
Appendix

Lemma 1. limq!0 Lq(f(x), ej) = LC(f(x), ej), where Lq represents the Lq loss, and LC repre-

sents the categorical cross entropy loss.

Proof. from equation 6, and using L’Hôpital’s rule,

lim
q!0

Lq(f(x), ej) = lim
q!0

(1� fj(x)q)

q
= lim

q!0

d
dq (1� fj(x)q)

d
dq q

= lim
q!0

�fj(x)
q log(fj(x)) = � log(fj(x)) = LC(f(x), ej).

Lemma 2. For any x and q 2 (0, 1], the sum of Lq loss with respect to all classes is bounded by:

c� c(1�q)

q


cX

j=1

(1� fj(x)q)

q
 c� 1

q
. (14)

Proof. Observe that, since we have a softmax layer at the end, fj(x)  1 for all j, and
Pc

j=1 fj(x) =
1. Now, since q 2 (0, 1], we have fj(x)  fj(x)q , and (1� fj(x)) � (1� fj(x)q). Hence,

cX

j=1

(1� fj(x)q)

q


cX

j=1

(1� fj(x))

q
=

c�
Pc

j=1 fj(x)

q
=

c� 1

q
.

Moreover, since
Pc

j=1 fj(x)
q 

Pc
j=1(1/c)

q for all x and q 2 (0, 1],
Pc

j=1(1 � fj(x)q) �Pc
j=1(1� (1/c)q), and

cX

j=1

(1� fj(x)q)

q
�

cX

j=1

(1� (1/c)q)

q
=

c� c(1�q)

q
.

Theorem 1. Under uniform noise with ⌘  1� 1
c ,

0  (R⌘
Lq

(f⇤)�R⌘
Lq

(f̂))  A, (15)

and

A0  RLq (f
⇤)�RLq (f̂)  0, (16)

where A = ⌘[c(1�q)�1]
q(c�1) � 0, A0 = ⌘[1�c(1�q)]

q(c�1�⌘c) < 0, f⇤
is the global minimizer of RLq (f), and f̂ is

the global minimizer of R⌘
Lq

(f).

Proof. Recall that for any softmax output f ,

RLq (f) = ED[Lq(f(x), yx)] = Ex,yx [Lq(f(x), yx)],

and since for uniform noise with noise rate ⌘, ⌘jk = 1� ⌘ for j = k, and ⌘jk = ⌘
c�1 for j 6= k, we

have
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R⌘
Lq

(f) = ED[Lq(f(x), eyx)] = Ex,eyx [Lq(f(x), eyx)]
= ExEyx|xEeyx|yx,x[Lq(f(x), eyx)]

= ExEyx|x[(1� ⌘)Lq(f(x), yx) +
⌘

c� 1

X

i 6=yx

Lq(f(x), i)]

= ExEyx|x[(1� ⌘)Lq(f(x), yx) +
⌘

c� 1
(

cX

i=1

Lq(f(x), i)� Lq(f(x), yx))]

= (1� ⌘)RLq (f)�
⌘

c� 1
RLq (f) +

⌘

c� 1
ExEyx|x[

cX

i=1

Lq(f(x), i)]

= (1� ⌘c

c� 1
)RLq (f) +

⌘

c� 1
ExEyx|x[

cX

i=1

Lq(f(x), i)]

Now, from Lemma 2, we have:

(1� ⌘c

c� 1
)RLq (f) +

⌘[c� c(1�q)]

q(c� 1)
 R⌘

Lq
(f)  (1� ⌘c

c� 1
)RLq (f) +

⌘

q
.

We can also write the inequality in terms of RLq (f):

(R⌘
Lq

(f)� ⌘

q
)/(1� ⌘c

c� 1
)  RLq (f))  (R⌘

Lq
(f)� ⌘[c� c(1�q)]

q(c� 1)
)/(1� ⌘c

c� 1
)

Thus, for f̂ ,

R⌘
Lq

(f⇤)�R⌘
Lq

(f̂)  A+ (1� ⌘c

c� 1
)(RLq (f

⇤)�RLq (f̂))  A,

or equivalently,

RLq (f
⇤)�RLq (f̂) � A0 + (R⌘

Lq
(f⇤)�R⌘

Lq
(f̂))/(1� ⌘c

c� 1
) � A0

where A = ⌘[c(1�q)�1]
q(c�1) � 0 and A0 = ⌘[1�c(1�q)]

q(c�1�⌘c) , since ⌘  c�1
c , and f⇤ is a minimizer of

RLq (f). Lastly, since f̂ is the minimizer of R⌘
Lq

(f), we have that R⌘
Lq

(f⇤) � R⌘
Lq

(f̂) � 0, or
RLq (f

⇤)�RLq (f̂)  0 . This completes the proof.

Remark. Note that, when q = 1, A = 0, and f⇤
is also minimizer of risk under uniform noise.

Theorem 2. Under class dependent noise when ⌘ij < (1 � ⌘i), 8j 6= i, 8i, j 2 [c], where

⌘ij = p(ey = j|y = i), 8j 6= i, and (1� ⌘i) = p(ey = i|y = i), if RLq (f
⇤) = 0, then

0  (R⌘
Lq

(f⇤)�R⌘
Lq

(f̂))  B, (17)

where B = c1�q�1
q ED(1 � ⌘yx) � 0, f⇤

is the global minimizer of RLq (f), and f̂ is the global

minimizer of R⌘
Lq

(f).

Proof. For class dependent noise, from Lemma 2, for any soft-max output function f we have

R⌘
Lq

(f) = ED[(1� ⌘yx)Lq(f(x), yx)] + ED[
X

i 6=yx

⌘yxiLq(f(x), i)]

 ED[(1� ⌘yx)(
c� 1

q
�

X

i 6=yx

Lq(f(x), i))] + ED[
X

i 6=yx

⌘yxiLq(f(x), i)]

=
c� 1

q
ED(1� ⌘yx)� ED[

X

i 6=yx

(1� ⌘yx � ⌘yxi)Lq(f(x), i)],
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and

R⌘
Lq

(f) � c� c1�q

q
ED(1� ⌘yx)� ED[

X

i 6=yx

(1� ⌘yx � ⌘yxi)Lq(f(x), i)].

Hence,

(R⌘
Lq

(f⇤)�R⌘
Lq

(f̂)) c1�q � 1

q
ED(1� ⌘yx)+

ED

X

i 6=yx

(1� ⌘yx � ⌘yxi)[Lq(f̂(x), i)� Lq(f
⇤(x), i)].

Now, from our assumption that RLq (f
⇤) = 0, we have Lq(f⇤(x), yx) = 0. This is only satisfied iff

f⇤
i (x) = 1 when i = yx, and f⇤

i (x) = 0 if i 6= yx. Hence, Lq(f⇤(x), i) = 1/q 8i 6= yx. Moreover,
by our assumption, we have (1 � ⌘yx � ⌘yxi) > 0. As a result, to derive a upper bound for the
expression above, we need to maximize the second term. Note that by definition of the Lq loss,
Lq(f̂(x), i)  1/q 8i 2 [c], and hence the second term is maximized iff Lq(f̂(x), i) = 1/q 8i 6= yx.
This implies that the maximum of the second term is non-positive, so we have

(R⌘
Lq

(f⇤)�R⌘
Lq

(f̂)) c1�q � 1

q
ED(1� ⌘yx).

Lastly, since f̂ is the minimizer of R⌘
Lq

(f), we have that R⌘
Lq

(f⇤)�R⌘
Lq

(f̂) � 0. This completes
the proof.

Lemma 3. For any x and q 2 (0, 1), assuming 1/c  k < 1 where c represents the number of

classes, the sum of truncated Lq loss with respect to all classes is bounded by:

d̃kLq(
1

d
) + (c� d̃)Lq(k) 

cX

j=1

Ltrunc(f(x), ej)  cLq(k), (18)

where d̃ = max(1, (1�q)1/q

k ).

Proof. For the upper bound, by definition of truncated Lq , Ltrunc(f(x), ej)  Lq(k) for any x and
j. Hence,

Pc
j=1 Ltrunc(f(x), ej)  cLq(k).

For the lower bound, it can be verified that,
cX

j=1

Ltrunc(f̃(x), ej) 
cX

j=1

Ltrunc(f(x), ej)

where f̃(x) = (p, · · · , p, 0, · · · , 0), with p = 1/d � k and d is the number of elements in f(x) with
a value  k. Note that since p > k, 1  d  1/k:

cX

j=1

Ltrunc(f̃(x), ej) = dLq(p) + (c� d)Lq(k) = dLq(
1

d
) + (c� d)Lq(k).

We can get a universal lower bound (that does not depend on f ) by minimizing the above function
with respect to d. To do so, we treat d to be continuous. By definition of Lq loss, and recall that
0 < q < 1,

min
d2[1,1/k]

dLq(
1

d
) + (c� d)Lq(k) = min

d2[1,1/k]
d[(1� (

1

d
)q)/q � (1� kq)/q] = min

d2[1,1/k]
d[(kq � (

1

d
)q)].

We can verify using the second derivative test that the above objective function is convex. As a result,
we can find the minimum by taking its derivative. Doing so, we find that d = (1�q)1/q

k minimizes the
above objective function. Hence, the lower bound is

d̃kLq(
1

d
) + (c� d̃)Lq(k) 

cX

j=1

Ltrunc(f(x), ej),

where d̃ = max(1, (1�q)1/q

k ).

Remark. Using Lemma 3, we can prove that the proposed truncated loss leads to more noise robust

training following the same arguments as in Theorem 1 and 2.
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