A Proofs from the analysis of STRSAGA

This section contains proof details from the analysis of STRSAGA. Throughout, we will assume that
all fx are convex and their gradients are L-Lipschitz continuous, and that Rs is p-strongly convex
for the set of training samples S. In addition, we will use U which we define as follow:

an(t - ]-7 n)
min[U(¢,m) + o
m<n

U(t,n) = min { — m?—[(m)], (1)

where p,, is the convergence rate of SAGA and defines as p,, = 1 — min(%, £). And, the initial error
U(0,m) = ( is defined as:

(= %[R(w()) — R(w")).

We will use the following results from [DLH16].

Lemma 10. (THEOREM 3 IN [DLHI16]) Suppose the expected sub-optimality of an algorithm A
over a training set T C S is bounded as E [SUBOPT7(A)] < e. Then the expected sub-optimality of
A over S is bounded by E [SUBOPTs(A)] < € + 2=H(m), where |T| = m,|S| = n.

n
Lemma 11. (PROPOSITION 4. IN [DLHI16]) The expected sub-optimality of DYNASAGA over a
training set S at iteration t is

[ [SUBOPT (DYNASAGA)] < U(t,n).
where the expectation is taken over randomness of S, and U is defined in (1).
Lemma 12. (LEMMA 5 IN [DLH16]) For H(n) = cn~*where 1/2 < a < 1,

U(2n,n) < H(n) + g <,TLn>2 .

Using above results, we will bound the expected sub-optimality of STRSAGA in terms of the U
function.
Lemma 13. At the end of each time step i, the expected sub-optimality of STRSAGA over Tj; is
IE [SUBOPT7, (STRSAGA)] < U(2£5™, £5™8).
where U is the upper bound function defined in (1).

Proof. The proof is similar to the proof of Proposition 4 in [DLH16]. Note that performing extra
steps of SAGA when the Buf is empty does not weaken the bound. O

Next, we prove the main result we stated in Section 4 bounding the expected sub-optimality of
STRSAGA by the H function of its effective sample set size.

Lemma 3. Suppose all fx are convex and their gradients are L-Lipschitz continuous, and that R,
is p-strongly convex. At the end of each time step 1, the expected sub-optimality of STRSAGA over T;

A

L

3 2
[E [SUBOPT7, (STRSAGA)] < H(£™) + 2 (R(wo) — R(w™)) <;> (%) :

If we additionally assume that the condition number L/ is bounded by a constant at each time, the
above simplifies to E [SUBOPT, (STRSAGA)] < (1 + o(1))H(t5™).

Proof. The expected sub-optimality is bounded by the U function by Lemma 13, and we have a
bound on U by Lemma 12. Therefore,

E [SUBOPTy, (STRSAGA)] < U(265™,£5™)

L 2
< H(ffm) + g <m>

— H(E™) + 2 (R(wo) — R(w")) (f) (%)
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In addition, we have the following result on the expected sub-optimality of DYNASAGA (p).
Lemma 14. At the end of each time step i, the expected sub-optimality of DYNASAGA (p) over S; is

o\
p) +o(1) | H(ng)

[E [SUBOPTS, (DYNASAGA (p))] < | max 1,(

where )Tl = (%L) and n; = |S;].

Proof. According to Lemma 11, the expected sub-optimality of DYNASAGA (p) over the sample
set S; of size n; after ¢ iterations is bounded by U(#,n;). As mentioned earlier, the Algorithm
DYNASAGA (p) has limited computational power and can performs only pi steps of SAGA. Thus,

IE [SUBOPTS, (DYNASAGA (p))] < U(pi, n;)
If X; < p/2, then
[E [SUBOPTg, (DYNASAGA (p))] < U(pi, n;)

< U(2)\ i,n;) = U(2n;,n;)
2
<00+ § (i)

If X; > p/2, then n; = (\;)i > (p/2)i. Let T be a subset of S; such that |T| = (p/2) 1, then
Lemma 10 results

Xii = (p/2)i

IE [SUBOPTs, (DYNASAGA (p) )] < E [SUBOPT7, (DYNASAGA (p))] +

R (p/2)i
. N i = (p/2)id .
< Ul(pi, (p/2)i) + WH((P/Z) i)

o+ () (5
2

) (21 >+% (“ 7 >
o\ 2, 2
, ) ' ( o ) ”m

B Proofs from competitive analysis of STRSAGA on specific arrival
distributions

#H((p/2)i)

) H((p/2)1)

DO [y

This section contains proof details from the competitive analysis of STRSAGA on specific arrival
distributions. Throughout, we will assume that all fx are convex and their gradients are L-Lipschitz
continuous, and that Rs is p-strongly convex for the set of training samples S. In addition, we
assume that the condition number L/ is bounded by a constant at each time.

Constant Arrival Rate. We first consider the case where x; = \ for each 7, so that the number of
arrivals in each time step is the same.

Lemma 15. For a constant arrival rate, STRSAGA is (1 4 o(1))-risk-competitive to DYNASAGA (p)
at any time step.

Proof. Tf p/2 < A, for each time i, we have 5™ = tP = pi/2. Similarly, if A < p/2, we have
5™ = ¢tD = Ni. Using Lemma 3, we have: E [SUBOPTr, (STRSAGA)] < (1 + o(1))H(t,5™) =
(14 o(1))H(t;?). Note that (1 + o(1))H(¢;?) is identical to the upper bound that we get for the
expected sub-optimality of DYNASAGA (p). O
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We use the following Theorem 1 from [MU17].
Theorem 1 (Chernoff Bound) Let X1, ..., X,, be independent Poisson trials such that Pr [ X;] = p;.

Let X = Z X; and p = E [X]. Then the following Chernoff bounds hold:

=1

e For0<d <1, ,
PriX <(1—0)pu <e /2

e For0<d <1, ]
PriX > (140)pu <er/3
3Mln—

Lemma 16. For a skewed arrival distribution with mean A and parameterized by M, for i > 575
with probability at least 1 — ¢, we have n; < (14 6) Ai, where 0 < 6 < 1.

Proof. LetY; denotes the number of non-empty arrivals in time steps 1, . . . , 7. Y; follows the binomial
distribution with parameters n = 4, and p = A\/M, ie., Y; ~ B( A/M) and E[Y;] = \i/M.
According to Theorem 1, for 0 < 5 <1

Pr[Y; > (1+0) Ai/M] < e~ 5% < e

On the other hand, we have n;, the number of arrivals in the first ¢ time steps, is M - Y;. Thus, for

7> M Y ln with probability at least 1 — ¢, we have n; < (1 + J)\i. O
Lemma 17. For a skewed arrival distribution with mean \ and parameterized by M, for v > 3% ln 2
with probability at least 1 — ¢, we have n; 5 > (1 — 6)Xi/2, where 0 < 6 < 1.

Proof. Same as Lemma 16, let Y; denotes the number of non-empty arrivals in time steps 1, ...,

Y; follows the binomial distribution with parameters n = i, and p = \/M, i.e.,Y; ~ B(i, \/M) and
E[Y;] = A\i/M. According to Theorem 1, for 0 < § < 1:

Pr |/, < (1—5);—]\2 <e T <
On the other hand, we have n; /25 total number of arrivals in the first /2 time steps, is M - Y; /2- Thus,
for i > 5 M In L with probability at least 1 — ¢, we have n; /2 > (1 — 8)Ai/2. O

Lemma 6. For a skewed arrival distribution with maximum M and mean A\, STRSAGA is 6% (2+0(1))-
risk-competitive to DYNASAGA (p), with probability at least 1 — €, at any time step i > &)f” In %

Proof. By setting § = 1/2 in Lemma 16, for i > % In %, with probability at least 1 — €, we
have n; < (£) Xi. On the other hand, by setting § = 1/2 in Lemma 17, for i > 14 In 1, with
probability at least 1 — ¢, we have n;/, > \i/4. Therefore, using union bound we can conclude
with probability at least 1 — 2¢, we have n; /5 > %nz fori > 16M ln . As aresult, using Lemma 5,
STRSAGA and DYNASAGA (p) are at least %-sample-competitlve and therefore by Lemma 4, STRSAGA

is 6%(2 4 o(1))-risk-competitive with DYNASAGA (p). d
Observation 1. Let x1, 23, ..., x, be independent random variables such that E [x;] = X and the
range of these random variables is {0, 1, , ..., M}, then the variance of x; is no more than \(M — \).
Proof.
M M
. 2 .
Varlz,) =Y pi(j =N =D i*pi | -\
§=0 =0
M
<MD jpy— N =MA- N
j=0
O
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We use the following Theorem 2 from [Mas07].

Theorem 2. (Bernstein’s Inequality) Let x1, s, . . ., T, be independent bounded random variables
such that E [z;] = 0 and z; < M with probability I and let 0> = L 3~ Var|z;]. Then for any a > 0
=1

we have:

n 2
— na
— z;, >al <e 202+4+2Ma/3
n E = >
Jj=1

Using Theorem 2, we can show:

Lemma 18. For any general arrival distribution with mean A and bounded maximum M, for

7> 3((15'*12))2 M ln =, with probability at least 1 — €, we have n; < ki, forany k > 1.

Proof. According to Observation 1, we have Var|[z;] < MA. Let’s define random variable z; =
x; — A\. We have E [z;] = 0 and Var[z;] = Var[z;] < MA. Now, using Theorem 2 (Bernstein’s
inequality) and setting a to A we have:

1 1<
Pr(n; > kXi] = — > = Z =) > (
rn; > kXi] = Pr [Z( i) > (k— ] ZZ A) > (k—1)A
j=1
= Pr Z ZJ > — 1 S e 21»1;4(:;;/11()7333)A/3 —e 32(?1@112))2 ﬁ’
For i > 32(&k+1:;)2 M ln =, this probability is at most . O

We use the following Theorem 3 from [BDR15].

Theorem 3. Let x1,xo, ..., x, be a finite sequence of independent and non-negative random vari-
ables with finite variances. Denote S,, = x1 + x2 + ... + xy, and V,, = Var(S,). Then, for any
a >0,

2

Pr[S, <E[S,]—qa] < € nFWn
where

3 mi

1 n ‘2_ ] 2
W, == Z (u) , mp=E[zg] and v, =Var(xzg)
k=1

Lemma 19. For any general arrival distribution with mean A\ and bounded maximum M, for

7> % In 1, with probability at least 1 — €, we have nisp > ki, forany k < %

Proof. According to Theorem 3:

a2 _2%i2a/2-k)? _ 302k,
Thus, for i > 1442 In L with probability at least 1 — ¢, we have 15 > ki. |

Lemma 7. For a general arrival distribution with mean \ and maximum M, at any time step
1 >1 (L8M ) + 8)In L, STRSAGA is 8(2 4 o(1))-risk-competitive to DYNASAGA (p), with probability
at least 1 — e.

Proof. Similar to the proof of Lemma 6, by setting £ = 2 in Lemma 18 and k = 1/4 in Lemma 19.
g

We use the following Theorem 4 from [Mas07].
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Theorem 4. Let ©1,%o, ..., 2, be independent random variables with mean )\ and variance o>

satisfying the Bernstein condition with parameter b, |E [(z; — X\)*] | < $klo?b*=2 for all integers
k > 3. Then for any t > 0 we have:

n 12
Pr [Zm—A) Zt] < o T

i

Using above theorem we have:

Lemma 20. For any arrival distribution x; with E [x;] = X and variance o that satisfies Bernstein’s

2(a?4+b)

condition with parameter b, for v > [asiErel In % with probability at least 1 — €, we have n; < ki,

forany k > 1.

Proof. According to Theorem 4, we have:

(k—1)2x2 .

Prlng; > kM) = Prl(n; — M) > (k= 1)Xi] < e 225"

when i > ?](;:214;21) ;3 In L, this probability is at most e. O

2
Lemma 21. For any arrival distribution x; with mean X and variance o?, for i > % In %

with probability at least 1 — ¢, we have n; 5 > ki for any k < 3.

Proof. Similar to the proof of Lemma 19. ]

Lemma 8. For any arrival distribution with mean )\, bounded variance o> and satisfying Bern-
stein’s condition with parameter b, STRSAGA is 8% (2 + o(1))-risk-competitive to DYNASAGA (p), with
probability at least 1 — ¢, at any time step i > max((16($)* + $)In1,2(($)* + %) Ini).

Proof. Similar to the proof of Lemma 6, by setting ¥ = 2 in Lemma 20 and ¥ = 1/4 in Lemma 21.

O
Lemma 22. Fori > % In 1, with probability at least 1 — €, we have n; < (1 + 0)Xi for any
0<é6<1.
Proof. It can be inferred from Theorem 1. O
Lemma 23. Fori > )\ﬁg In L, with probability at least 1 — €, we have n; /> > (1 — §)Xi/2 for any
0<é<l
Proof. 1t can be inferred from Theorem 1. O

Lemma 9. For Poisson arrival distribution with mean )\, STRSAGA is 8%(2 + o(1))-risk-competitive
to DYNASAGA (p) with probability at least 1 — €, at any time step © > % In % .

Proof. Similar to the proof of Lemma 6, by setting 6 = 1 in Lemma 22 and § = 1/2 in Lemma 23.
|

C Additional experimental details

Setup All algorithms were implemented in Python using numpy, and the experiments were run on a
64-bit Intel(R) Xeon(R) CPU clocked at 3.30 GHz and 8G DDR3 RAM.

Datasets Details of the 4 real-world datasets we used are given in Tables 1 and 2. We reserve 10% of
each dataset for testing and use the remaining 90% for training.

The loss function for the binary classification task is L2-regularized logistic loss. For a data point
(z,y), the corresponding loss is f(, (W) = log(1 + exp(—yw” z)) + &||w]|3. For collaborative
filtering, we solve the matrix factorization problem of finding two rank-10 matrices, w = (L, R), so
that LR” approximates the known elements of the data matrix M. The regularized loss function for

15



Table 1: Datasets for logistic regression

Dataset Size  Number of Features
RCV1.BINARY 20242 47236
A9A 32561 123

Table 2: Datasets for matrix factorization

Dataset Users Movies Date Range Rating Scale  Density

MovieLens100K 943 1682 9/1997-4/1998 1-5, stars 6.30%
MovieLensIM 6040 3706  4/2000-2/2003 1-5, stars 4.47%

the data point M is fi; jy(w) = ((LRT);; — M;;)? + 5(||L||% + ||R||%). The rank 10 for matrix
factorization was chosen for good validation set error after optimizing with SGD after a single pass
over the static dataset. The setting of  for each dataset similarly chosen to minimize the validation
set error, jiaon = 1073, irev = 1072, fimovieLens = 107 L. The step sizes we used for each algorithm
and each dataset were again chosen to minimize the validation set error after a single pass. For
SGD, we used a constant step size, which performed better than a decaying step size of the form
= 1o/ (1 + noput).

Additional Results In the main paper, we only showed the sub-optimality under skewed arrivals. In
Figure 4, we plot the test loss. We observe that the accuracy of STRSAGA is comparable with the
offline algorithm DYNASAGA (p) under this bursty arrival pattern even at limited processing rates.
Furthermore, STRSAGA yields a more accurate model than either SGD or SSVRG.

a%a, p=1A rcv, p=1A movielenslm, p=1A
0.9 244
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0.8 224
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Figure 4: Test loss under skewed arrivals with M = 8\. Top row is processing rate p = 1A, and
bottom row is p = 5. The median is taken over 5 runs.

We also consider Poisson arrivals. Sub-optimality is shown in Figure 5 and test loss in Figure 6.
The median sample-competitive ratio is 1 from the beginning of the stream, which is significantly
better than the ratio we showed analytically. Note that the curves for STRSAGA and DYNASAGA (p)
coincide for p/A = 1 when STRSAGA is sample-competitive at all points in the stream, since the two
algorithms are identical in this regime. Again we find that STRSAGA outperforms SGD and SSVRG.

All plots for the MovieLens100K dataset were omitted in the main paper. Sub-optimality is shown in
Figure 7 and test loss in Figure 8. The trends are similar to those for the MovieLens1M dataset. One
notable exception is the poorer performance of SSVRG. We have chosen similar hyperparameters for
both the 100K and 1M datasets (in a streaming data setting, we generally do not know how much
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Figure 5: Sub-optimality under Poisson arrivals with mean \. Top row is processing rate p = 1\, and
bottom row is p = 5. The median is taken over 5 runs.
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Figure 6: Test loss under Poisson arrivals with mean A. Top row is processing rate p = 1), and
bottom row is p = 5. The median is taken over 5 runs.

data will arrive in advance), and the slower convergence on the 100K dataset is likely due to a greater
sensitivity to the hyperparameter selection of SSVRG.

Consistently we observe STRSAGA is increasingly close to the offline DYNASAGA (p) as time passes and
that STRSAGA performs better than SGD and SSVRG across each dataset and both arrival distributions.
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Figure 7: Additional plots of sub-optimality for MovieLens100k.
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Figure 8: Additional plots of test loss for MovieLens100k.
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