Appendix

Lemma 1. lim, .o £L,(f(x),e;) = Lo(f(x), e;), where L, represents the L loss, and L repre-
sents the categorical cross entropy loss.

Proof. from equation [6] and using L"Hopital’s rule,

(1= fi(2))
g

= lim —f;(=)"log(f;(®)) = —log(f;(x)) = Lo(f (). €))-

lim L,(f(x),e;) = lim (1= fi()") = lim

q—0 q—0 q q—0

Lemma 2. For any x and q € (0, 1], the sum of L4 loss with respect to all classes is bounded by:

C*C(l a)

<Z“ff ezt (14)

Proof. Observe that, since we have a softmax layer at the end, f;(x)
1. Now, since ¢ € (0, 1], we have f;(x) < f;(x)?, and (1 — f;(x))

1 forall 5, and 25:1 fi(z) =

<
> (1 — fj(z)?). Hence,

(1ff] - 1ffj ) e fil@) c-1
> <> = ; P

Jj=1 Jj=1

Moreover, since 2521 [i(x)? < Z;Zl(l/c)q for all  and ¢ € (0,1], 25:1(1 — fi(x)1) >
> 5= (1= (1/c)?), and

¢ — f(p)e c — q — (=9
Z(l fj(m))ZZ(l (1/c)):c c
= q = q q
O
Theorem 1. Under uniform noise withn <1 — %
0< (RE,(f) = RE (f) < A, (15)
and
A" < Re, (%) = Re,(f) <0, (16)
where A = % >0, A = quc))] <0, f* is the global minimizer of R, (f), and fis

the global minimizer of qu (f)-

Proof. Recall that for any softmax output f,

R,Cq (.f) = IED [Lq(f(-’B), ym)} = Em,ym [ﬁq(f(m)v ym)]a

and since for uniform noise with noise rate 7, 1;x = 1 — 7 for j = k, and n;x = -5 for j # k, we
have
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R (f) = Ep[Ly(f(@), 7)) = Eo.a [£4(f (@), o)
=EzEy, 2B, 1ye.2[Lq(f(T), Uz)]
= BBy o1 = )Ly (f(@), o) + —= D Ly(f(@), )

1#Ya

= Bayjal(1 = m)Lo(F(@).90) + (3 Lo(F(@).) — Lo(F(@). )]
= (L= mRe, (D) = 5 Be,(5) + BBy u[Y £y(/(@).1)]

c - )
= (1= ) Re, () + 2 EaBy Y £4(f(@), )
i=1
Now, from Lemma 2, we have:

c—c(1-9)
1 )R, () + e

(1_0—1 qg(c—1)

<R} (f)<(1-

ne n
P I)ch(f) + r

We can also write the inequality in terms of R._(f):

. c — c(1-9) c
R0 = D= 2 < e (1) = () - RS-

Thus, for f,

R} (f) = R}, () < A+ (1= ) (Re, (F) = Re, () < A,

or equivalently,

Re,(f*) = Re,(f) = A+ (R}, (f*) — RL(F)/(1 - o) > &

c—1"—
where A = % > (0and A’ = Z[(lc%(:;))], since n < C;cl, and f* is a minimizer of
R, (f). Lastly, since f is the minimizer of R} (f), we have that R} (f*) — R} (f) >0, or
Re,(f*) = Re,(f) < 0. This completes the proof. O

Remark. Note that, when q =1, A =0, and [* is also minimizer of risk under uniform noise.

Theorem 2. Under class dependent noise when n;; < (1 —n;), ¥j # i, Vi,j € [c|, where
mij =Py = jly = 1), Vi # i, and (1 — ;) = p(y = ily = i), if R, (f7) = O, then

0< (R} (f*)—RE (f) <B, (17)

where B = Cl7;_1IED(1 — Ny,) > 0, f* is the global minimizer of Rr (f), and f is the global
minimizer of R} (f).

Proof. For class dependent noise, from Lemma 2, for any soft-max output function f we have

R} (f) =Ep[(1 = nya) Lo(f(®@),y2)] + En[ D myaily(f(@), )]

1#Ya
<Ep[(1 - ) (< L ST L, (F@), )]+ Enl Y il (), 1)
i#Ye 1#Ya
= B (1 — ) —En S (1= e — i) £al (), ),

£ Y
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and

R ()2 (1 - ) - ol (1~ .~ a1
Hence,
(B, ) = RE () <5 Bo(1 —m )+
o X1t =~ [Ea ) = £ (0]

Now, from our assumption that Rz (f*) = 0, we have L,(f*(x), y) = 0. This is only satisfied iff
fi(x) =1wheni =y, and f/(x) = 0if i # y,. Hence, L,(f*(x),7) = 1/q Vi # y,. Moreover,
by our assumption, we have (1 — n,, — 7,.;) > 0. As a result, to derive a upper bound for the

expression above, we need to maximize the second term. Note that by definition of the £, loss,

L, (f(x),7) < 1/qVi € [c], and hence the second term is maximized iff Ly(f(x),i) =1/qVi# yYg.
This implies that the maximum of the second term is non-positive, so we have
R cl—a —

N 1
(Rz, (") = Rz, (1) s Enl—my).
Lastly, since f is the minimizer of R} (f), we have that R}, (f*) — R}, (f) > 0. This completes
the proof. O

Lemma 3. For any x and q € (0,1), assuming 1/c < k < 1 where c represents the number of
classes, the sum of truncated L loss with respect to all classes is bounded by:

QL) + (= DLE) £ Y LirunelF(w),5) < eL,(h), (18)

where d = max(1, %)

Proof. For the upper bound, by definition of truncated L4, Lirune(f (), ej) < L4(k) for any  and
j- Hence, 371 Lirunc(f(x), ;) < cLy(k).

For the lower bound, it can be verified that,
Z ﬁtrunc(f(w)a ej) S Z ﬁtrunc(f(m)v ej)
j=1 j=1

where f(x) = (p,--- ,p,0,---,0), with p = 1/d > k and d is the number of elements in f(x) with
a value < k. Note that sincep > k, 1 < d < 1/k:

" Lorunel @), €3) = ALq(p) + (e = DLg(K) = dLq(3) + (e = d)L£,(0)

We can get a universal lower bound (that does not depend on f) by minimizing the above function
with respect to d. To do so, we treat d to be continuous. By definition of L, loss, and recall that
0<g<1,

1 1 1
in dLl,(= —d)L,(k) = in dj(1-(=)9)/q—(1—k? = in d[(k?—(=)D)].
L a(5) + (e = d)Ly(k) Jnin (A= (5)1/a—( )/d] Jnim [( (7)9)]
We can verify using the second derivative test that the above objective function is convex. As a result,

. . .. L. . —_q)v
we can find the minimum by taking its derivative. Doing so, we find that d = %

above objective function. Hence, the lower bound is

chq(é) + (c—d)Ly(k) < Z Lirunc(f(x), €;),

minimizes the

where d = max(L%). O

Remark. Using Lemma 3, we can prove that the proposed truncated loss leads to more noise robust
training following the same arguments as in Theorem I and 2.
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