps as the one for
Proposition 1 from the background section on empowerment in the main paper, in the following
accomplished via Lemma 1, 2 and 3. �

Lemma 1 Inverse Dynamics. Maximizing the right-hand side of the Bellman operator B�V (s) =
maxπbehave,q Bq,πbehaveV (s) w.r.t. to q for a given πbehave yields:

argmaxqBq,πbehaveV (s) =
P(s�|s,a)πbehave(a|s)�
a P(s�|s,a)πbehave(a|s)

.

Proof. It holds that argmaxqBq,πbehaveV (s) = argmaxqEπbehave(a|s)P(s�|s,a)
�
log q(a|s�,s)

πbehave(a|s)

�
because

neither R nor V depends on q. It then follows that

Eπbehave(a|s)P(s�|s,a)

�
log

q(a|s�, s)
πbehave(a|s)

� ∀q
≤ I(A,S�|s) = Eπbehave(a|s)P(s�|s,a)

�
log

p(a|s�, s)
πbehave(a|s)

�
,

where p is the true Bayesian posterior—see [10] Lemma 10.8.1. �

13

Lemma 2 Optimal Policy. Maximizing the right-hand side of the Bellman operator B�V (s) =
maxπbehave,q Bq,πbehaveV (s) w.r.t. to πbehave for a given q yields:

argmaxπbehave
Bq,πbehaveV (s) =

exp
�

α
βR(s,a) + EP(s�|s,a)

�
log q(a|s�, s) + γ

βV (s�)
��

�
a exp

�
α
βR(s,a) + EP(s�|s,a)

�
log q(a|s�, s) + γ

βV (s�)
�� .

Proof. Maximizing Bq,πbehaveV (s) w.r.t. πbehave subject to the constraint
�

a πbehave(a|s) = 1 yields
the Lagrangian:

L(πbehave,λ) = Bq,πbehaveV (s)− λ

���

a

πbehave(a|s)
�

− 1

�
,

where λ is a Lagrange multiplier. The derivatives of the Lagrangian w.r.t. πbehave(ã|s), where ã
refers to a specific action, and λ are given by:

∂L(πbehave,λ)

∂πbehave(ã|s)
= αR(s, ã) + EP(s�|s,ã)

�
β log

q(ã|s�, s)
πbehave(ã|s)

+ γV (s�)

�
− β − λ,

∂L(πbehave,λ)

∂λ
= −

���

a

πbehave(a|s)
�

− 1

�
.

Equating the first derivative with 0 and resolving w.r.t. πbehave(ã|s), one arrives at:

πbehave(ã|s) = exp

�
α

β
R(s, ã) + EP(s�|s,ã)

�
log q(ã|s�, s) + γ

β
V (s�)

�
− β + λ

β

�
.

Plugging this result into the second derivative and equating with 0 yields:

exp

�
−β + λ

β

�
=

��

a

exp

�
α

β
R(s,a) + EP(s�|s,a)

�
log q(a|s�, s) + γ

β
V (s�)

���−1

.

Plugging the latter back into the result for πbehave(ã|s) completes the proof. �

Lemma 3 Blahut-Arimoto. Assuming bounded R, iterating through Equations (13) and (14) from
the main paper converges to argmaxπbehave,q

Bq,πbehaveV (s) at a rate of O(1/M) for arbitrary initial

π
(0)
behave having support in A ∀s, with M being the total number of iterations.

Proof. Evaluating the operator Bq,πbehaveV (s) at the pair (q(m),π
(m+1)
behave), we obtain:

B
q(m),π

(m+1)
behave

V (s) = β log
�

a

exp

�
α

β
R(s,a) + EP(s�|s,a)

�
log q(m)(a|s�, s) + γ

β
V (s�)

��
.

Due to Lemma 4, we know that maxπbehave,q Bq,πbehaveV (s) is upper bounded:

max
πbehave,q

Bq,πbehaveV (s) ≤

Eπ‘�‘
behave(a|s)

�
αR(s,a) + EP(s�|s,a)

�
β log q(m)(a|s�, s) + γV (s�)

�
− β log π

(m)
behave(a|s)

�
=

Eπ‘�‘
behave(a|s)

�
β log

�
exp

�
α

β
R(s,a) + EP(s�|s,a)

�
log q(m)(a|s�, s) + γ

β
V (s�)

���
− β log π

(m)
behave(a|s)

�
,

where the notation ‘�‘ indicates optimality of a single value iteration step, as opposed to the notation
(q�,π�

behave) from the main paper that refers to optimality after the entire value iteration scheme has
converged—see Lemma 4.

By using the definition of π(m+1)
behave (a|s) from Equation (14), the upper two equations enable us to

derive the following upper bound:

max
πbehave,q

Bq,πbehaveV (s)−B
q(m),π

(m+1)
behave

V (s) ≤ βEπ‘�‘
behave(a|s)

�
log

π
(m+1)
behave (a|s)
π
(m)
behave(a|s)

�
.

14

From there it follows that for M steps of the Blahut-Arimoto scheme

1

M

M−1�

m=0

�
max
πbehave,q

Bq,πbehaveV (s)−B
q(m),π

(m+1)
behave

V (s)

�
≤ 1

M
βEπ‘�‘

behave(a|s)

�
log

π
(M)
behave(a|s)

π
(0)
behave(a|s)

�
≤

1

M
βEπ‘�‘

behave(a|s)

�
log

1

π
(0)
behave(a|s)

�
≤ 1

M
βmax

a

�
log

1

π
(0)
behave(a|s)

�
.

However, since the upper term is lower-bounded by 0 and since B
q(0),π

(0)
behave

V (s) ≤ B
q(0),π

(1)
behave

V (s) ≤
B

q(1),π
(1)
behave

V (s) ≤ ... because of the alternating optimization procedure, this implies convergence at
a rate of O(1/M). �

Lemma 4 Upper Value Bound for One Value Iteration Step. Let’s introduce the following
notation (q‘�‘,π‘�‘

behave) := argmaxπbehave,q
Bq,πbehaveV (s) where the symbol ‘�‘ indicates optimal-

ity of a single value iteration step, as opposed to the notation (q�,π�
behave) from the main pa-

per that refers to optimality after the entire value iteration scheme has converged. Let’s de-
fine κ(m)(s,a) := αR(s,a) + EP(s�|s,a)

�
β log q(m)(a|s�, s) + γV (s�)

�
. It then holds that

maxπbehave,q Bq,πbehaveV (s) ≤ Eπ‘�‘
behave(a|s)

�
κ(m)(s,a)− β log π

(m)
behave(a|s)

�
.

Proof. Let’s first note that (q‘�‘,π‘�‘
behave) exists because Bq,πbehaveV is bounded. Bq,πbehaveV is bounded

because it is a sum of three weighted terms that are bounded—see Equation (12) of the main paper:

• Eπbehave(a|s) [R(s,a)] is bounded because the reward is bounded by assumption,

• Eπbehave(a|s)P(s�|s,a)
�
log q(a|s�,s)

πbehave(a|s)

�
is a lower bound to the mutual information I (A,S�|s)

(which is bounded) according to [10] Lemma 10.8.1,
• and V (s�) is bounded when the value iteration schemes (both using B� and Bq,πbehave)

are initialized, and remains bounded in each value iteration step because Bq,πbehaveV (s) is
bounded due to the previous two points and initial bounded V (s).

It then holds that

max
πbehave,q

Bq,πbehaveV (s) = Bq‘�‘,π‘�‘
behave

V (s)

= Eπ‘�‘
behave(a|s)

�
αR(s,a) + γEP(s�|s,a) [V (s�)] + βEP(s�|s,a)

�
log

P(s�|s,a)�
a P(s�|s,a)π‘�‘

behave(a|s)

��

≤ Eπ‘�‘
behave(a|s)

�
αR(s,a) + γEP(s�|s,a) [V (s�)] + βEP(s�|s,a)

�
log

P(s�|s,a)
�

a P(s�|s,a)π(m)
behave(a|s)

��
,

where the equality is obtained by plugging in q‘�‘ using Equation (13), and where the inequality
leverages one more time [10] Lemma 10.8.1.

At the same time, we can plug Equation (13) from the main paper into κ(m)(s,a), yielding:

κ(m)(s,a) = αR(s,a) + EP(s�|s,a)

�
β log

P(s�|s,a)π(m)
behave(a|s)�

a P(s�|s,a)π(m)
behave(a|s)

+ γV (s�)

�
.

Rearranging the upper equation results in:

βEP(s�|s,a)

�
log

P(s�|s,a)
�

a P(s�|s,a)π(m)
behave(a|s)

�
=

κ(m)(s,a)− β log π
(m)
behave(a|s)− αR(s,a)− γEP(s�|s,a) [V (s�)] .

Plugging the latter result into the earlier derived inequality completes the proof. �

15

A.3 Proof of Proposition 4 from the Main Paper

Proof. The mechanics of the proof are in line with [5, 51, 18]. Let’s denote (q�,π�
behave) =

argmaxπbehave,q
V (q,πbehave) and V � = V (q�,π�

behave). It then holds that

V � = Bq�,π�
behave

V � ≤ max
πbehave,q

Bq,πbehaveV
� =: Bq�,π�

behave
V � ≤ V (q�,π�

behave),

where the last inequality is because of the consistency of values as proven in Lemma 5. But by
definition it holds that V � = maxπbehave,q V

(q,πbehave) ≥ V (q�,π�
behave). This implies that V � = V (q�,π�

behave).
The latter means that V � = maxπbehave,q Bq,πbehaveV

� = B�V
� which proves that V � is a fixed point

of the operator B�.

The uniqueness of values proof comes next. Assume there was another fixed point of the operator B�

denoted as V � = V (q�,π�
behave), then

V � = Bq�,π�
behave

V � = max
πbehave,q

Bq,πbehaveV
� ≥ Bq�,π�

behave
V � ≥ V (q�,π�

behave) = V �,

where the last inequality is again because of Lemma 5. One can show similarly that V � ≥ V �, which
does hence imply that V � = V �. �

Lemma 5 Value Consistency for the Evaluation Operator. If V ≤ Bq,πbehaveV then B
(i)
q,πbehaveV ≤

V (q,πbehave) ∀i ∈ N, and similarly if V ≥ Bq,πbehaveV then B
(i)
q,πbehaveV ≥ V (q,πbehave) ∀i ∈ N.

Proof. The proof follows via induction. The base case is V
(≥)

≤ Bq,πbehaveV . The inductive step is as

follows. If B(i−1)
q,πbehaveV

(≥)

≤ B
(i)
q,πbehaveV then

B(i+1)
q,πbehave

V = gq,πbehave + γPπbehaveB
(i)
q,πbehave

V
(≤)

≥ gq,πbehave + γPπbehaveB
(i−1)
q,πbehave

V = B(i)
q,πbehave

V,

which completes the induction with help of the concise notation from Appendix A.1. �

A.4 Proof Details of Theorem 2 from the Main Paper

This section is to shed more light on the proof of Theorem 2 from the main paper to show that B� is
a contraction map via the subsequent proposition.

Proposition 5 Contraction Map. Assuming bounded R and let η ∈ R+ be a positive constant
η = αmaxs,a |R(s,a)|+ β log |A|. Then

���V � −B
(i)
� V

���
∞

≤ γi 1
1−γ η with initial V (s) = 0 ∀s.

Proof. The proposition is proven by the following sequence of inequalities:���V � −B
(i)
� V

���
∞

=:
���V �(s�)−B

(i)
� V (s�)

��� =
���� max
πbehave,q

Bq,πbehaveV
�(s�)− max

πbehave,q
Bq,πbehaveB

(i−1)
� V (s�)

���� ≤

max
πbehave,q

���Bq,πbehaveV
�(s�)−Bq,πbehaveB

(i−1)
� V (s�)

��� =

max
πbehave

���γEπbehave(a|s)P(s�|s,a) [V
�(s�)]− γEπbehave(a|s)P(s�|s,a)

�
B

(i−1)
� V (s�)

���� ≤

γ
���V � −B

(i−1)
� V

���
∞

recursion
≤ γi �V � − V �∞

V is 0
= γi �V ��∞ ≤ γi 1

1− γ
η,

where η is a positive constant to upper-bound V �-values, see Corollary 2. �

Corollary 2 Upper Value Bound for Optimal Values. Optimal values are upper-bounded according
to |V �(s)| ≤ 1

1−γ (αmaxs,a |R(s,a)|+ β log |A|) ∀s.

This follows straightforwardly from worst-case assumptions and properties of the geometric series and
the mutual information. The empowerment-induced addition to the reward signal is upper-bounded
by a mutual information term, which is upper-bounded by the worst-case entropy in action space.

Remark. A contraction proof for B� with any two initial value vectors V � and V follows similar
steps as outlined in Proposition 5 by replacing V � accordingly.

16

A.5 Limit Cases of Equation (7)

In the following, we consider limit cases of Equation (7).

A.5.1 Value Iteration Recovered

Here, we consider α = 1 and β → 0. While one can easily recover value iteration as a special case by
inspecting Equation (5) from the main paper simply by setting α = 1 and β = 0, it can be insightful
how to obtain Bellman’s classical optimality principle as a limit case from Equation (7):

lim
β→0

V �(s) =

lim
β→0

β log
�

a

exp

�
1

β
R(s,a) + EP(s�|s,a)

�
log q�(a|s�, s) + γ

β
V �(s�)

��
L’Hospital if maxa(R(s,a)+γEP(s�|s,a)[V �(s�)])>0

=

lim
β→0

�
a exp

�
1
βR(s,a) + EP(s�|s,a)

�
log q�(a|s�, s) + γ

βV
�(s�)

��
✟✟✟✟
�
− 1

β2

� �
R(s,a) + γEP(s�|s,a) [V �(s�)]

�

✟✟✟✟
�
− 1

β2

��
a exp

�
1
βR(s,a) + EP(s�|s,a)

�
log q�(a|s�, s) + γ

βV
�(s�)

�� =

max
a

�
R(s,a) + γEP(s�|s,a) [V

�(s�)]
�
.

The above is true if
�
R(s,a) + γEP(s�|s,a) [V �(s�)]

�
> 0 for at least one action a given the state

s, because numerator and denominator are then dominated by the maximum sum element. If
maxa

�
R(s,a) + γEP(s�|s,a) [V �(s�)]

�
≤ 0 given s, then one needs to focus on the second line of

the above expression because L’Hospital does not apply anymore. In this case, the maximum element
will dominate the sum dwarfing the non-maximum elements. As a consequence log and exp cancel
each other and β cancels with (1/β). β hence only multiplies with the intrinsic motivation term
induced by empowerment. The latter is going to therefore vanish since β → 0, resulting in the same
expression as in the last line above.

A.5.2 Cumulative One-Step Empowerment Recovered

Here we consider α → 0 and β = 1. In line with the previous section, recovering cumulative one-step
empowerment can be easily obtained from Equation (5) by setting α = 0 and β = 1. The limit case
of Equation (7) is trivially given by:

lim
α→0

V �(s) =

lim
α→0

log
�

a

exp
�
αR(s,a) + EP(s�|s,a) [log q

�(a|s�, s) + γV �(s�)]
�
=

log
�

a

exp
�
EP(s�|s,a) [log q

�(a|s�, s) + γV �(s�)]
�
.

A.5.3 Non-Cumulative One-Step Empowerment Recovered

In addition to α → 0 and β = 1 from the former section, we consider here γ → 0 in the following:

lim
α→0,γ→0

V �(s) =

lim
α→0,γ→0

log
�

a

exp
�
αR(s,a) + EP(s�|s,a) [log q

�(a|s�, s) + γV �(s�)]
�
=

log
�

a

exp
�
EP(s�|s,a) [log q

�(a|s�, s)]
�
.

The latter can be also obtained by running one-step empowerment (k = 1) according to the Blahut-
Arimoto scheme from the main paper’s background section in Proposition 1 until convergence, and
subsequently plugging the converged solution π�

empower from Equation (4) into Equation (2).

17

B Pseudocode for the Empowered Actor-Critic (EAC)

Let’s restate the optimization objectives from Section 5.1 as functions of the optimization parameters
and a batch B = {(s,a, r, s�)(b)}Bb=1 sampled from the replay buffer, where B is the batch size:

JQ(θ,B) =
1

B

B�

b=1

�
Qθ

�
s(b),a(b)

�
−

�
αr(b) + γVψ

�
s�

(b)
���2

,

JV (ψ,B) =
1

B

B�

b=1

�
Vψ

�
s(b)

�
− Eπφ(a|s(b))

�
Qθ

�
s(b),a

�
+ βf

�
s(b),a

���2

,

Jπ(φ,B) = − 1

B

B�

b=1

Eπφ(a|s(b))

�
Qθ

�
s(b),a

�
+ βf

�
s(b),a

��
,

Jp(χ,B) = − 1

B

B�

b=1

Eπφ(a|s(b))Pξ(s�|s(b),a)

�
log pχ

�
a
���s�, s(b)

��
,

JP(ξ,B) = − 1

B

B�

b=1

logPξ

�
s�

(b)
���s(b),a(b)

�
.

Denoting the corresponding learning rates as δθ, δψ, δφ, δχ and δξ , we can phrase pseudocode for the
empowered actor-critic conveniently.

Algorithm 1 Empowered Actor-Critic (EAC)
initialize θ, ψ, φ, χ and ξ
for each episode do

s0 ← reset environment
for each environment step t do

environment interaction
at ∼ πφ(at|st) � sample an action from the policy
rt ← R(st,at) � evaluate the action
st+1 ∼ P(st+1|st,at) � execute the action
D ← D ∪ {(st,at, rt, st+1)} � add the transition to the replay buffer
gradient updates
B ∼ D � draw a transition batch from the replay buffer
θ ← θ − δθ∇θJQ(θ,B) � update the Q-critic
ψ ← ψ − δψ∇ψJV (ψ,B) � update the V-critic
φ ← φ− δφ∇φJπ(φ,B) � update the policy
χ ← χ− δχ∇χJp(χ,B) � update the inverse dynamics
ξ ← ξ − δξ∇ξJP(ξ,B) � update the transition model

end for
end for

Note that practically when updating the Q-value parameters θ, we recommend replacing the value
target Vψ with an exponentially averaged value target Vψ̄ instead where ψ̄ ← (1− τ)ψ̄ + τψ with
horizon parameter τ —see [21].

Note also that our second proposed method, actor-critic with intrinsic empowerment (ACIE), can use
the same algorithm for learning parametric function approximators by setting α = 0 and β = 1. Since
Algorithm 1 is an off-policy method that uses a replay buffer, it can be combined with any other actor-
critic algorithm whose actor is collecting samples from the environment. An ACIE-agent can hence
be trained concurrently and used to generate intrinsic rewards according to Equation (6) from the
main paper. These intrinsic rewards are then added to the extrinsic rewards of the agent that collects
samples from the environment to encourage visiting states with high cumulative empowerment.

18

C Experiments

The following subsections provide a detailed description of the setups that we used for the grid world
and MuJoCo experiments.

C.1 Grid World

In the grid world setting from the main paper (Section 4.3), the agent has to reach a goal in the
lower left of a 16 × 16 grid, which is rewarded with +2. The agent can execute nine actions in
each grid cell: left, right, up, down, as well as diagonally or stay in place. The transition function
is deterministic. The discount factor γ was set to γ = 0.95 in the experiments. The stopping
criterion for the value iteration scheme was when the infinity norm of two consecutive value vectors
dropped below �outer = 5 · 10−4. The stopping criterion for the inner Blahut-Arimoto scheme for
each value iteration step was when the maximum absolute difference between the probability values
in consecutive q and πbehave dropped below the threshold �inner = 5 · 10−4.

Below is another grid world example similar to the one from the main paper, where the agent
has to reach a goal in the upper right of a 16 × 16 grid. Reaching the goal is rewarded with +1
and terminates the episode whereas every step is penalized with −1. The transition function is
probabilistic. Whenever the agent takes a step, the agent ends up at the intended next grid cell with
only a 20%-chance. There is either a 30%-chance of a horizontal perturbation by one step, or a
30%-chance of a vertical perturbation by one step, or a 20%-chance of a diagonal perturbation by
one step. The discount factor γ was set to γ = 0.6 (leading to more myopic policies).

G G G G G G

− 2

− 1

0

1

2G

Grid World

Figure 4: Value Iteration for another Grid World Example. The figure is similar to Figure 1 from the
main paper. The agent aims to arrive at the goal ’G’ in the upper right. The plots show optimal values
for different α and β ranging from raw cumulative empowerment learning to reward maximization.
Raw cumulative empowerment learning (α = 0.0, β = 1.0, see second plot) assigns high values to
states where many other states can be reached, i.e. the middle of the upper and lower room as well
as the door connecting them; and low values to states where the number of reachable next states is
low, i.e. close to walls and corners as well as in the bottom right dead end and the goal (because it
terminates the episode). Ordinary cumulative reward maximization (α = 1.0, β = 0.0, see rightmost
plot) assigns high values to states close to the goal and low values to states that are far away.

C.2 MuJoCo

For all our MuJoCo experiments, we followed standard literature regarding hyperparameter set-
tings [21]. We used Adam [24] as optimizer for all parametric functions with a learning rate
δ = 3 · 10−4. The discount factor γ was set to γ = 0.99, the replay buffer size was 5 · 105 and the
batch size for training was 256. All neural networks were implemented in PyTorch. The critic and
policy networks had two hidden layers whereas the transition and inverse dynamics model networks
had three hidden layers. The number of units per hidden layer was 256 using ReLU activations. In
line with [21], we used an exponentially averaged V-value target for updating Q-value parameters
with a horizon parameter τ = 0.01—explained at the end of Appendix B. Our specific trade-off pa-
rameters α and β were set to α = 10 and β = 0.1 respectively (both for EAC and ACIE experiments)
as determined through initial experiments on InvertedDoublePendulum-v2 and HalfCheetah-v2.
ACIE-generated intrinsic rewards were furthermore clipped to not exceed an absolute value of 20.

Both policy and inverse dynamics model assume that actions are distributed according to a multivariate
Gaussian with diagonal covariance. They receive as input the (concatenated) vectors of s and (s, s�)
respectively. They output the mean and the log standard deviation vectors from which real-valued
actions can be sampled. The real-valued actions are subsequently squashed through a sigmoid function

19

because MuJoCo has bounded action spaces. We used tanh [21] scaled by the environment-specific
bounds. The transition network assumes that states are distributed according to a multivariate isotropic
Gaussian with a given standard deviation of 10−5. It receives as input the concatenated vectors
of (s,a) and outputs the mean of s�. The value networks merely output a single real number for
cumulative reward prediction given the input. The input to the Q-value network are the concatenated
vectors of (s,a) whereas the input to the V-value network is s.

Following [67, 68, 15, 21], we used a twin Q-critic rather than a single Q-critic. This means that
two Q-critic networks Qθ1(·, ·�) and Qθ2(·, ·�) are trained. When updating the V-critic and the
policy, Qθ(·, ·�) is replaced with min{Qθ1(·, ·�), Qθ2(·, ·�)} to prevent value overestimation. To train
the policy parameters, we applied the reparameterization trick on the actions [25, 50]—see [21]
Appendix C. We also found it helpful to bound the log standard deviation of the policy and inverse
dynamics networks according to [9] Appendix A.1 to make our implementation more stable.

We compare against an SAC baseline with hyperparameters chosen according to the original pa-
per [21], except using a reward scale of 10 to ensure comparability with our methods EAC and ACIE.
We furthermore compare against the DDPG and PPO baselines from RLlib [35] using hyperparame-
ters settings following [15] and [57], but with the same neural network architectures as used in EAC,
ACIE and SAC to ensure a fair comparison.

Note that in neither Figure 2 nor Figure 3 from the main paper do we report results from DDPG
on Ant because the RLlib baseline implementation of that algorithm was not able to learn with our
experimental protocol in that specific environment. In initial trials, we observed that DDPG in Ant
leads to a rapid drop in performance to large negative values after the very first few episodes and
never recovers from there within the next 5 · 105 environment steps. This performance pattern is in
line with the experiments conducted in previous literature and can be seen by carefully inspecting
Figure 1(d) from the SAC-paper [21].

20

