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A Details of Derivations

A.1 Relation between NSM-0 and NSM-1

We will consider the optimization under an additional power constraint: TrY>Y  k as in [9, 11].
To arrive at a simpler objective function, let us first scale the current objective function by an overall
of factor of �

kT , a procedure that does not affect the optimal Y:

argmin
Y�0

TrY>Yk

�
2kT kX

>X�↵E�Y>Yk2F = argmin
Y�0

TrY>Yk

� �
kT Tr((X>X�↵E)Y>Y)+ �

2kT kY
>Yk2F .

(17)
Now we rescale the variables: Ỹ =

q
�T
k Y. If we hold � fixed and let k ! 0, the optimal Ỹ is

given by

lim
k!0

argmin
Ỹ�0

Tr Ỹ>Ỹ�T

�Tr((X>X�↵E)Ỹ>Ỹ)+kT
2� kỸ

>Ỹk2F = argmin
Ỹ�0

Tr Ỹ>Ỹ�T

�Tr((X>X�↵E)Ỹ>Ỹ,

(18)
since, in that limit, we can ignore the second term and just minimize the quadratic function of Ỹ.

We will work with the quadratic objective function discussed above. Switching back to Y from Ỹ
and applying a constraint on each diagonal element of Y>Y rather than to TrY>Y, we have:

min
Y�0

diag(Y>Y)�I

�Tr((D� ↵E)Y>Y) = min
8t2{1,2,...,T},yt�0

kytk2
2�

�
X

t,t0

(xt · xt0 � ↵)yt · yt0 . (19)

A.2 Proof of Proposition 1

Proposition 1. The optimal solution of Problem (NSM-1) satisfies

[(D� ↵E)y(a)]+ = ⇤y(a), (20)

where y(a) refers to the transpose of the a-th row of Y as a column vector and ⇤ = diag(�1, . . . ,�T )
is a nonnegative diagonal matrix.

Proof. We introduce Lagrange multipliers ⇤ = diag(�1, . . . ,�T ) for the constraint, diag(Y>Y) 
�I and the nonnegative Lagrange multiplier matrix Z 2 Rm⇥T , Z � 0, for the constraint Y � 0:

min
Y�0

diag(Y>Y)�I

�Tr((D� ↵E)Y>Y)

=min
Y�0

max
⇤�0

Tr
�
� (D� ↵E)Y>Y) +⇤(Y>Y � �I)

�

=min
Y

max
⇤�0,Z�0

Tr
�
� (D� ↵E)Y>Y) +⇤(Y>Y � �I)

�
� Tr(Z>Y). (21)

By varying Y 2 Rm⇥T we derive a necessary optimality condition:

(D� ↵E�⇤)Y> = �Z>/2. (22)

Since Z entries, zat, are nonnegative, Eq. (22) implies that the terms of the matrix (D�↵E�⇤)Y>

are either zero or negative. More over, if yat > 0 in the final solution, then the corresponding
Lagrange multiplier entry of the Z matrix, zat, is zero. We will use this fact to simplify the equations.
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To analyze Eq. (22) further, it is convenient to designate, analogically to y(a), the transpose of the
a-th row of Z as a column vector, z(a). Each y(a) must now satisfy:

(D� ↵E�⇤)y(a) = �z(a)/2. (23)

Now consider the two possibilities:

• If �tyat > 0, then yat > 0. Optimality conditions requires that zat is zero, implying:
�
(D� ↵E)y(a)

�
t
= �tyat. (24)

Since the RHS is positive, the LHS has to be positive. We can, therefore, replace the LHS by
[
�
(D� ↵E)y(a))t]+, giving us

[
�
(D� ↵E)y(a))t]+ = �tyat. (25)

• If �tyat = 0, we have �
(D� ↵E)y(a)

�
t
 0. (26)

In this case, we trivially get

[
�
(D� ↵E)y(a)

�
t
]+ = 0 = �tyat. (27)

Thus [
�
(D� ↵E)y(a)

�
t
]+ = �tyat for all a, t. Noting that (⇤y(a))t = �tyat,

[(D� ↵E)y(a)]+ = ⇤y(a). (28)

The Lagrange multipliers �1, . . . ,�T must be adjusted so that
P

a y
2
at  �, for each t, with �t = 0,

when the inequality is strict, i.e.,
P

a y
2
at < �.

A.3 Proof of Theorem 1

Invariance under group action could be represented concisely with the help of matrices {R(g) | g 2
G}, which form the natural representation of the group G: R(g)tt0 = �g(t)t0 , �mn being the Kronecker
delta. The condition of symmetry for the problem is then stated very simply: D = R(g)DR(g)>.
Lemma 1. To optimize Problem (NSM-1a), it is possible to restrict the search to the G-invariant
convex cone CPG = {Q 2 CPT |Q = R(g)QR(g)>, 8g 2 G}.

Proof. Thanks to convexity of Problem (NSM-1a), there exists one optimal solution Q0 which
is invariant under G, namely R(g)Q0R(g)> = Q0 for all g 2 G [42].2 Hence, it is enough to
search for solutions that are invariant under the group G. Since we search for solutions that are
invariant, we restrict ourselves to the convex cone of G-invariant T ⇥ T completely positive matrices:
CPG = {Q 2 CPT |Q = R(g)QR(g)>, 8g 2 G}.

Before getting to our main theorem, we make a few comments on finite group action on vectors
and the number of distinct vectors generated. Let y 2 RT . The action of g 2 G on y is given by
gy = R(g)y. The orbit of y under the action of G, Gy = {gy|g 2 G}, is a set on which G acts
transitively. The cardinality of the set Gy, in other words, the number of distinct vectors produced by
action of G on y, is given by the index of the stabilizer subgroup of y, Stab y = {h 2 G|hy = y},
in the group G. The index of a subgroup H in G, [G : H] is the number of left cosets in the coset
space G/H [43]. Summarizing,

|Gy| = [G : Stab y] = |G/Stab y| = |G|/|Stab y|.

Sometimes, this observation is called the orbit-stabilizer formula or theorem. Also, the distinct entries
of Gy are created by the action of members of distinct left cosets of Stab y. In our results, we will
use the cardinality of G/H , |G/H| rather than the [G : H] to indicate the index.

2The proof of this statement relies on showing that if Q is an optimal solution then the group orbit average
Q0 = 1

|G|
P

g2G R(g)QR(g)>, an explicitly G-invariant matrix, has equal value of the objective function.
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Theorem 1. If the action of the group G is transitive, that is, for any pair t, t0 2 {1, 2, . . . , T} there
is a g 2 G so that t0 = g(t), then there is at least one optimal solution of Problem (NSM-1a) with
Q = Y>Y,Y 2 Rm⇥T and Y � 0, such that

(i) for each a, the transpose of the a-th row of Y, termed y(a), satisfies

[(D� ↵E)y(a)]+ = �y(a), 8a 2 {1, 2, . . . ,m}, (29)

(ii) Let H be the stabilizer subgroup of y(1), namely, H = Stab y(1) ⌘ {h 2 G|hy(1) = y(1)}.
Then, m = |G/H| and Y can be written as

Y> = 1p
m
[g1y

(1)g2y
(1) . . . gmy(1)], (30)

where gi are members of the m distinct left cosets in G/H .

Proof. Part (i): Let us go back to the Lagrangian for Problem (NSM-1a):

argmin
Q2CPG

diag(Q)�I

�Tr((D� ↵E)Q) = argmin
Q2CPG

argmax
⇤=diag(�1,...,�T )

⇤�0

�Tr((D� ↵E)Q) + Tr(⇤(Q� �I)).

(31)
Following, Lemma 1, as we are only considering Q belonging to the G-invariant convex cone
CPG, we can replace Q by its orbit average 1

|G|
P

g2G R(g)QR(g)> in the expression in Eq. (31).
Looking at the Tr(⇤(Q� �I) term with this replacement, it is clear that in the Lagrangian, we could
replace ⇤ by 1

|G|
P

g2G R(g)⇤R(g)>. So we can restrict ourselves to Lagrange multipliers that are
G-invariant. In other words, we can assume ⇤ = R(g)⇤R(g)>.

Since the group action is transitive, the invariance implies that the diagonal elements of ⇤ are the
same, giving us ⇤ = �I. Now, using Proposition 1 and Q 2 CPG, the optimality condition becomes

[(D� ↵E)y(a)]+ = �y(a). (32)

Part (ii): This part is straightforward if tedious. Imagine we have a G-invariant Q = YT
0 Y0 =

Pm0

c=1 y
(c)
0 y(c)>

0 which is an optimal solution. The nonnegative vectors y(c)>
0 form the rows of the

matrix Y0 2 Rm0⇥T , and could be assumed to be nonzero vectors without loss of generality.

Since Q is G-invariant we have,

Q = 1
|G|

X

g2G

R(g)QR(g)> = 1
|G|

X

g2G

R(g)YT
0 Y0R(g)>. (33)

Rewrite the last matrix 1
|G|

P
g2G R(g)YT

0 Y0R(g)> as
Pm0

c=1
1
|G|

P
g2G R(g)y(c)

0 (R(g)y(c)
0 )>.

Let Q̃c ⌘ Tr(Q)

|G|ky(c)
0 k2

2

P
g2G R(g)y(c)

0 (R(g)y(c)
0 )>.

Then Tr(Qc) = Tr(Q) indicating the diagonal elements of Qc are the same as that of Q. Also Q is
a convex combination of Qc’s.

Q =
m0X

c=1

1
|G|

X

g2G

R(g)y(c)
0 (R(g)y(c)

0 )> =
m0X

c=1

⇢cQc, (34)

where ⇢c =
ky(c)

0 k2
2

Tr(Q) = ky(c)
0 k2

2Pm0
c0=1

ky(c0)
0 k2

2

. Note that
P

c ⇢c = 1. We will show that one of the Qc is as

good a solution as Q.

Let c0 = argmaxc Tr((D � ↵E)Qc). Since each Qc satisfies the same constraints as Q and
�Tr((D � ↵E)Q) = �

P
c ⇢c Tr((D � ↵E)Qc) � �Tr((D � ↵E)Qc0), Qc0 is an optimal

solution.

Now let y(1) ⌘
p

Tr(Q)

ky(c0)
0 k2

y(c0)
0 . Construct Y such that

Y> = 1p
|G/H|

[g1y
(1)g2y

(1) . . . g|G/H|y
(1)]
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with gi belonging to distinct cosets in G/H , where H is the stabilizer subgroup of y1.

With that, we have

Y>Y = 1
|G/H|

X

g2{g1,g2,...,g|G/H|}

R(g)y(1)(R(g)y(1))> = 1
|G|

X

g2G

R(g)y(1)(R(g)y(1))> = Qc0 ,

(35)
which is an optimal solution.

A.4 Details of Self-consistency Condition in the Ring Solution

In this section we provide additional details about the derivations presented in Sec. 4.1. Let us focus
on the solution for � = 0,

"
1
2⇡

Z 2⇡

0

�
cos(✓ � ✓0)� ↵

 
u0(✓

0)d✓0
#

+

= µu0(✓). (36)

Using cos(✓ � ✓0) = cos ✓ cos ✓0 + sin ✓ sin ✓0 and our ansatz for u0(✓0) being even in ✓0, we get
"

cos ✓
2⇡

Z 2⇡

0
u0(✓

0) cos ✓0d✓0 � ↵
2⇡

Z 2⇡

0
u0(✓

0)d✓0
#

+

= µu0(✓). (37)

The LHS is already in the form A[cos ✓ � cos ]+. Hence,

cos =
↵
R 2⇡
0 u0(✓0)d✓0

R 2⇡
0 u0(✓0) cos ✓0d✓0

=
↵
R  
0 (cos ✓0 � cos )d✓0

R  
0 (cos ✓0 � cos ) cos ✓0d✓0

. (38)

We now compute µ in terms of ↵, by setting ✓ = 0 in Eq. (37). Remembering that u0(✓0) is
proportional to [cos ✓0 � cos ]+

1

⇡

Z  

0
(cos ✓0 � cos ) cos ✓0d✓0 � ↵

⇡

Z  

0
(cos ✓0 � cos )d✓0 = µ(1� cos ). (39)

Using Eq. (38), this can be simplified to

µ = 1
⇡

Z  

0
(cos ✓0 � cos ) cos ✓0d✓0. (40)

Doing the integrals, we get the dependence of µ and  on ↵, given parametrically by

↵ =
cos (2 � sin 2 )

4(sin �  cos )
, (41) µ = 1

4⇡ (2 � sin 2 ). (42)

A.5 Optimality for NSM-0 and the Solution on the Ring

In this section we provide additional details about the derivations presented in Sec. 4.1. If we go back
to a nonnegative version of similarity-preserving, we could rewrite the problem as:

argmin
Q2CP

Tr(Q)k

1
2 Tr

�
(D� ↵E�Q)2

�
. (NSM-0a)

We have chosen to use an inequality Tr(Q) = Tr(Y>Y)  k rather than an equality to simplify the
discussion. Note that these optimization problems minimize a convex function, in fact a quadratic one
in Q, in a convex region. Many of the arguments we have made so far about invariant problems apply
to these problems as well. If we derive the optimality condition following our earlier arguments, we
get

[(D� ↵E�Q)y(a)]+ = �y(a). (43)

The choice of � decides the constraint on Tr(Y>Y). If we set � to be near zero, we get Q as close
to D� ↵E as possible for the elements where D � ↵E is nonnegative. As we let � grow bigger, Y
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becomes smaller. As � gets closer to its maximum possible value, we have D� ↵E � Y>Y = Q.
In that limit,

[(D� ↵E)y(a)]+ = �my(a), (44)
which is the nonnegative eigenvector problem we saw for NSM-1 when it has a symmetry group
acting transitively. The Lagrange multiplier � thus takes values between zero and �m.

In NSM-0, ↵E+Q provides the inhibitory interaction to make the localized bump solutions. The
non-triviality of the analysis comes from having to solve y(a)’s to determine Q and vice versa. That
self-consistency problem is non-trivial, in general.

For the ring model, thanks to the symmetries, we have Q to be a circulant matrix. In this case,we can
solve the self-consistency problem numerically quite easily. As shown in Fig. 7, increasing � reduces

Figure 7: The receptive fields from NSM-0 for two different values of �. We use T = 628, but plot
the result against ✓ = 2⇡t/T � ⇡.

the size of the response but also alters the tuning curve. When � ⇡ �m, y(a) is approximately given
by truncated cosines.

A.6 Details of NSM-1 Solutions for S2 and for SO(3)

In this section we provide additional details about the derivations presented in Sec. 4.2. For S2, we
start from the equation

1

4⇡

"Z

S2

�
x(⌦) · x(⌦0)� ↵)

 
u�(⌦

0)d2⌦0

#

+

= µu�(⌦). (45)

This equation invariant under 3-dimensional rotations around the origin of the sphere. For g 2 SO(3),
let the action of g take ⌦ to g⌦, with x(g⌦) = R(g)x(⌦). R(g) is the 3 ⇥ 3 orthogonal matrix
representation of the rotation. If u�(⌦) is a solution, so is u�(g⌦). We will use this feature to create
a family of solutions by action of rotation group on a single solution.
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Since
R
S2 x(⌦) · x(⌦0)u�(⌦0)d2⌦0 = x(⌦) ·

⇥ R
S2 x(⌦0)u�(⌦0)d2⌦0⇤, we will compute the vectorR

S2 x(⌦0)u�(⌦0)d2⌦0. One way to describe the point ⌦ on the sphere is by using polar coordinates
(✓,�) , with x(⌦) = (sin ✓ cos�, sin ✓ sin�, cos ✓).

Imagine u�(⌦) = U(✓), namely, it is independent of �. In that case,
Z

S2

x(⌦0)u�(⌦
0)d2⌦0 =

✓
0, 0, 2⇡

Z ⇡

0
d✓0 sin ✓0 cos ✓0U(✓0)

◆
, (46)

implying that
R
S2 x(⌦) · x(⌦0)u�(⌦0)d2⌦0 / x3(⌦) = cos(✓). Thus,

Z

S2

�
x(⌦) · x(⌦0)� ↵)

 
u�(⌦

0)d2⌦0 = a cos ✓ � b, (47)

with a = 2⇡
R ⇡
0 d✓0 sin ✓0 cos ✓0U(✓0) and b = 2↵⇡

R ⇡
0 d✓0 sin ✓0U(✓0). Defining A = a/µ,B =

b/µ, and using Eq. (45), we have

U(✓) =
⇥
A cos ✓ �B

⇤
+
. (48)

When A > B, U(✓) = A
⇥
cos ✓ � cos 

⇤
+

, which is non-zero only for 0  ✓   . To get to the
self-consistency conditions for the parameters, we go through procedures very similar to what we did
for the ring. We ultimately get

cos =
↵
R  
0 (cos ✓0 � cos ) sin ✓0d✓0

R  
0 (cos ✓0 � cos ) cos ✓0 sin ✓0d✓0

(49)

and

µ = 1
2

Z  

0
(cos ✓0 � cos ) cos ✓0 sin ✓0d✓0. (50)

Working out the integrals gives the parametric equations

↵ = 1
3 cos (2 + cos ), (51)

µ = 1
3 sin

4  

2
(2 + cos ). (52)

Moving over to the case of the rotation group, for g, g0 2 SO(3) we take the 3⇥ 3 matrix representa-
tions R(g),R(g0) and consider 1

3 Tr
�
R(g)R(g0)>

�
to be the similarity kernel.

"Z

SO(3)

�
1
3 Tr

�
R(g)R(g0)>

�
� ↵)

 
u�(g

0)d3g0
#

+

= µu�(g). (53)

The Haar measure normalized so that
R
SO(3) dg

0 = 1. Once more, we can find a solution with �
corresponding rotation group element g0 where the response is maximum, i.e.,

ug0(⌦) =
A
2

⇥
Tr

�
R(g0)

>R(g)
�
� 2 cos � 1

⇤
+
, (54)

with  , µ being determined by ↵ through self-consistency equation. Since R(g0)>R(g) = R(g�1
0 g)

is a rotation, its trace is determined by the angle of rotation ✓. Let us work out the self-consistency
for the special case where g0 is the identity element. u�(g) = U(✓), where ✓ is associated
with rotation angle of g: R(g) has the eigenvalues 1, ei✓, e�i✓, corresponding to eigenvectors
ê1,

1p
2
(ê2 + iê3),

1p
2
(ê2 � iê3), respectively. Integrating over g for the same ✓ corresponds to

averaging over a random orthonormal basis {ê1, ê2, ê3}. Using that fact, we could argue thatR
SO(3) R(g0)>u�(g0)d3g0 is proportional to the identity matrix.
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Hence,

µU(✓) =

Z

SO(3)

�
1
3 Tr

�
R(g)R(g0)>

�
� ↵)

 
u�(g

0)d3g0

= 1
3

X

ij

R(g)ij

Z

SO(3)
R(g0)iju�(g

0)d3g0 � ↵

Z

SO(3)
u�(g

0)d3g0

= 1
3

X

i

R(g)ii

Z

SO(3)
R(g0)iiu�(g

0)d3g0 � ↵

Z

SO(3)
u�(g

0)d3g0

= 1
9 Tr(R(g))

Z

SO(3)
Tr(R(g0))u�(g

0)d3g0 � ↵

Z

SO(3)
u�(g

0)d3g0

=
1 + 2 cos ✓

3

Z ⇡

0

1 + 2 cos ✓0

3
U(✓0)(1� cos ✓0)

d✓0

⇡
� ↵

Z ⇡

0
U(✓0)(1� cos ✓0)

d✓0

⇡
. (55)

The last step involves changing variables to ✓0 and getting the appropriate Jacobian (1 � cos ✓0),
before integrating out the variable related to the rotation axis. The factor 1

⇡ is needed to maintain
that

R
SO(3) dg

0 =
R ⇡
0 (1 � cos ✓0)d✓

0

⇡ = 1. Going through similar steps as before, and noting that
U(✓0) / [cos ✓0 � cos ]+, we get the self-consistency conditions to be

1 + 2 cos =
9↵

R  
0 (cos ✓0 � cos )(1� cos ✓0)d✓0

R  
0 (cos ✓0 � cos )(1 + 2 cos ✓0)(1� cos ✓0)d✓0

, (56)

µ =
2

9⇡

Z  

0
(cos ✓0 � cos )(1 + 2 cos ✓0)(1� cos ✓0)d✓0. (57)

Doing these integrals gives us the parametric equations for the SO(3) problem to be

↵ =
(1 + 2 cos )(6 � 3 sin � 3 sin 2 + sin 3 )

27(�2 + 4 sin + sin 2 � 4 cos )
, (58)

µ =
1

54⇡
(6 � 3 sin � 3 sin 2 + sin 3 ). (59)

A.7 Relation between NSM-1 and NSM-2 in Presence of Symmetry

Written in terms of Q, without rank constraints, and with an inequality for TrQ, NSM-2 is stated as
min

Q2CPT

�Tr(DQ) s.t. Q1 = 1, Tr(Q)  �T. (QNSM-2)

Introducing Lagrange multipliers, the Lagrangian version of QNSM-2 becomes
min

Q2CPT

max
↵2RT

max
��0

�Tr(DQ) +↵>(Q1� 1) + �(Tr(Q)� �T )). (60)

When D is G-invariant, one can restrict the Q search to the G-invariant cone:
min

Q2CPG

max
↵2RT

max
��0

�Tr(DQ) +↵>(Q1� 1) + �(Tr(Q)� �T )). (61)

The ↵ dependence comes in through the term ↵>Q1. Since Q 2 CPG, we can play the trick of
replacing Q by 1

|G|
P

g2G R(g)QR(g)>.

↵>Q1 = 1
|G|

X

g2G

↵>R(g)QR(g)>1 =

0

@ 1
|G|

X

g2G

↵>R(g)

1

AQ1. (62)

So we could replace ↵ by ↵̄ = 1
|G|

P
g2G R(g�1)↵. When G acts transitively, ↵̄ is a constant

vector, namely ↵1. In that case, the optimization problem becomes
min

Q2CPG

max
↵2R

max
��0

�Tr(DQ) + ↵(Tr(EQ)� T ) + �(Tr(Q)� �T )), (63)

The necessary condition for Y, where Q = Y>Y, is now
[(D� ↵E)Y>]+ = �Y>, (64)

which is the same equation we analyzed for G-invariant NSM-1.
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A.8 Derivation of the online algorithm

We start by changing the orders of optimization, and arriving at a dual of equation (13):

min
W

max
b

X

t

lt(W,b), (65)

where

lt(W,b) = Tr(W>W)� kbk22
+ min

yt�0
max
zt�0

max
Vt�0

⇣
�2xtW

>yt + 2
p
↵yt · b� � kztk22 + 2ztVtyt � Tr(V>

t Vt)
⌘
. (66)

While this form is only an approximation to (13), it is convenient for online optimizaiton.

We solve (65) by an online alternating optimization of lt [44, 45]. First, we optimize with respect to
yt, zt and Vt, by projected gradient descent-ascent-descent. This iteration results in the dynamics
(14). Then, with optimal values of yt, zt and Vt fixed, we do a gradient descent-ascent in W and b.
This results in (15).

B Additional NSM-2 Results

In figs. 8 to 10 we include a few additional examples that showcase the capabilities of NSM-2.
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Figure 8: Manifold-tiling solutions of NSM-2: additional examples from synthetic datasets.
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Figure 9: Manifold-tiling solutions of NSM-2: additional examples from the Yale Faces dataset.
From top to bottom: using 2, 3, and 4 subjects, respectively. We build a 2d linear embedding (PCA)
from the solution Y (each subject is identified by a different color in the right-most plot).
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Figure 10: Manifold-tiling solutions of NSM-2: additional example with a synthetic 2d grid. We show
a statistical summary of the receptive fields, after aligning them. Bottom row: A few representative
receptive fields.
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