Supplementary Material for Generalizing Tree
Probability Estimation via Bayesian Networks

A The SBN Representation of The Rooted Tree from Figure 1
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Figure A.1: The SBN representation of the rooted tree from Figure 1. For ease of presentation, we
use the indexes of the leaf labels for subsplits. We also omit the fake splits after depth 4.

B Proof of Lemma 1

Proof. 1t suffices to prove the lemma for the minimum SBN B%.. For any rooted tree 7", with natural
indexing, a compatible assignment is easy to obtain by following the splitting process and satisfying
the compatibility requirement defined in Definition 2. Moreover, the depth of the splitting process is
at most N — 1, where N is the size of X. To show this, consider the maximum size of clades, d;, in
the i-th level of the process. The first level is for the root split, and d; < N — 1 since the subclades
need to be proper subset of X'. For each ¢ > 1, if d; > 1, the splitting process continues and the
maximum size of clades in the next level is at most d; — 1, that is d; 1 < d; — 1. Note that the split
process ends when d; = 1, its depth therefore is at most N — 1. The whole process is deterministic,
so each rooted tree can be uniquely represented as a compatible assignment of B%.. On the other hand,
given a compatible assignment, we can simply remove all fake splits. The remaining net corresponds
to the true splitting process of a rooted tree, which then can be simply restored. [

C Proof of Proposition 1

Proof. Denote the set of all SBN assignments as .A. For any assignment a = {S; = s%},>1, we have

Psbn (@) = p(S1 = s%) Hp(Si = s{|Syr, = s%) > 0= aiscompatible. (1)
i>1
As a Bayesian network,

> pamla) =D p(S1=s1)[[ D p(Si = silSr, = 5z,) = 1.

acA i>1 s,
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By Lemma 1,

Zpsbn(T) = Z Psbn(a) = Z Pebn (@) = 1.
T

a~compatible acA

D Proof of Proposition 2

Proof.
D paon(T) =" " p(S1) [[p(SilS)
Tu Tw S;~Tn i>1

= Z Psbn (T)
T

=1

The second equality is due to the one-to-one correspondence between rooted trees and unrooted trees
with specific rooting edges (compatible splits):

T 2% (T, 8,), Sy ~ T

E Figure for Shared Parent-child Subsplit Pairs in SBNs
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Figure E.1: Subsplit pairs shared among different nodes in SBNs. Top panels show the rooted
trees that share the same local parent-child subsplit pair ((B,C), D). Bottom panels are their
corresponding representations in SBNs. Just like in the trees, the same pair could appear at multiple
locations in SBNs.

F Related Work

The idea of using conditional probabilities associated with local tree structures (e.g., clades) to
approximate the whole posterior distribution on tree topologies started with Hohna and Drummond
[2012], where the authors extended the additive binary (AB) coding scheme [Farris et al., 1970,
Brooks, 1981] to a new algorithm that approximates the posterior probabilities of trees by a product of
conditional clade probabilities (CCP). However, the CCP method does not provide a true probability
distribution on trees and requires renormalization to obtain the estimated probabilities. Therefore,
CCP is not tractable for trees with many taxa except for restricting to a small subset of high probability
trees. Larget [2013], further extended the CCP method by allowing joint modeling of all children
clades of the parent clade in the conditional clade probabilities. The resulting conditional clade
distribution (CCD) approach not only improves the approximation accuracy of CCP but also leads to



a valid probability distribution on the tree space. However, CCD is still not flexible enough to capture
the complexity of inferred posterior distributions on real data [Whidden and Matsen, 2015].

SBNs also leverage parameter sharing to reduce the number of free parameters in the model and
promote the generalization performance. Similar to weight sharing used in convolutional networks for
detecting translationally-invariant structure of images (e.g., edges, corners), our heuristic parameter
sharing in SBNGs is for identifying conditional splitting patterns of leaf-labeled trees. Parameter
sharing has been widely employed in probability graphical models such as hidden Markov models
[Baum et al., 1970], dynamic Bayesian networks [Murphy, 2002], conditional random fields [Lafferty
et al., 2001] and statistical relational models [Getoor and Taskar, 2007]. Other than specifying the
tied parameters a priori, recent work [Chou et al., 2016, 2018] also utilizes quantization for automatic
parameter tying.

G On Expectation Maximization for SBNs

Using the conditional probabilities of the missing root node, we can construct the following adaptive
lower bound

P(S1) ITis1 P(Si]Sx,)
(Sl |Tu AEM (n))

LB™(T%p) = > p(Si|T"p™™ <”>>log(

) <log L(T";p). (2)
S~Tu

The above adaptive lower bound LB (T™; p) contains a constant term that only depends on the
current estimates, and another term that is the expected complete log-likelihood with respect to the
conditional distribution of 57 given 7" and the current estimates:

QUM(T;p) = D p(Si|T p"M ) (logp<sl)+210gp(si|sm>>. 3)

Si~Tv i>1

Summing (3) over T" € D" together with conditional probability sharing, we get the complete data
score function

K

QM (D%p) = Q"™(Ty;p)

Il
ol ol
i Mw i
= =
=

0" (S1 = s14) (logp(S1 = 5 ) + Y logp(Si = 854/, = o5, 1))

o) i>1

LW logp(Sy =)+ Y mey” logp(slt)

51€C, s[t€Cch|pa
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where

K
me =3 > gy (S1 = s)l(s8 ), = 1)

k=1ecE(TY)
711(” Z Z qk Sl_slk Zl B =880k =1)
k=1ecE(T}) i>1

are the expected frequency counts.

G.1 Proof of Theorem 1
Proof.

Q(n)( ) Q(n (Tu ~EM, (n)) LB (Tu;p) _ LB™ (Tu;pEM,(n))
S lOg L(T‘u7 p) _ log L(T‘u7 2aEM,(n))



since LB™)(T"; p) < log L(T";p) and

. Tu S |]5EM ,(n) )
LB(n) Tu; EM,(n)y _ S Tu ~EM,(n) lo ( ( 1

> p(Si [T, ) 1ogp<Tu|pEM ()
Sy~T
= log p(T"[p* )
= log Z (T, S| p=M ()
Si~Tu
IOgL(Tu ~EM, (n))

With Theorem 1, it is clear that
Q" (D";p) — QU (D" p™™ ) < log L(D™; p) — log L(D"; p™ (™).

As before, the maximum estimates of Q(™ have closed form expressions which lead to the following
updating formula for the CPDs at the M-step

R Mg, ms
PV (S = 51) = =g S1€G ®)
ZSECT ms’ K
EM 1 mU7t(n)
~ n S,
PEMUFI(s]t) = s st € Canppa ©)
S mS,t

G.2 Regularization
For the score function in (4), the conjugate prior distributions have to be Dirichlet distributions
Sy ~Dir(as, +1,51 € Cp), |t ~ Dir(as; + 1,5/t € Cenjpa)

where oy, > 0, a,; > 0 are some hyper-parameters. The regularized score function, therefore,
takes the following form

QRMI(DYp) = QUW(DYp) + Y aglogp(Si=s1)+ . auslogp(slt)

s1€C, S‘tecchlpa (7)
= > @5 + o) logp(S=s1)+ Y (M + au) logp(s]t).
51€C, 5[t€Ceh|pa

One can adapt the hyper-parameters according to this decomposition as follows
Qg = Q- mlsllv st = Q- mg,t

where « is the global regularization coefficient that balances the effect of the data on the estimates
in comparison to the pr10r and myg, , My, are the equivalent sample counts for the root splits and
parent-child subsplit pairs that distribute the regularization across the CPDs. In practice, one can
simply use the the sample frequency counts as equivalent sample counts as we did in our experiments.

Remark: The choice of hyper-parameter setting is not throughly studied and what we do here is
some modification from the common practice in Bayesian estimation for learning Bayesian networks;
see Buntine [1991] for more details.

Theorem 1 also implies that maximizing (or improving) the regularized () score is sufficient to
improve the regularized log-likelihood. Denote the regularization term as

= Y amllogp(Si=s1)+ Y am logp(s|t)

s1€C, s|tECCh|pa



we have
QR’(n)('Du; ) QR (n)( u AEM (n)) Q(n)(fDu; ) Q(n)( u AEM (n)) +R( )_ R(ﬁEM’(n))
< log L(D";p) + R(p) — (log L(D%; pPM)) 4 R(pFM-(M)).

Similarly, the regularized score Q% (") can be maximized in the same manner as Q")

—1,(n) 5 U —1,(n) 5y U
A n Mms; 4 amyg Msy, ~ + amy
pEM7( +1) (Sl = 81) = 17u @ 1 - — I 1 3u ’ s, € (CT (8)
2816(&« (msi + amgl) + aZS1ECr mSl
~EM, (n+1) mu " +amg,
p ( |t) ) S|t € (Cch|pa' (9)

>, <m“’<“> +am!,)

G.3 Computational Complexity

Compared to those for rooted trees, the expected frequency counts my, , my 4, msl(n)7 mg t(") for
unrooted trees involves additional summation over all the edges. However, we can precompute all the
accumulated sums of the root probabilities on the edges in a postorder tree traversal for each tree
and the computation cost remains O(K N). Each E-step in EM would in general cost O(K N?) time
since for each tree, O(N) probability estimations are required and each takes O(NN) time. Notice
that most of the intermediate partial products involved in those SBN probability estimates are shared
due to the structure of trees, we therefore use a two-pass algorithm, similar to the one used in [Schadt
et al., 1998], that computes all SBN probability estimates for each tree within two loops over its edges.
This reduces the computational complexity of each E-step to O(K N). Overall, the computational
complexities of maximum lower bound estimate and each EM iteration are both O(K N), the same
as CCD and SBNss for rooted trees.

H Run Time Comparison

In this section, we present a runtime comparison of different algorithms on simulated data with
varying K and 3. We see that SBN based methods significantly improve the approximation accuracy
of CCD. With additional time budget, sbn-em and sbn-em-« further improve the performance of
sbn-sa, and regularization is useful especially for diffuse distributions with limited sample size
(Figure H.1). All experiments were done on a 2016 MacBook Pro (2.9 GHz Intel Core i5).
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Figure H.1: A runtime comparison of different methods with varying K and /3 on simulated data.
Error bar shows one standard deviation over 10 runs.
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