
A Preliminaries

The work of [10] defines the notion of adversarial VC dimension to bound the generalization
gap for robust empirical risk minimization. Additionally, the authors show that for linear
classifiers the adversarial VC dimension remains the same as that of the original class. The
bound below then follows by viewing PTFs as linear classifiers in a higher dimensional space.
Lemma A.1. Let F be a class of degree-d polynomial threshold functions from Rn ‘æ {≠1, 1}
of VC dimesion � = O(nd). Given ”, ÷ > 0, and a set S of m examples (x1, y1), . . . , (xm, ym)
generated from a distribution D over Rn ◊ {≠1, 1}, with probability at least 1 ≠ ÷, we have
that supfœF |err”,D(f) ≠ ˆerr”,S(f)| Æ 2

2� log m/m +

log(1/÷)/(2m).

B Experiments

In this section, we evaluate the performance of the SDP based rounding algorithm outlined
in Figure 3 to generate adversarial examples for depth-2 neural networks with ReLU gates,
and compare it with the projected gradient descent(PGD) based attack of Madry et al. [24].
We will show that our approach indeed finds more adversarial examples. This however,
comes at a computational cost since we need to solve one SDP per example and per pair of
classes. We use the MNIST data set and our two layer neural network has d = 784 input
units, k = 1024 hidden units and 10 output units. This leads to an SDP with d + k + 1
vector variables. On an standard desktop with Intel i5 4590 processor, and 4 cores 3.30GHz,
solving one SDP instance takes 200 seconds on average. As a consequence we perform our
experiments on randomly chosen subsets of the MNIST data set. Another optimization we
perform for computational reasons is that given an example x with predicted class i, rather
than checking for every class j, if one can find an attack example z that misclassifies x + z

to be in class j, we simply pick j to be the class label of the second highest prediction at x.
Hence, the numbers we report below are an underestimate of the e�ectiveness of the full
SDP based algorithm
We compare the e�ectiveness of our attack in finding adversarial examples when compared
to the the PGD based attack of Madry et al. [24]. We consider two settings of the parameter
”, the maximum amount by which each pixel can be perturbed to produce a valid attack
example. As in [24] we first choose ” = 0.3 and train a robust 2-layer network using the
algorithm of Madry et al. [24]. We then run the PGD attack and divide the test set into
examples where the PGD attack succeeds (PGDPass) and examples where the PGD attack
fails (PGDfail). We then run our attack on batches of random subsets chosen from each
set. In the algorithm we set ”

Õ = –” for a hyperparameter – Æ 1. This is because we want
to ensure that the rounded solutions have ¸Œ norm of at most ”. In our experiment we
set – = 0.07. The first row of Table 1 shows the precision and recall of our method. We
report the average and the standard deviation across the chosen batches. As one can see,
our method has very high recall, i.e., whenever the PGD attack succeeds, our SDP based
algorithm also finds adversarial examples. Furthermore, on examples where the PGD attack
fails, our method is still able to discover new adversarial examples 30% of the time. Please
see Figure 4 for the images corresponding to some of the examples where the SDP based
attack succeeds, but the PGDattack fails and Figure 5 for the images of some examples where
both the PGDattack and SDP based attack succeed. A visual inspection of both the figures
reveals that our attack often produces sparse targeted attacks as opposed to PGDattack.
We repeat the same methodology with ” = 0.01, – = 0.2. Here we notice that PGD attack
succeeds on only 138 test examples and hence we can a�ord to run our attack on all of them.
As can be seen from the second row of Table 2 our attack succeeds on all of these examples.
Furthermore, we rank the examples in PGDfail according to the di�erence of the highest
and the second highest of the ten network outputs. The smaller the di�erence, the easier it
should be to find an adversarial example. Indeed as can be seen from the table, our method
finds 45 new adversarial examples out of the first 100 such ranked examples.
The experiments above suggest that our algorithms can lead to improved adversarial attacks.
We would like to note that the recent work of [29] also studied semi-definite programming
based methods for providing adversarial certificates for 2-layer neural networks. However, our
SDP as outlined is Figure 3 is strictly stronger. In particular, the SDP of [29] is independent

12

Figure 4: The figure shows three MNIST random samples from PDGfail (i.e., examples where
PGDattack failed to find an adversarial perturbation), where SDPattack successfully finds
adversarial perturbations for ” = 0.3. The images in the first column represent the original
images corresponding to three, the second column represents the perturbed images produced
by the failed PGDattack, and perturbed images produced by the successful SDPattack.
Visual inspection of these examples suggest that our method often produces sparse targeted
perturbations.

” = 0.3 PGDpass (6 ◊ 50 random samples) PGDfail (8 ◊ 100 random samples)
SDP succeds 297 out of 300 total 244 out of 800 total

Mean : 49.5 of 50, Std : 0.76 Mean 30.6 of 100, Std : 2.87
” = 0.01 PGDpass (138 samples) PGDfail (100 ranked)

SDP succeeds 138 45
Table 2: For ” = 0.3, we report mean and standard deviation of number of adversarial
examples found by running our SDPattack algorithm on 6 batches of 50 random examples
from PGDpass and 8 batches of 100 random samples from PGDfail. For ” = 0.01, we run
SDPattack on all 138 examples in PGDpass and first 100 sorted examples from PGDfail.

13

Figure 5: The figure shows three MNIST random samples from PDGpass (i.e., examples where
PGDattack succeeded to find an adversarial perturbation), where SDPattack successfully
finds adversarial perturbations for ” = 0.3. The images in the first column represent the
original images corresponding to three, the second column represents the perturbed images
produced by the successful PGDattack, and perturbed images produced by the successful
SDPattack. Visual inspection of these examples suggest that our method often produces
sparse targeted perturbations.

of the given example x and as a result we expect our method to produce better certificates.
We leave as future work the task of making our theoretical analysis practical for large scale
applications.

C Related Work

As mentioned in the introduction, there has been a recent explosion of works on understanding
adversarial robustness from both empirical and theoretical aspects. Here we choose to discuss
the theoretical works that are the most relevant to our paper. We refer the interested reader
to a recent paper by [15] for a broader discussion. Prior to their relevance for deep networks,
robust optimization problems have been studied in machine learning and other domains.
The works of [5, 17, 31] studies optimization heuristics for optimizing a robust loss that
can handle noisy or missing data. The works of [36, 37] proved an equivalence between
robust optimization and various regularized variants of SVMs. They used this relation
to re-derive standard generalization bounds for SVMs and their kernel versions. Akin to
classifier stability, these bounds depend on the robustness of the classifier on the training set.
A recent work of [6] views deep networks as functions in an RKHS and designs new norm
based regularization algorithms to achieve robustness.
Motivated by connections to deep networks a recent line of work studies generalization
bounds for robust learning. The work of [30] provides specific constructions of a linear binary
classification task where a single example is enough to learn the problem in the usual sense,

14

i.e., to achieve low test error, whereas learning the problem robustly requires a significantly
large training set. The authors also show that in certain cases, non-linearity can help reduce
the sample complexity of robust learning. The work of [10] proposes a PAC model for robust
learning and defines adversarial VC dimension as a combinatorial quantity that captures
robust learning via robust empirical risk minimization (ERM). The authors show that for
linear classifiers the adversarial VC dimension is the same as the VC dimension, although
there are functions classes and distributions where the gap between the two quantities could
be much higher. The recent works of [38] and [21] analyze Rademacher complexity of robust
loss functions classes. In particular, it is observed that even for linear models with bounded
weight norm, there is an unavoidable dependence on the data dimension in the Rademacher
complexity of robust loss function classes. These results point to the fact that for many
distributions robust learning could require many more training samples than their non-robust
counterpart. The work of [13, 4] studies algorithms and generalization bounds for a model
where the adversary can choose perturbations from a known finite set of small size k.
Another recent line of work studies the trade-o� between traditional test error and robust
error. The work of [34] designs a classification task that is e�ciently learnable with a linear
classifier to low standard error, but has the property that any classifier that achieves low
test error will have high robust error on the task. The work of [16] designs a task that is
learnable by a degree-2 polynomial and relates the test error of any model to its robust
error. Similar conclusions have been observed in [25, 26, 11] and have been used to design
various data poisoning attacks. These results essentially follows from the use of isoperimetric
inequalities for distributions such as the Gaussian and the uniform distribution over the
Boolean hypercube. However, as noted in [16], it is not clear if the same relation holds
between test error and robust error for real world data distributions. The work of [12] relates
robustness to the curvature of the decision boundary and uses it to quantify robustness to
random perturbations.
Yet another line of work concerns the design of certificates of perturbation robustness
or distributional robustness of a given classifier (e.g., deep neural networks) at a given
point [35, 29, 32]. This is achieved by the use of convex relaxations of the optimal robustness
at a given point. These works also conclude that by augmenting the training objective with
a penalty that depends on the certificates, one can empirically achieve increased robustness.
However these algorithms do not give any guarantees for relating the bound achieved by the
certificate of robustness to the optimal robustness around a given point.
The work of Bubeck et al. [7, 8] provides a cryptographic lower bound by designing a
computational task in Rn that is robustly learnable using poly(n) samples to any given
robustness parameter M , but is hard to learn robustly to any non-trivial robustness parameter
Á > 0, in polynomial time. When translated to our model, this provides an instance of a
cryptographic learning task that is computationally hard to “-approximately robustly learn
for any constant “ Ø 1. However, this does not rule out the possibility that natural function
classes can be robustly learned without any loss in robustness parameter. Our result rules
this out for the class of degree-2 and higher PTFs, even in the realizable setting, i.e., when
there exists a robust classifier of zero error! Finally, to the best of our knowledge, our upper
bounds are the first to establish the robustness tradeo� for computationally e�cient learning
for a large natural class of functions.

D Finding Adversarial Examples using Polynomial Optimization
for PTFs

In this section we introduce the broad class of polynomial optimization problems which are
useful in designing adversarial (test-time) examples with provable guarantees for polynomial
threshold functions (PTFs), and depth-2 neural networks with RELU gates. These polynomial
optimization problems are generalizations of well-studied combinatorial optimization problems
like the Grothëndieck problem and computing operator norms of matrices. We then design
algorithms with provable guarantees for some of these classes. Proposition 3.1 restated below
illustrates the connection and motivates the family of optimization problems that arise when
designing algorithms with provable guarantees for finding adversarial examples for sgn(g(x)).

15

While our theory below is stated for binary classifiers, it is easily extended to multiclass
classification.
Proposition D.1. [Same as Proposition 3.1] Let “ Ø 1. There is an e�cient algorithm that
given a classifier sgn(f(x)) and a point x

ú, and budget ” > 0, guarantees to either (a) find an
adversarial example in B

n
Œ(xú

, “”), or (b) certify the absence of any adversarial example in
B

n
Œ(xú

, ”), given access to an e�cient optimization algorithm that takes x
ú and a polynomial

g(z) œ { f(xú + z), ≠f(xú + z) } as input and finds a ‚z such that g(‚z) Ø maxÎzÎŒÆ” g(z)
with Î‚zÎŒ Æ “”.

Proof of Proposition 3.1. Let ALG“ be the optimization algorithm. Suppose there exists
an adversarial example x

ú + z
ú with Îz

úÎŒ Æ ”, and let y
ú := sgn(f(xú)) be the label

for the point x
ú. Then we have that maxz:ÎzÎŒÆ”(≠y

ú)f(xú + z) > (≠y
ú)f(xú + z

ú) > 0.
Now for g(z) = ≠y

ú
f(xú + z) (a polynomial in z), we get that ALG“ finds a point ‚z with

Î‚zÎŒ Æ “” that also satisfies (≠y
ú)f(xú + ‚z) > 0 i.e., sgn(f(xú)) ”= sgn(f(xú + ‚z)), as

required. Furthermore, if ALG“ fails, i.e., outputs a ẑ such that (≠y
ú)f(xú + ‚z) < 0, then

from the guarantee of the algorithm we know that maxz:ÎzÎŒÆ”(≠y
ú)f(xú + z) < 0 and

hence no adversarial example exists within a ” ball around x
ú.

The proposition above also holds for randomized algorithms. While the proof of the
proposition only requires that the algorithm returns ‚z with g(‚z) > 0, it e�ectively requires
that ‚z attains at least as large an objective value because the constant term can be arbitrary.
When the classifier is a degree-d PTF of the form sgn(f), it leads to the following approximate
optimization problem: given as input a degree d polynomial g : Rn æ R (potentially di�erent
from f) and any ÷, ” > 0, find in time poly(n, log(1

÷)) and w.p. at least 1 ≠ ÷ a point x̂ s.t.

g(x̂) Ø max
xœBn

Œ(0,”)
g(x) and ‚x œ B

n
Œ(0, “”). (3)

The above problem is closely related to the standard approximation variant of polynomial
maximization problem where the goal is to obtain, in polynomial time, an objective value as
close to the optimal one, without violating the ÎÎŒ ball constraint. Instead, our problem
asks for the same objective value at the cost of an increase in the radius of the optimization
ball. 1 This changes the flavor of the problem, and introduces new challenges particularly
when the polynomial g is non-homogenous.
We begin with the following simple claim about degree-1 PTFs.
Claim D.2 (Same as Claim 3.2). There is a deterministic linear-time algorithm that given
any linear threshold function sgn(bT

x+c), a point x
ú and ” > 0, provably finds an adversarial

example in the ¸Œ ball of ” around x
ú when it exists.

Proof. We use Proposition 3.1 applied with linear functions. For linear function g(x)
represented by g(x) := b

T
x+c where b œ Rn

, c œ R, we can easily find a solution ‚x œ B
n
Œ(0, ”)

such that g(‚x) = maxxœBn
Œ(0,”) g(x). This is because the linear form b

T
x + c is maximized

within B
n
Œ(0, ”) by setting each variable xi to be ” if the corresponding bi Ø 0, and ≠”,

otherwise.

As we will see in Section 4, this will further be used to give robust learning algorithms for
linear threshold functions. Our main theoretical result of this section gives an algorithm for
provably finding adversarial examples for degree-2 PTFs.
Theorem D.3 (Same as Theorem 3.3). For any ”, ÷ > 0, there is a polynomial time
algorithm that given a degree-2 PTF sgn(f(x)) and a example (xú

, sgn(f(xú))), guarantees
at least one of the following holds with probability at least (1 ≠ ÷): (a) finds an adversarial
example (xú + ‚z) i.e., sgn(f(xú)) ”= sgn(f(xú + ‚z)), with Î‚zÎŒ Æ C”

Ô
log n, or (b) certifies

that ’z : ÎzÎŒ Æ ”, sgn(f(xú)) = sgn(f(xú + z)) for some constant C > 0.
1In approximation algorithms literature this will correspond to obtaining a (1, “)-bicriteria

approximation.

16

To establish the above theorem using Proposition 3.1, we need to design a polynomial time
algorithm that given any degree-2 polynomial g(x) = x

T
Ax + b

T
x + c with A œ Rn◊n

, b œ
Rn

, c œ R, finds a solution ‚x with Î‚xÎŒ Æ O(
Ô

log n) · ” such that g(‚x) Ø maxÎxÎŒÆ” g(x).

To prove the theorem we use a semi-definite programming (SDP) based algorithm that is
directly inspired by the SDP-based algorithm for quadratic programming (QP) by [27, 9].
However, the goal in quadratic programming is to find an assignment x œ { ≠1, 1 }n that
maximizes

q
i ”=j aijxixj . There are three main di�erences from the QP problem. Firstly,

unlike QP which finds a solution with ÎxÎŒ = 1 with sub-optimal objective value, our goal is
to output a solution which attains at least as large a value as maxÎxÎŒÆ” g(x) while violating
the ¸Œ length of the vector. Secondly, unlike QP where the diagonal terms are all 0, in our
problem the diagonal terms can be non-zero and hence it is no longer true that the solution
with ÎxÎŒ Æ 1 will have each co-ordinate being { ±1 }. Finally and most crucially, QP
corresponds to optimizing a homogeneous degree 2 polynomial, with no linear term. These
challenges necessitates non-trivial modifications to the algorithm and in the analysis. We
also remark that it seems unlikely that the upper bound of O(

Ô
log n) on the approximation

factor can be improved even for the special case of homogenous degree-2 polynomials, based
on the current state of the approximability of Quadratic Programming (see Remark D.5 for
details).
The SDP we consider is given by the following equivalent vector program (the SDP variables
correspond to Xij = Èui, ujÍ), which can be solved in polynomial time up to arbitrary
additive error (using the Ellipsoid algorithm).

max
{ u0,u1,...,un }

nÿ

i,j=1
AijÈui, ujÍ +

nÿ

i=1
biÈui, u0Í + c (4)

s.t. ÎuiÎ2
2 Æ ”

2 ’i œ { 1, 2, . . . , n } , and Îu0Î2
2 = 1. (5)

Let SDPval denote the optimal value of the above SDP relaxation. Clearly the above SDP is
a valid relaxation of the problem; for any valid solution x œ [≠”, ”]n, consider the solution
given by

!
ui = xiu0 : i œ [n]) for any unit vector u0. Hence SDPval Ø maxÎxÎŒÆ” g(x).

Moreover, when the SDP value SDPval is negative, this certifies that the classifier is robust
around the give sample x

ú. We prove Theorem 3.3 by designing a polynomial time rounding
algorithm that takes the SDP solution and obtained a valid ẑ satisfying the requirements of
the theorem.

Rounding Algorithm. Given the SDP solution, let u
‹
i represent the component of ui

orthogonal to u0. Consider the following randomized rounding algorithm that returns a
solution { ‚xi : i œ [n] } :

’i œ { 0, 1, . . . , n } , ‚xi := Èui, u0Í + Èui, ’Í = Èui, u0Í + Èu‹
i , ’Í, with ’ ≥ N

1
0, �‹

2
, (6)

where �‹ is the projection matrix onto the subspace of span({ u1, . . . , un }) that is orthogonal
to u0. For convenience, we can assume without loss of generality that u0 = e0, where e0 is a
standard basis vector, and ui œ Rn+1. Let e0, e1, . . . , en represent an orthogonal basis for
Rn+1. Then
’i œ { 0, 1, . . . , n } , ‚xi = Èui, u0Í + Èu‹

i , ’Í where È’, e0Í = 0, È’, vÍ ≥ N(0, ÎvÎ2
2) for every v ‹ e0,

and ‚x0 = 1. The rounding algorithm just tries O(log(1/÷)) independent random draws for ’,
and picks the best of these solutions.
We now give the analysis of the algorithm. We prove Theorem 3.3 by showing the following
guarantee for the rounding algorithm.
Lemma D.4. There is a polynomial time randomized rounding algorithm that takes as input
the solution of the SDP as defined in Equations 4, and 5, and outputs a solution ‚x such that

P
‚x

Ë
g(‚x) Ø max

ÎxÎŒÆ”
g(x) and Î‚xÎŒ Æ O(

log n) · ”

È
Ø �(1). (7)

Assuming (7), we can repeat the algorithm at least O(log(1/÷)) times to get the guarantee
of Theorem 3.3.

17

Proof of Lemma D.4. We start with a simple observation that follows from the standard prop-
erties of spherical Gaussians. For any i, j œ [n], we have E’ [Èu‹

i , ’ÍÈu‹
j , ’Í] = (u‹

i)T �‹
u

‹
j =

Èu‹
i , u

‹
j Í. Hence we get the key observation that for ’i, j œ { 0, . . . , n },

E
#
‚xi‚xj

$
= E

’

Ë1
Èui, u0Í + Èu‹

i , ’Í
21

Èuj , u0Í + Èu‹
j , ’Í

2È
= Èui, u0ÍÈuj , u0Í + E

’

Ë
Èu‹

i , ’ÍÈu‹
j , ’Í

È

= Èui, u0ÍÈuj , u0Í + Èu‹
i , u

‹
j Í = Èui, ujÍ. (8)

Note that this also holds when i = j. We now consider the expected value of g(‚x). Using
(8), ‚x0 = 1 and since E’ [Èu‹

i , ’Í] = 0, we have

E[g(‚x)] =
nÿ

i,j=1
Aij E

’

Ë
‚xi‚xj

È
+

nÿ

i=1
bi E

’
[‚xi‚x0] + cE

’
[‚x2

0]

=
nÿ

i,j=1
AijÈui, ujÍ +

nÿ

i=1
biÈui, u0Í + cÎu0Î2

2 = SDPval. (9)

We now show that ‚xi Æ O(
Ô

log n) · ” w.h.p. For each fixed i œ { 1, . . . , n }, Èu‹
i , ’Í is

distributed as a Gaussian with mean 0 and variance Îu
‹Î2

2 Æ ”
2 ,

|‚xi| Æ |Èui, u0Í| + |Èu‹
i , ’Í| Æ ” + |Èu‹

i , ’Í| Æ

C log n · ” with probability at least 1 ≠ 1/n
C/2

,

using standard tail properties of Gaussians. Hence, using a union bound over all i œ [n], we
have that

E[g(‚x)] Ø max
ÎxÎŒÆ”

g(x), and P
Ë
Î‚xÎŒ Æ O(

log n) · ”

È
Ø 1 ≠ 1

n2 . (10)

for C Ø 4. Further note that g(‚x) can be expressed a degree-d polynomial of the Gaussian
vector ’. Hence using hypercontractivity of low-degree polynomials [28, Theorem 10.23], we
have

P
’

Ë
g(‚x) Ø E

’
g(‚x)

È
Ø �(1).

Hence (7) follows.

Remark D.5. Obtaining an approximation factor of O(“) in the ¸Œ norm of ẑ, even for
the special case of homogeneous degree-2 polynomials

qn
i<j=1 aijxixj with no diagonal

entries (aii = 0 ’i œ [n]) over ÎxÎŒ Æ ” is equivalent to obtaining a O(“2)-factor approxi-
mation algorithm for the problem called Quadratic Programming (QP) which maximizesqn

i<j=1 aijxixj over x œ { ≠1, 1 }n (this is also called the Grothendieck problem on complete
graphs). The best known approximation algorithm for Quadratic Programming (QP) gives
an O(log n)-factor approximation in polynomial time [27, 9]. Further [3] showed that it is
hard to approximate QP within a O(logc

n) for some universal constant c > 0 assuming
NP does not have quasi-polynomial time algorithms. Moreover integrality gaps for SDP
relaxations [1, 23] suggest that O(log n) factor maybe be tight for polynomial time algorithms.
Hence even for the special case of homogeneous degree-2 polynomials, improving upon the
bound of

Ô
log n in the approximation factor seems unlikely.

E From Adversarial Examples to Provable Learning Algorithms

Proof of Theorem 4.2. Let ÷ > 0 be the success probability desired for the robust learning
algorithm and Á > 0 be the final robust error that is desired. Let B be an algorithm that
achieves the “-factor admissibility for the class F . Given S, we will run the Ellipsoid
algorithm on the convex program in Figure 2. Let T (m, n) be a (polynomial) upper bound
on the number of iterations of the algorithm. In each iteration, for each i œ [m], we
run B on the polynomial yig(xi + z), where z is the variable and xi is fixed to be the
ith data point. Furthermore, we will set ÷

Õ, the failure probability of B, to be equal to
÷/(mT (m, n)) and set ”

Õ that is input to B to be ”/“. From the guarantee of B we get

18

that if there exists an i such that sup
zœBn

Œ(0, ”
“)

(≠yi)g(xi + z) > 0, with probability at least

1 ≠ ÷/T (m, n), then B will output a violated constraint of the convex program, i.e., an
index i œ [m] and ẑ œ B

n
Œ(0, ”) such that sup

zœBn
Œ(0,”)

(≠yi)g(xi + ẑ) > 0. This gives us a

separating hyperplane of the form sgn(≠yig(xi + ẑ)), and the algorithm continues. Hence,
we get that when the Ellipsoid algorithm terminates, with probability at least 1 ≠ ÷, it will
output a polynomial g œ F such that the constraintsare satisfied. This means that we would
have the empirical robust error ˆerr”/“,S(sgn(g)) = 0. Hence, by Lemma A.1, we get that

err”/“,D(sgn(g)) Æ 2
Ò

2� log m
m +

Ò
log 1

÷

2m , where � is the VC dimension of F . Choosing
m = c

�+log(1/÷)
Á2 , makes err”/“,D(sgn(g)) Æ Á.

F Finding Adversarial Examples for Two Layer Neural Networks

We now describe the polynomial optimization problems that arise for finding adversarial
examples in two layer neural networks with ReLU activations. The description that follows
applies to binary classification and can be easily extended to multiclass classification. The
optimization problem that arises is the following: given a m1 ◊ n matrix A, — œ Rm2 , and
a m2 ◊ n matrix B with B

T
j being the jth row of B, and c1 œ Rn

, c2 œ Rm1 , c0 œ R. Let
c = (c0, c1c2) and denote

opt(A, B, —, c) := max
z:ÎzÎŒÆ”

max
y:ÎyÎŒÆ1

y
T

Az + c
T
1 z + c

T
2 y ≠ Î— + BzÎ1 + c0

= max
z:ÎzÎŒÆ”

max
y:ÎyÎŒÆ1

y
T

Az + c
T
1 z + c

T
2 y ≠

m2ÿ

j=1
|—j + B

T
j z|.

This equation is (2). To see the connection to polynomial optimization, notice that if B = 0,
then the above problem is exactly the one we considered in Section 3 in the context of
degree-2 PTFs. Furthermore, if A = 0, then 2 is a linear program. However, the presence
of both the terms involving A and B make 2 a challenging optimization problem. Next we
discuss how the problem is related to finding adversarial examples for 2-layer neural networks.
A two layer neural network with ReLU gates is given by parameters (v1, v2, W) and outputs
f1(x) = v

T
1 ‡(Wx), f2(x) = v

T
2 ‡(Wx) where x œ Rn

, v1, v2 œ Rk and W œ Rk◊n. Here
‡ : Rm æ Rm is a co-ordinate wise non-linear operator ‡(y)i = max { 0, yi } for each i œ [m].
The classifier corresponding to the network is sgn(f1(x) ≠ f2(x)) = sgn((v1 ≠ v2)T

‡(Wx)) =
sgn(vT

‡(Wx)). The following proposition holds in a more general setting where there can
be an extra linear term as described below.

Proposition F.1 (Same as Proposition 6.1). Let “ Ø 1. Suppose there is an algorithm that
given an instance of problem (2) finds a solution ‚z, ‚y with Î‚zÎŒ Æ “”, Î‚yÎŒ Æ 1 such that
‚yT

A‚z + c
T
1 ‚z + c

T
2 ŷ ≠ Î— + B‚zÎ1 + c0 > 0 when opt(A, B, —, , c) > 0, then there is a polynomial

time algorithm that given a classifier sgn(f(x)) corresponding to a two layer neural net where
f(x) := v

T
‡(Wx) + (vÕ)T

x and an example x
ú, guarantees to either (a) find an adversarial

example in the ¸Œ ball of “” around x
ú, or (b) certify the absence of any adversarial example

in the ¸Œ ball of ”.

Proof. Let ¸(xú) = sgn(f(xú)). We first observe that ‡(yj) = 1
2 (|yj | + yj), and ‡(Wx)j =

1
2 (|ÈWj , xÍ| + ÈWj , xÍ), where Wj is the jth row of W . We want to find a ‚z with Î‚zÎŒ Æ “”,
such that (≠¸(xú))f(xú + ‚z) > 0, or certify that there is no such ‚z with Î‚zÎŒ Æ ”.
Let S+ = { j œ [k] : ≠¸(xú)vj Ø 0 } and S≠ = [k] \ S+ and let k1 = |S+|. We now split the
rows of W into two (A and B) as follows: for every j œ S+, define the row Aj := 1

2 |vj |Wj ;

19

otherwise let Bj := 1
2 |vj |Wj .

≠¸(xú)f(xú + z) = 1
2

ÿ

jœS+

|vj ||ÈWj , x
ú + zÍ| + 1

2 ÈvT
W, x

ú + zÍ ≠ 1
2

ÿ

jœS≠

|vj ||ÈWj , x
ú + zÍ|

= max
yœ{ ≠1,1 }k1

ÿ

jœS+

yjÈAj , x
ú + zÍ ≠

ÿ

jœS≠

|ÈBj , x
ú + zÍ| + c

T
1 z + c0,

where c
T
1 = 1

2 v
T

W + (vÕ)T and c0 = 1
2 v

T
Wx

ú are constants. Since the dependence on y is
linear we also get by substituting c2 := Ax

ú, — := Bx
ú,

max
ÎzÎŒÆ”

(≠¸(xú))f(xú + z) = max
ÎzÎŒÆ”

max
y:ÎyÎŒÆ1

ÿ

jœS+

yjÈAj , zÍ + c
T
2 y + c

T
1 z ≠

ÿ

jœS≠

|—j + ÈBj , zÍ| + c0,

as required. Now the proposition follows from the same argument as in Proposition 3.1.

G Computational Hardness of Learning Approximately Optimally
Robust Classifiers.

In this section we show that assuming NP does not have randomized polynomial time
algorithms, no polynomial time algorithm “-approximately robust learns degree-2 PTFs
for “ = O(Ô÷approx), where ÷approx denotes the hardness of approximation factor for
the QP problem. To recall, in Quadratic Programming (QP) we are given a polynomial
p(x) =

q
i<j aijxixj , and the goal is to evaluate maxxœ{ ≠1,1 }n p(x). We will represent the

polynomial p(x) = x
T

Ax where A is a symmetric matrix with zeros on the diagonal, and
Aij = Aji = aij/2. Formally, the NP -hard problem QP [3, 14] is the following: given — > 0
and a polynomial p(x) = x

T
Ax distinguish whether

No Case : there exists an assignment x
ú œ { ≠1, 1 }n such that p(xú) > —÷approx,

Yes Case : for every assignment x œ { ≠1, 1 }n, p(x) < —.
We prove that there exists a ” > 0 and a set of N = poly(n) points such that it is hard to
distinguish whether there exists a degree-2 PTF that is ” robust at all the points or that no
degree-2 PTF is ÷” robust for ÷ = �(1/

Ô
÷approx).

Theorem G.1. [Hardness] There exists ” > 0, such that assuming NP ”= RP

there is no polynomial time algorithm that given a set of N = O(n2) labeled points
{ (x(1)

, y
(1)), . . . , (x(N)

, y
(N)) } with (x(j)

, y
(j)) œ Rn+1 ◊ { ≠1, 1 } for all j œ [N] can distin-

guish between the following two cases
YES Case: There exists a degree-2 PTF that has ”-robust empirical error of 0 on these N

points.
NO Case: No degree-2 PTF is ÷”-robust on these points for ÷ = �(1/

Ô
÷approx).

The above theorem immediately implies the following result about hardness of approximately
optimal robust learning of degree-2 PTFs.
Corollary G.2 (Same as Theorem 5.1). There exists ”, Á > 0, such that assuming NP ”= RP

there is no algorithm that given a set of N = poly(n,
1
Á) samples from a distribution D over

Rn ◊ {≠1, +1}, runs in time poly(N) and distinguishes between the following two cases for
any ”

Õ = o(Ô÷approx”):

• Yes: There exists a degree-2 PTF that has ”-robust error of 0 w.r.t. D.

• No: There exists no degree-2 PTF that has ”
Õ-robust error at most Á w.r.t. D.

Here ÷approx is the hardness of approximation factor of the QP problem.

The above corollary proves that any polynomial time algorithm that always outputs a robust
classifier (or declares failure if it does not find one) will have to incur an extra factor of
�(Ô÷approx) in the robustness parameter ”. Our upper bound in Section 4 on the other

20

hand matches this bound. The corollary above follows from Theorem G.1 and the standard
fact used in establishing learning theoretic hardness [20], namely if there were a robust
learning algorithm for every distribution and Á > 0, the one could use it on the uniform
distribution over the instance from Theorem G.1 with Á = 1

2N to determine whether there
exists a degree-2 PTF that has ”-robust empirical error of 0 on the points in the instance.
Hence our main goal is to prove Theorem G.1. In order to get hardness of approximation,
we need to pick the set of points carefully. Our set of points will have the property that in
the YES case of the QP instance, the polynomial x

T
Ax ≠ z will be ” robust at all the points.

Furthermore, the points will enforce the property that any other degree-2 PTF that classifies
the points correctly will have to be very close to x

T
Ax ≠ z in terms of the parameters. This

will help use rule out the existence of an ÷” robust classifier in the NO case, since if one
exists, it must be close to x

T
Ax ≠ z, thereby implying an upper bound on the value of x

T
Ax

around the neighborhood of zero. The key lemma used in our construction is stated below.
Lemma G.3. Let p(x, z) = x

T
Ax ≠ z be a given polynomial where A is a symmetric

matrix with zeros on the diagonal. For any Á, ” < 1/10, consider the labeled set S =
S1 fi S2 fi S3 fi S4 fi S5 where,

S1 = {((0, 1), ≠1), ((0, ≠1), +1), ((0, ·
Õ), ≠1), ((0, ≠·

Õ), +1), ((0, 2”), ≠1), ((0, ≠2”), +1)},

S2 = {((ei, “), ≠1), ((ei, ≠“), +1), ((≠ei, “), ≠1), ((≠ei, ≠“), +1)}, ’i œ [n],

S3 = {((ei,j , 2), ≠1), ((e≠i,j , 2), ≠1), ((ei,≠j , 2), ≠1), ((e≠i,≠j , 2), ≠1)}, ’i ”= j œ [n],

S4 = {((2ei,j , 1), sgn(ai,j)), ((2e≠i,j , 1), ≠ sgn(ai,j)), ((2ei,≠j , 1), ≠ sgn(ai,j)),
((2e≠i,≠j , 1), sgn(ai,j))}, ’i ”= j œ [n],

and

S5 = {((ei,j , ≠2), +1), ((e≠i,j , ≠2), +1), ((ei,≠j , ≠2), +1), ((e≠i,≠j , ≠2), +1)}, ’i ”= j œ [n],

Here ei is the vector (0, 0, . . . , ·, 0, . . . , 0) and ei,j is the vector
(0, 0, . . . ,

1Ô
2(Á+|ai,j |)

, 0, . . . ,
1Ô

2(Á+|ai,j |)
, 0, . . . , 0). For every general degree 2 polyno-

mial q
Õ(x, z) with the coe�cient of z = cz, such that sgn(qÕ) has zero error on S, we must

have cz ”= 0. Moreover, let q(x, z) = 1
≠cz

q
Õ(x, z) = x

T
A

Õ
x + c

T
1 x + c2z

2 ≠ z + c4 +
q

i —izxi,
where A

Õ be a symmetric matrix. Then we must have that

max(|c2|, Î—ÎŒ, |aÕ
i,i|) Æ Á,

|c4| Æ 4”,

|c1,i| Æ min
j ”=i

8”

Ò
Á + |ai,j |,

and
1
4 ≠ ” ≠ Á

4 Æ max(
|aÕ

i,j |
Á + |ai,j |) Æ 2 + 4” + Á

provided ·
Õ = �(n2

Á) max(1, 1/(Á + mini ”=j |ai,j |)), · = �(n
Á) max(1, 1/(Á + mini ”=j |ai,j |)),

“ = 4n· .

We first prove Theorem G.1 assuming the lemma above and finally end the section with the
proof of the lemma.

Proof of Theorem G.1. Given an n◊n symmetric matrix A with zeros on diagonals and given
s > 100, we assume that the following cases are hard to distinguish for some ÷approx > 1,

YES Case: maxxœ{≠1,1}n x
T

Ax < s.

NO Case: maxxœ{≠1,1}n x
T

Ax > s÷approx. The reduction from the instance of the QP
problem is sketched below. Next we establish completeness and soundness of the reduction.

21

1. Scale the entries of A such that each non zero entry is greater than 10. Scale s by
the same factor. Set ” = 1/s and Á = 200/n

2.
2. Generate the labeled point set S in Rn+1 as specified in Theorem ?? with ·

Õ =
�(n2

Á) max(1, 1/(Á+mini ”=j |ai,j |)), · = �(n
Á) max(1, 1/(Á+mini ”=j |ai,j |)), “ = 4n· .

Figure 6: Reduction from the QP problem.

NO Case:
Claim G.4. There does not exist an ÷”-robust degree-2 polynomial on S for ÷ =
�(1/

Ô
÷approx).

Proof. Proof by contradiction. Let q(x, z) = x
T

A
Õ
x + c

T
1 x + c2z

2 ≠ z + c4 +
q

i —izxi
2 be an

÷”-robust polynomial on S. The fact that q is correct on (0, 2”) gives us
4c2”

2 ≠ 2” + c4 < 0 (11)
Furthermore, the fact the fact that q is ÷”-robust on (0, 2”) gives us that

max
xœBn

Œ(0,÷”),zœ(2”≠÷”,2”+÷”)
q(x, z) < |4c2”

2 ≠ 2” + c4| (12)

From Lemma G.3 this implies that
max

xœBn
Œ(0,÷”)

x
T

A
Õ
x < |4c2”

2 ≠ 2” + c4| + (2” + ÷”) + 12” + Á(2” + ÷”)2 + nÁ÷”(2” + ÷”)

(13)
Substituting the value of Á we get that

max
xœBn

Œ(0,÷”)
x

T
A

Õ
x < 20”. (14)

Again using Lemma G.3 we get that

max
xœBn

Œ(0,”)
x

T
Ax <

50”

÷2 . (15)

But since we are in the NO case we also know that
max

xœBn
Œ(0,”)

x
T

Ax > ”
2
s÷approx = ”÷approx. (16)

This contradicts the fact that ÷ = �(1/
Ô

÷approx).

YES Case:
Claim G.5. The polynomial p(x, z) = x

T
Ax ≠ z is ”-robust on S.

Proof. It is easy to check that sgn(xT
Ax ≠ z) classifies all of S correctly.

Robustness at ((0, 2”), ≠1). Follows from the fact that we are in the YES case and hence
maxxœBn

Œ(0,”) x
T

Ax < ”
2
s = ”.

Robustness at ((0, 1), ≠1), ((0, ·
Õ), ≠1), ((0, ≠1), +1), ((0, ≠·

Õ), +1). Follows from the fact
that we are in the YES case and hence maxxœBn

Œ(0,”) x
t
Ax < ”

2
s = 1/s < 1/100 and that

·
Õ
> n/(20”) > 5n.

Robustness at ((0, 2”), ≠1), ((0, ≠2”), +1). Follows from the fact that we are in the YES
case and hence maxxœBn

Œ(0,”) x
T

Ax < ”
2
s = ” and that Án/10 = 20”.

Robustness at ((ei, “), ≠1), ((ei, ≠“), +1), ((≠ei, “), ≠1), ((≠ei, ≠“), +1). Let’s argue ro-
bustness at ((ei, “), ≠1) and the other calculations are similar. The maximum value of x

T
Ax

in a ”-ball around ei is at most

(· + ”)”
ÿ

j

|ai,j | + ”
2
s.

2Can always scale q to get it into this form.

22

Hence to establish robustness we need that
(· + ”)”

ÿ

j

|ai,j | + ”
2
s Æ “ ≠ ”. (17)

Substituting the value of ” and noticing that “, · are much larger than ” = 1/s < 1/100 we
get that it is enough for the following to hold

2·”

ÿ

j

|ai,j | Æ “

2 . (18)

In other words we need that
“

·
Ø 4”

ÿ

j

|ai,j | (19)

Substituting the values of “, · we get that

n Ø ”

ÿ

j

|ai,j | (20)

This is true since ” = 1/s and the fact that s Ø 1
n

q
i,j |ai,j | >

1
n

q
j |ai,j | where the first

inequality is from [9].
Robustness at ((ei,j , 2), ≠1), ((e≠i,j , 2), ≠1), ((ei,≠j , 2), ≠1), ((e≠i,≠j , 2), ≠1). Let’s argue
robustness at ((ei,j , 2), ≠1) and the other calculations are similar. The maximum value of
x

T
Ax in a ”-ball around ei,j is at most

2” maxi
q

j |ai,j |

2(Á + |ai,j |)
+ ”

2
s + 1

Hence to establish robustness we need that
2” maxi

q
j |ai,j |

2(Á + |ai,j |)

+ ”
2
s + 1 Æ 2 ≠ ”. (21)

Noticing that ” = 1/s and much smaller than 1/100, we get that it is enough for the following
to hold

” maxi
q

j |ai,j |

2(Á + |ai,j |)
Æ 1

4 . (22)

This is again true since ” = 1/s and by our assumption |ai,j | Ø 4 for non-zero entries of
A.

Robustness at ((2ei,j , 1), sgn(ai,j)), ((2e≠i,j , 1), ≠ sgn(ai,j)), ((2ei,≠j , 1), ≠ sgn(ai,j)), ((2e≠i,≠j , 1), sgn(ai,j)).
We’ll argue robustness at ((2ei,j , 1), +1) and the other calculations are similar. Also for
simplicity, assume sgn(ai,j > 0. The other case is similar. The minimum value of x

T
Ax in a

”-ball arond ei,j is at least

2 ≠
2” maxi

q
j |ai,j |

2(Á + |ai,j |)

≠ ”
2
s

So for robustness, we need

2 ≠
2” maxi

q
j |ai,j |

2(Á + |ai,j |)

≠ ”
2
s > 1 + ”

This is true since we have
” maxi

q
j |ai,j |

2(Á + |ai,j |)

Æ 1
4 .

23

Proof of Lemma G.3. First we prove that if q
Õ(x, z) has zero error on S then cz must be non

zero. Then it is clear that if q
Õ(x, z) has zero error on S, then so does q(x, z). Consider the

case when cz = 0. Now q
Õ(x, z) classifies S1 correctly. More specifically, it classifies the two

points ((0, 1), ≠1) and ((0, ≠1), 1) correctly. This gives us the following equations
c2 + c4 < 0
c2 + c4 > 0

and hence we get a contradiction. Moving on to the main part of the proof about the
coe�cients of q(x, z), the constraints at (0, 1), (0, ≠1), (0, ·

Õ), (0, ≠·
Õ) give us

c2 ≠ 1 + c4 < 0 (23)

c2 + 1 + c4 > 0 (24)

·
Õ2

c2 ≠ ·
Õ + c4 < 0 (25)

·
Õ2

c2 + ·
Õ + c4 > 0 (26)

From (23) and (24) we get that
≠1 < c2 + c4 < 1 (27)

Similarly, from (25) and (26) we get that

≠·
Õ
< ·

Õ2
c2 + c4 < ·

Õ (28)
This implies that |c2| < 1/(· Õ ≠ 1) < Á/10 for ·

Õ = �(1/Á).
The constraints at ((0, 2”), ≠1), ((0, ≠2”) gives us that

4c2”
2 ≠ 2” + c4 < 0

4c2”
2 + 2” + c4 > 0

From the above equations we get that
|c4| Æ c2(2”)2 + 2” < 4”. (29)

The constraints at (ei, “), (≠ei, “), (ei, ≠“), (≠ei, ≠“) give us

·
2
a

Õ
i,i + ·c1,i + c2“

2 ≠ “ + c4 + ·“—i < 0 (30)

·
2
a

Õ
i,i ≠ ·c1,i + c2“

2 ≠ “ + c4 ≠ ·“—i < 0 (31)

·
2
a

Õ
i,i + ·c1,i + c2“

2 + “ + c4 ≠ ·“—i > 0 (32)

·
2
a

Õ
i,i ≠ ·c1,i + c2“

2 + “ + c4 + ·“—i > 0 (33)

From (30) and (33) we get that
·c1,i < “ (34)

Similarly, from (31) and (32) we get that
·c1,i > ≠“ (35)

Plugging back into the equations above we get that

≠(4” + 2“ + “
2

· Õ ≠ 1) < ·
2
a

Õ
i,i + ·“—i < (4” + 2“ + “

2

· Õ ≠ 1) (36)

and

≠(4” + 2“ + “
2

· Õ ≠ 1) < ·
2
a

Õ
i,i ≠ ·“—i < (4” + 2“ + “

2

· Õ ≠ 1) (37)

24

This implies that

|aÕ
i,i| Æ 1

·2 (4” + 2“ + “
2

· Õ ≠ 1) Æ Á/10

for ·
Õ = �(n2

Á) max(1, 1/ mini,j |ai,j |), · = �(n
Á) max(1, 1/ mini,j |ai,j |), “ = 4n· . We also

get that

|—i| Æ 1
·“

(4” + 2“ + “
2

· Õ ≠ 1) Æ Á/10

for ·
Õ = �(n2

Á) max(1, 1/ mini,j |ai,j |), · = �(n
Á) max(1, 1/ mini,j |ai,j |), “ = 4n· .

The constraints at (ei,j , 2), (e≠i,j , 2), (ei,≠j , 2), (e≠i,≠j , 2) give us

a
Õ
i,i

2ãi,j
+

a
Õ
j,j

2ãi,j
+

a
Õ
i,j

ãi,j
+ c1,i

2ãi,j
+ c1,j

2ãi,j
+ 4c2 ≠ 2 + c4 + 2—i

2ãi,j
+ 2—j

2ãi,j
< 0 (38)

a
Õ
i,i

2ãi,j
+

a
Õ
j,j

2ãi,j
≠

a
Õ
i,j

ãi,j
≠ c1,i

2ãi,j
+ c1,j

2ãi,j
+ 4c2 ≠ 2 + c4 ≠ 2—i

2ãi,j
+ 2—j

2ãi,j
< 0 (39)

a
Õ
i,i

2ãi,j
+

a
Õ
j,j

2ãi,j
≠

a
Õ
i,j

ãi,j
+ c1,i

2ãi,j
≠ c1,j

2ãi,j
+ 4c2 ≠ 2 + c4 + 2—i

2ãi,j
≠ 2—j

2ãi,j
< 0 (40)

a
Õ
i,i

2ãi,j
+

a
Õ
j,j

2ãi,j
+

a
Õ
i,j

ãi,j
≠ c1,i

2ãi,j
≠ c1,j

2ãi,j
+ 4c2 ≠ 2 + c4 ≠ 2—i

2ãi,j
≠ 2—j

2ãi,j
< 0 (41)

where ãi,j = Á + |ai,j |. Combining (38) and (41) we get

a
Õ
i,i

2ãi,j
+

a
Õ
j,j

2ãi,j
+

a
Õ
i,j

ãi,j
+ 4c2 ≠ 2 + c4 < 0 (42)

From this we get that

a
Õ
i,j

ãi,j
< 2 + 4” + 4 Á

10 +
4” + 2“ + “2

· Õ≠1
·2 mini,j |ai,j | < 2 + 4” + Á (43)

for large enough · . Similarly, combining (39) and (40) we get
a

Õ
i,i

2ãi,j
+

a
Õ
j,j

2ãi,j
≠

a
Õ
i,j

ãi,j
+ 4c2 ≠ 2 + c4 < 0 (44)

From this we get that
a

Õ
i,j

ãi,j
> ≠2 ≠ 4” ≠ Á. (45)

The constraints at (ei,j , ≠2), (e≠i,j , ≠2), (ei,≠j , ≠2), (e≠i,≠j , ≠2) give us

a
Õ
i,i

2ãi,j
+

a
Õ
j,j

2ãi,j
+

a
Õ
i,j

ãi,j
+ c1,i

2ãi,j
+ c1,j

2ãi,j
+ 4c2 + 2 + c4 + 2—i

2ãi,j
+ 2—j

2ãi,j
> 0 (46)

a
Õ
i,i

2ãi,j
+

a
Õ
j,j

2ãi,j
≠

a
Õ
i,j

ãi,j
≠ c1,i

2ãi,j
+ c1,j

2ãi,j
+ 4c2 + 2 + c4 ≠ 2—i

2ãi,j
+ 2—j

2ãi,j
> 0 (47)

a
Õ
i,i

2ãi,j
+

a
Õ
j,j

2ãi,j
≠

a
Õ
i,j

ãi,j
+ c1,i

2ãi,j
≠ c1,j

2ãi,j
+ 4c2 + 2 + c4 + 2—i

2ãi,j
≠ 2—j

2ãi,j
> 0 (48)

a
Õ
i,i

2ãi,j
+

a
Õ
j,j

2ãi,j
+

a
Õ
i,j

ãi,j
≠ c1,i

2ãi,j
≠ c1,j

2ãi,j
+ 4c2 + 2 + c4 ≠ 2—i

2ãi,j
≠ 2—j

2ãi,j
> 0 (49)

25

Combining (38) and (47) we get
a

Õ
i,j

ãi,j
+ c1,i

2ãi,j
≠ 2 + 2—i

2ãi,j
< 0 (50)

From this we get that

c1,i < (4” + Á)

2ãi,j (51)
for large enough · . Similarly, from (48) and (40) we get

c1,i > ≠(4” + Á)

2ãi,j . (52)

Finally, the constraints at (2ei,j , 1), (2e≠i,j , 1), (2ei,≠j , 1), (2e≠i,≠j , 1) give us

2
a

Õ
i,i

ãi,j
+ 2

a
Õ
j,j

ãi,j
+ 4

a
Õ
i,j

ãi,j
+ 2c1,i

2ãi,j
+ 2c1,j

2ãi,j
+ c2 ≠ 1 + c4 + 4—i

2ãi,j
+ 4—j

2ãi,j
> 0 (53)

2
a

Õ
i,i

ãi,j
+ 2

a
Õ
j,j

ãi,j
≠ 4

a
Õ
i,j

ãi,j
≠ 2c1,i

2ãi,j
+ 2c1,j

2ãi,j
+ c2 ≠ 1 + c4 ≠ 4—i

2ãi,j
+ 4—j

2ãi,j
< 0 (54)

2
a

Õ
i,i

ãi,j
+ 2

a
Õ
j,j

ãi,j
≠ 4

a
Õ
i,j

ãi,j
+ 2c1,i

2ãi,j
≠ 2c1,j

2ãi,j
+ c2 ≠ 1 + c4 + 4—iÔ

2ãi,j

≠ 4—j
2ãi,j

< 0 (55)

2
a

Õ
i,i

ãi,j
+ 2

a
Õ
j,j

ãi,j
+ 4

a
Õ
i,j

ãi,j
≠ 2c1,i

2ãi,j
≠ 2c1,j

2ãi,j
+ c2 ≠ 1 + c4 ≠ 4—i

2ãi,j
≠ 4—j

2ãi,j
> 0 (56)

Combining (53) and (56) we get

2
a

Õ
i,i

ãi,j
+ 2

a
Õ
j,j

ãi,j
+ 4

a
Õ
i,j

ãi,j
+ c2 ≠ 1 + c4 > 0 (57)

From this we get that
a

Õ
i,j

ãi,j
>

1
4 ≠ ” ≠ Á

4 (58)

for large enough · . Similarly, combining (54) and (55) we get

2
a

Õ
i,i

ãi,j
+ 2

a
Õ
j,j

ãi,j
≠ 4

a
Õ
i,j

ãi,j
+ c2 ≠ 1 + c4 < 0 (59)

From this we get that
a

Õ
i,j

ãi,j
> ≠1

4 ≠ ” ≠ Á

4 (60)

for large enough · .

G.1 A Lower Bound for Weak Robust Learning

In this section we prove a robust lower bound that rules out the possibility of weak robust
learning with “ = 1. This hardness result allows the algorithm to output a robust classifier
that makes errors on constant fraction of the points! Hence, even when there is a degree-2
PTF that has ” robust error of 0, it is computationally hard to output a degree-2 PTF that
has ”-robust error of Á Æ 1

4 .
Theorem G.6. [Stronger Distributional Hardness] For every ” > 0 and Á œ (0,

1
4), assuming

NP ”= RP there is no polynomial time algorithm that given a set of N = poly(n,
1
Á) samples

from a distribution D over Rn ◊ {≠1, +1} can distinguish between the following two cases:

26

• Yes: There exists a degree-2 PTF that has ”-robust error of 0 w.r.t. D.

• No: There exists no degree-2 PTF that has ”-robust error at most Á w.r.t. D.

The proof of the above theorem uses non-distributional hardness in Theorem G.16. But
to begin with we first prove an alternate NP hardness result. Although weaker than the
hardness result of the previous section, this will help us prove the more robust bound. More
formally, we will prove that
Theorem G.7. [Hardness] For every ” > 0, assuming NP ”= RP there is no polynomial
time algorithm that given a set of N = O(n2) labeled points { (x(1)

, y
(1)), . . . , (x(N)

, y
(N)) }

with (x(j)
, y

(j)) œ Rn+1 ◊ { ≠1, 1 } for all j œ [N] can determine whether there exists a
degree-2 PTF that has ”-robust empirical error of 0 on these N points.

The above theorem immediately implies the following result about hardness of optimal robust
learning of degree-2 PTFs.
Corollary G.8. [Distributional Hardness] For every ” > 0, there exists an Á > 0 such that
assuming NP ”= RP there is no algorithm that given a set of N = poly(n,

1
Á) samples from

a distribution D over Rn ◊ {≠1, +1}, runs in time poly(N) and distinguishes between the
following two cases:

• Yes: There exists a degree-2 PTF that has ”-robust error of 0 w.r.t. D.

• No: There exists no degree-2 PTF that has ”-robust error at most Á w.r.t. D.

We again reduce from the QP problem (Problem QP) which is known to be NP hard. The
reduction is sketehced below.

1. Let p(x) := x
T

Ax be the polynomial given by Problem QP, and let —, ” be the
given parameters. Set – := ”

2
— + ”, fl := c3”n

3/2
m, for some su�ciently large

constant c3 Ø 1.
2. Using A we generate m points (x(j)

, z
(j)) œ Rn+1 as follows. Sample point x

(j)

from N(0, fl
2)n, then set z

(j) = p(x(j)) = (x(j))T
Ax

(j) for each j œ [m].
3. Define s

(j) = sgn(Òp(x(j))) where the sgn(x) œ { ≠1, 1 }n refers to a vector with
entry-wise signs, and Òp stands for the gradient of p at x

(j). From each (x(j)
, z

(j))
generate (u(j)

, z
(j)
u) = (x(j) ≠ ”s

(j)
, z

(j) + ”) with label y
(j)
u = sgn(z(j)

u ≠ p(u(j)))
and (v(j)

, z
(j)
v) = (x(j) + ”s

(j)
, z

(j) ≠ ”) with label y
(j)
v = sgn(z(j)

v ≠ p(v(j))).
4. Generate – (depends on ” and — from problem QP) and input the 2m + 1 points

in Rn+1 ◊ { ±1 } given by ((u(j)
, z

(j)
u), y

(j)
u), ((v(j)

, z
(j)
v), y

(j)
u) for each j œ [m] and

(0, –, +1) to the algorithm.

Figure 7: Reduction from the QP problem.

To argue the soundness and the completeness of our reduction, we will first analyze the
robustness of degree-2 PTFs on the 2m added labeled examples ((u(¸)

, z
(¸)
u), y

(¸)
u) and

((v(¸)
, z

(¸)
v), y

(¸)
v). We will show that the “intended” PTF sgn(z ≠ p(x)) is the unique degree-2

PTF (up to scaling) that is robust at all these 2m points. Note that a degree-2 PTF
sgn(q(x, z)) on the n + 1 variables (x, z) may not necessarily be of the form sgn(z ≠ g(x))
for some degree-2 polynomial g(x). We need to rule out the existence of any other degree-2
PTF of the form sgn(q(x, z)) that is ”-robust at these points. Once we have established this,
we will then show that the “intended” PTF sgn(z ≠ p(x)) is ”-robust at ((0, –), +1) in the
Yes case, and not ”-robust at ((0, –), +1) in the No case.
We proceed by first proving that the intended PTF sgn(z ≠ p(x)) is robust at the 2m added
examples. Recall that the points x

(j) œ Rn are chosen according to a Gaussian distribution
with variance fl

2 in every direction. The following lemma shows a property that holds w.h.p.

27

Figure 8: The figure shows the construction of a hard instance for the robust learning problem.
First, points (x(j)

, z
(j)) are sampled randomly and staisfying z

(j) = p(x(j)). Each such point
is then perturbed along the direction of the sign vector of the gradient at (xj

, z
(j)) to get two

data points of the training set, one labeled as +1, and the other labeled as ≠1.

for the points { x
(¸) : ¸ œ [m] } that will be key in proving the robustness of sgn(z ≠ p(x)) at

the 2m added points in Lemma G.11.
Lemma G.9. There exists some universal constant C > 0 such that for any ÷ > 0, assuming
fl Ø C”n

3/2
m/÷ we have with probability at least 1 ≠ ÷ that

’¸ œ [m], ’i œ [n], |ÈAi, x
(¸)Í|

ÎAiÎ1
> ”, (61)

where Ai denotes the ith row of A.

Proof. The proof follows from the following standard anti-concentration fact about Gaussians.
Fact G.10. Let x

ú be sampled from N(0, fl
2)n. Let a œ Rn. There exists a universal constant

C > 0 such that for any ÷
Õ
> 0,

P
Ë
|Èa, x

úÍ| Æ CÎaÎ2fl÷

È
Æ ÷

Õ
.

Set ÷
Õ := ÷/(mn). Fix ¸ œ [m], i œ [n]. Using Fact G.10 we have with probability at least

1 ≠ ÷
Õ

|ÈAi, x
(j)Í| Ø ÎAiÎ2fl÷

Õ Ø ÎAiÎ1Ô
n

· fl · ÷

mn
Ø ”,

from our assumption on fl. The lemma follows from a union bound over all ¸ œ [m], i œ [n].

We now prove the ”-robustness of the “intended” degree-2 PTF sgn(z ≠ p(x)) at the 2m

added points w.h.p.
Lemma G.11. There exists constant C > 0 such that for any ÷ > 0, assuming fl Ø
C”n

3/2
m/÷, then with probability at least 1 ≠ ÷, the degree-2 PTF sgn(z ≠ p(x)) = sgn(z ≠

x
T

Ax) is ”-robust at all the 2m points { ((u(¸)
, z

(¸)
u), y

(¸)
u), ((v(¸)

, z
(¸)
v), y

(¸)
v) : ¸ œ [m] }.

Proof. Consider a fixed ¸ œ [m]. For convenience let x
ú
, z

ú
, u, v, zu, zv denote x

(¸)
, z

(¸)
, u

(¸)
,

v
(¸)

, z
(¸)
u , z

(¸)
v respectively, and let s = sgn(Òp(x(¸))) œ { ≠1, 1 }n. Hence z

ú = x
úT

Ax
ú,

(u, zu) = (xú ≠ ”s, z
ú + ”) and (v, zv) = (xú + ”s, z

ú ≠ ”). We want to prove that the points

28

Figure 9: The figure shows the radius of robustness around the point (x(i)
, z

(i)). Any degree-2
PTF that is ”-robust at all the data points, must take a value of +1 in the upper ball around
each (x(i)

, z
(i)) of ¸Œ radius of 2” and must take a value of ≠1 in the lower ball around

each (x(i)
, z

(i)) of ¸Œ radius of 2”. We use this fact to establish that such a PTF must pass
through the points (x(i)

, z
(i)).

(u, zu) and (v, zv) are ” robust i.e., these points are ” away in ¸Œ distance from the decision
boundary of sgn(z ≠ p(x)). We now prove the following claim:
Claim. Any point (x, z) œ B

n+1
Œ (u, zu) is on the ‘positive’ side i.e., z ≠ x

T
Ax > 0.

Note that (u, zu) itself lies inside the ball, and hence the claim will show that sgn(z ≠ x
T

Ax)
is ”-robust at (u, zu). An analogous proof also holds that ”-robustness at (v, zv).
Proof of Claim. Let’s now define x̃ = x ≠ x

ú, z̃ = z ≠ z
ú. A simple observation is that (x, z)

lies on the opposite orthant with respect to (xú
, z

ú) as s , and we have (as shown in Figure 9)
’j œ [d], ≠2” Æ s(j)x̃(j) Æ 0, and z̃ Ø 0.

Using z
ú = p(xú) and z̃ Ø 0, for all (x, z) œ B

n+1((u, zu), ”) we have

z ≠ p(x) = z
ú + z̃ ≠ p(x̃ + x

ú) = z̃ + p(xú) ≠ p(x̃ + x
ú) = z̃ ≠ ÈÒp, x̃Í ≠ 1

2 x̃
T Ò2

px̃

Ø ≠
nÿ

i=1
x̃(i)

1 nÿ

j=1
aijx

ú(j)
2

≠ 1
2

nÿ

i=1
x̃(i)

1 nÿ

j=1
aij x̃(j)

2

=
nÿ

i=1
(≠x̃(i)s(i))

nÿ

j=1
aijx

ú(j)
--- ≠ 1

2

nÿ

i=1
x̃(i)

nÿ

j=1
aij x̃(j)

Ø
nÿ

i=1
|x̃(i)|

1---
nÿ

j=1
aijx

ú(j)
--- ≠ ”

nÿ

j=1
|aij |

2
,

using the fact that x̃(i)s(i) œ [≠2”, 0] for each i œ [n]. Applying Lemma G.9 we see that
with probability at least (1 ≠ ÷), (61) holds, and hence |Èxú

, AiÍ| > ”ÎAiÎ1 for each i œ [n]
as required. This establishes the claim, and proves the lemma.

We now prove that the “intended” PTF sgn(z ≠ p(x)) is the only degree-2 PTF that is robust
at the added 2m examples.
Lemma G.12. Consider any degree-2 PTF sgn(q(x, z)) that is ”-robust at the 2m labeled
points { ((u(¸)

, z
(¸)
u), +1) : ¸ œ [m] } and { ((v(¸)

, z
(¸)
v), ≠1) : ¸ œ [m] } and is consistent with

their labels. Then q(x, z) = C(z ≠ p(x)) for some C ”= 0.

29

The proof of Lemma G.12 follows immediately from the following two lemmas (Lemma G.13
and Lemma G.14).
Lemma G.13. Consider any degree-2 PTF on n + 1 variables sgn(q(x, z)) that satisfies the
conditions of Lemma G.12. Then q(x(¸)

, z
(¸)) = 0 for each ¸ œ [m].

Proof. Since sgn(q(u(¸)
, z

(¸)
u)) ”= sgn(q(v(¸)

, z
(¸)
v)), by the Intermediate Value Theorem,

÷“ œ [0, 1] s.t. (‚x, ‚z) = “(u(¸)
, z

(¸)
u) + (1 ≠ “)(v(¸)

, z
(¸)
v) and q(‚x, ‚z) = 0.

Also, since q is ”-robust at (u(¸)
, z

(¸)
u) and (v(¸)

, z
(¸)
v), we must have that (‚x, ‚y) is atleast ”

far away in ¸Œ distance from both (u(¸)
, z

(¸)
u) and (v(¸)

, z
(¸)
v). Further by design two points

are separated by exactly 2” in each co-ordinate (see Figure 9 for an illustration)! Hence it is
easy to see that “ = 1/2 i.e., (‚x, ‚z) = (x(¸)

, z
(¸)) as required.

We now show that q(x, z) = z≠p(x) is the only polynomial over (n+1) variables that evaluates
to 0 on all points { (x(¸)

, z
(¸)) : ¸ œ [m] }. Together with Lemma G.13 this establishes the

proof of Lemma G.12.
Lemma G.14. Let m > (n + 1)2 and let q : Rn+1 æ R be any degree-2 polynomial with
q(x(¸)

, z
(¸)) = 0 for all ¸ œ [m], where z

(¸) = (x(¸))T
A

ú
x

(¸) and x
(¸) ≥ N(0, fl

2)n with fl > 0.
Then with probability 1, q(x, z) = C(z ≠ x

T
A

ú
x) for C ”= 0.

Proof. We can represent a general degree-2 polynomial q : Rn+1 æ R given by

q(x, z) = x
T

Ax + b
T
1 x + c1 + zb

T
2 x + c2z

2 + c3z, where x œ Rn
, z œ R.

This polynomial is parameterized by a vector w = (A, b1, c1, b2, c2, c3) œ Rr where r =
!n+1

2
"
+

2n + 3 (since A is symmetric). Now given a point (x(¸)
, z

(¸)), the equation q(x(¸)
, z

(¸)) = 0 is
a linear equation over the coe�cients w of q. Hence, the set of conditions q(x(¸)

, z
(¸)) = 0

can be expressed as a systems of linear equations Mw = 0 over the (unknown) co-e�cients
w. Hence any valid polynomial q corresponds to a solution of the linear system Mw = 0 and
vice-versa. We now describe the matrix M œ Rm◊r. Define

f(x, z) := (1) ü (x1, . . . , xn) ü (xixj : i Æ j œ [n]) ü (x1z, . . . xnz) ü (z2), ü(z) œ Rr
,

and M¸ := f(x(¸)
, z

(¸)) ’¸ œ [m],

where u ü v refers to the concatenation of vectors u and v, and M¸ represents the row ¸ of
M . In other words f(x, z) = (1, x1, . . . , xn, x

2
1, . . . , xjxk, . . . , x

2
n, x1z, . . . , xjz . . . , xnz, z

2
, z),

where xj is the jth component of x and z = x
T

A
ú
x. Observe that the “intended” polynomial

q
ú(x, z) = z ≠ x

T
A

ú
x is a valid solution to this system of equations. Hence, it will su�ce to

prove that M has rank exactly r ≠ 1 i.e., M has full column rank minus one. First observe
that as polynomials over the formal variables x, z, all but one of the columns of f are linearly
independent – in fact the only linear dependency in f(x, z) corresponds to the column z

that can be expressed as a linear combination of degree-2 monomials { xixj : i Æ j } since
z := x

T
A

ú
x is a homogenous degree-2 polynomial. Further the columns { xjz : j œ [n] } have

degree 3 and z
2 has degree 4. Hence excluding the column corresponding to z, it is easy to

see that the rest of the columns are linearly independent (either they correspond to di�erent
monomials, or the degrees are di�erent). Now define g(x, z), M

Õ analogously to f(x, z) and
M respectively, without the last column that corresponds to z i.e.,

g(x, z) := (1) ü (x1, . . . , xn) ü (xixj : i Æ j œ [n]) ü (x1z, . . . xnz) ü (z2) œ Rr≠1
,

and M
Õ
¸ := g(x(¸)

, z
(¸)) ’¸ œ [m].

From our earlier discussion, the columns of g(x, z) when seen as polynomials over the formal
variables x, z are linearly independent. Hence, it su�ces to prove the following claim:
Claim: M

Õ has full column rank i.e., rank of M
Õ is r.

30

To see why the claim holds consider the first ¸ rows of the matrix M
Õ and look at their span

S(R¸). If ¸ Æ r ≠ 1 then the space orthogonal to S(R¸) i.e., S(R¸)‹ is non-empty. Consider
any direction v in S(R¸)‹.

Èv, M
Õ
¸+1Í = ‚q(x(¸+1)

, z
(¸+1)), where ‚q(x, z) := Èv, g(x, z)Í

is a non-zero polynomial of degree 2 in x, z (it is not identically zero because the columns
of g(x, z) are linearly independent as polynomials over x, z). Hence using a standard result
about multivariate polynomials evaluated at randomly chose points (See Fact G.15), we get
that ‚q(x(¸+1)

, z
(¸+1)) ”= 0 and so Èv, M

Õ
¸+1Í ”= 0 with probability 1. Taking a union bound

over all the ¸ œ { 1, . . . , r } completes the proof.

Fact G.15. A non-zero multivariate polynomial p : Rn æ R evaluated at a point x ≥
N(0, fl

2)n with fl > 0 evaluates to zero with zero probability.

We remark that the statement of Lemma G.14 can also be made robust to inverse polynomial
error by using polynomial anti-concentration bounds (e.g., Carbery-Wright inequality) instead
of Fact G.15; however this is not required for proving NP-hardness. We now complete the
proof of Theorem G.7.

Proof of Theorem G.7. We start with the NP-hardness of QP, and for the reduction in
Figure 7, we will show that in the Yes case, we will show that there is a ”-robust degree-2
PTF (completeness), and in the No case we will show that there is no ” robust degree-2 PTF
(soundness). As a reminder, the NP-hard problem QP is the following: given a symmetric
matrix A œ Rn◊n with zeros on diagonals, and — > 0 distinguish whether
No Case : there exists an assignment y

ú with Îy
úÎŒ Æ 1 such that q(yú) = (yú)T

Ay
ú

> —,
Yes Case : maxÎyÎŒÆ1 y

T
Ay < —.

Completeness (Yes Case): Consider the degree-2 PTF given by sgn(z ≠ p(x)) =
sgn(z ≠ x

T
Ax). From Lemma G.11, we have that it is ” robust at the 2m points

{ ((u(¸)
, z

(¸)
u), y

(¸)
u) : ¸ œ [m] } and { ((v(¸)

, z
(¸)
v), y

(¸)
v) : ¸ œ [m] } with probability at least 1 ≠ ÷

(for ÷ being any su�ciently small constant). Further, from multilinearity of p we have that,

max
ÎyÎŒÆ”

y
T

Ay = ”
2 max

ÎyÎŒÆ1
y

T
Ay < ”

2
— = – ≠ ”.

Hence (– ≠ ”) ≠ max
ÎyÎŒÆ”

y
T

Ay > 0,

which establishes robustness at ((0, –), +1) for sgn(z ≠ x
T

Ax). Hence sgn(z ≠ p(x)) is
”-robust at the 2m + 1 points with probability at least 1 ≠ ÷ (for ÷ being any su�ciently
small constant).
Soundness (No Case): From Lemma G.12, we see that the degree-2 PTF given by sgn(z ≠
p(x)) = sgn(z ≠ x

T
Ax) is the only degree-2 PTF that can potentially be robust at all the

2m + 1 points with probability 1. Again analyzing robustness at the example ((0, –), +1),
we see that from multilinearity of p,

max
ÎyÎŒÆ”

y
T

Ay = ”
2 max

ÎyÎŒÆ1
y

T
Ay > ”

2
— = – ≠ ”.

Hence (– ≠ ”) ≠ max
ÎyÎŒÆ”

y
T

Ay < 0,

which shows that the degree-2 PTF sgn(z ≠ p(x)) is not robust at (0, –). Hence there is no
”-robust degree-2 PTF at the 2m + 1 given points, with probability 1. This completes the
analysis of the reduction, and establishes the theorem.

Stronger Hardness. We now prove the robust lower bound stated below.

31

Theorem G.16. [Stronger Hardness] For every ” > 0 and Á œ (0,
2
7), assuming NP ”= RP

there is no polynomial time algorithm that given a set of N = poly(n, 1/Á) labeled points
{ (x(1)

, y
(1)), . . . , (x(N)

, y
(N)) } in Rn+1 ◊ { ≠1, 1 } such that there is a degree-2 PTF with

”-robust empirical error of 0, can output a degree-2 PTF that has ”-robust empirical error of
at most Á on these N points.

Proof. The proof of this theorem closely follows the proof of Theorem G.7 (the Á = 0 case),
so we only point out the di�erences here. The reduction uses the same gadget (Figure 7)
used in Theorem G.7. The main challenge is the soundness analysis (NO case), where we
need to rule out the existence of degree-2 PTFs which are ”-robust and consistent at all but
an Á fraction of the points. To handle this, we introduce “redundancy” by including more
points (of both kinds) to ensure that even when an arbitrary Á fraction of these points are
ignored (the PTF makes errors on them), we can still use the arguments in the soundness
analysis of Theorem G.7.
Recall that our reduction (see Figure 7) generated two sets of points. We have one
point of the form (0, –) (let us denote this type as Type A) and m pairs of points
{ (u(¸)

, z
(¸)
u), (v(¸)

, z
(¸)
v) : ¸ œ [m] } which are obtained by modifying (x(¸)

, z
(¸) = p(x(¸))) with

x
(¸) generated randomly (let us denote these 2m points as of Type B).

Set N1 := n
3
, N2 := 2n

3. In our modified instance, we will have N1 points of Type A i.e.,
N1 identical points (0, –) (note that we can also perturb these points slightly so that they
are all distinct, if required). Further, we will have N2 points of Type B i.e., we will generate
N2/2 pairs of points { (u(¸)

, z
(¸)
u) : ¸ œ [N2/2] } which are generated as described in Figure 7

after drawing x
(¸) ≥ N(0, fl

2)n for ¸ œ [N2/2] (here a larger fl = O(”n
3/2

N2) will su�ce).
Hence, we have in total N = N1 + N2 = 3n

3 points.
The completeness analysis (YES case) is identical to that of Theorem G.7, as sgn(z ≠ p(x))
will be ”-robust at all of the N points (from Lemma G.11 and our choice of –).
We now focus on the soundness analysis (NO case). From Á <

1
3 and our choice of N1 and

N2,

N1 > Á(N1 + N2) (62)

(1 ≠ Á)(N1 + N2) > N1 + N2
2 + (n + 1)2 (63)

From (63) and a pigeonhole argument, any subset of size (1 ≠ Á)(N1 + N2) is guaranteed to
have (n + 1)2 pairs of points of the form (u(¸)

, z
(¸)
u) and (v(¸)

, z
(¸)
v). This is because the LHS

of (63) represents a lower bound on the number of points the candidate degree-2 PTF is
robust on. The RHS of (63) represents the number of points needed to ensure that atleast
(n + 1)2 pairs of points from Type B are picked. Hence using Lemma G.12 along with a
union bound over all the

! N2
(n+1)2

"
choices of the pairs (note that the failure probability in

Lemma G.14 is 0), the “intended” PTF sgn(z ≠ p(x)) is the only surviving degree-2 PTF.
Again from (62) and the pigeonhole principle, any (1 ≠ Á) fraction of the points will contain
atleast one point of the Type A i.e., (0, –). Hence in the NO case, the “intended” PTF
sgn(z ≠ p(x)) is not ”-robust. This completes the soundness analysis and establishes the
theorem.

32

