
Online Improper Learning with an Approximation
Oracle∗

Elad Hazan
Princeton University & Google AI Princeton

ehazan@cs.princeton.edu

Wei Hu
Princeton University

huwei@cs.princeton.edu

Yuanzhi Li
Stanford University

yuanzhil@stanford.edu

Zhiyuan Li
Princeton University

zhiyuanli@cs.princeton.edu

Abstract

We study the following question: given an efficient approximation algorithm for an
optimization problem, can we learn efficiently in the same setting? We give a formal
affirmative answer to this question in the form of a reduction from online learning
to offline approximate optimization using an efficient algorithm that guarantees
near optimal regret. The algorithm is efficient in terms of the number of oracle calls
to a given approximation oracle – it makes only logarithmically many such calls
per iteration. This resolves an open question by Kalai and Vempala, and by Garber.
Furthermore, our result applies to the more general improper learning problems.

1 Introduction

A fundamental question in learning theory is whether one can efficiently learn a given problem using
an optimization oracle. Namely, does efficient offline optimization for a certain problem imply
efficient learning algorithm for the same setting?

For online learning in games, it was shown by Kalai and Vempala (2005) that an optimization oracle
giving the best decision in hindsight is sufficient for attaining optimal regret. However, in many
non-convex settings, such an optimization oracle is either unavailable or NP-hard to compute. In the
face of NP-hardness, algorithm designers resort to approximation algorithms that are guaranteed to
return a solution within a certain multiplicative factor of the optimum. We give numerous examples
in Section 1.2.

Kakade et al. (2009) considered the question of whether such an approximation algorithm is sufficient
to obtain vanishing regret compared with an approximation to the best solution in hindsight. They
gave an algorithm for this offline-to-online conversion. However, their reduction is inefficient in
the number of per-iteration queries to the approximation oracle, which grows linearly with time.
Ideally, an efficient reduction should call the oracle only a constant number of times per iteration and
guarantee optimal regret at the same time, and this was considered an open question in the literature.

Various authors have improved upon this original online-to-offline reduction under certain cases,
as we survey below. Recently, Garber (2017) made significant progress by giving a more efficient
reduction, which improves the number of oracle calls in both full information and bandit settings. He
explicitly asked whether a near-optimal reduction with only logarithmically many calls per iteration
exists.

∗The full version of this paper can be found on https://arxiv.org/abs/1804.07837.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://arxiv.org/abs/1804.07837

1.1 Problem Setting and Our Results

In this paper we resolve this question on the positive side and in a more general setting, which we
formally define now.

Formal description of problem setting. We consider the standard setting of online linear opti-
mization which is known to generalize statistical learning (Hazan, 2016; Shalev-Shwartz, 2012). In a
repeated game, in round t a player chooses a point xt from a decision set K ⊆ Rd while an adversary
chooses a loss vector ft ∈ Rd, which determines the loss of the player f>t xt in this round. The loss
vector ft is revealed to the player after her choice xt is made. We sometimes treat ft as a function on
Rd, i.e., ft(x) := f>t x.

Since we consider computationally intractable problems like maximum cut or minimum-rank matrix
completion, we assume that the player has access to an offline optimization oracle. This oracle may
return a point which does not belong to the target set K∗, but rather to a different set K. For example,
in matrix completion the oracle may return a low-trace-norm matrix rather than a low-rank matrix.

This notion is formally captured by an optimization oracleOK,K∗ . Given an input v ∈ Rd, this oracle
outputs a point OK,K∗(v) ∈ K which dominates all points in K∗ in the direction v, that is

v>OK,K∗(v) ≤ min
x∗∈K∗

v>x∗.

The goal for the player is to minimize her regret, which is the difference between her cumulative loss
and that of the best single decision (in K∗) in hindsight:

RegK,K∗(T) :=

T∑
t=1

f>t xt − min
x∗∈K∗

T∑
t=1

f>t x
∗.

We remark that the above problem setting is similar in spirit to the notion of improper learning, where
one is allowed to output a hypothesis not from the target set. Therefore, we view the problem setting
described above as an online version of improper learning.

In the special case of K∗ = αK (α > 1), OK,αK becomes an α-approximation oracle on K, and the
setting and the notation of regret are the same with those studied in (Kakade et al., 2009; Garber,
2017), i.e., RegK,αK(T) :=

∑T
t=1 f

>
t xt − αminx∈K

∑T
t=1 f

>
t x. This is called the α-regret.

Our results. In this setting, we give two different algorithms, one based on the online mirror
descent (OMD) method and another based on the continuous multiplicative weight update (CMWU)
algorithm. Both of them give nearly optimal regret as well as oracle efficiency, while applying to
general loss vectors. Our results are summarized in Table 1 below. We present these two algorithms
and their guarantees in Sections 3 and Appendix B.

Algorithm Regret over T rounds Oracle calls per round Loss vectors
Kakade et al. (2009) O(

√
T) O(T) general

Garber (2017) O(
√
T) Õ(

√
T) non-negative

Alg. 1 (this paper) O(
√
T) O(log T) PNIP property (Def. 2.4)

Alg. 6 (this paper) Õ(
√
T) O(log T) general

Table 1: Summary of results in the full information setting. The Õ notation hides constant and
logarithmic factors.

Algorithm Regret over T rounds Oracle calls in T rounds Loss vectors

Kakade et al. (2009) O(T
2
3) O(T

4
3) general

Garber (2017) O(T
2
3) Õ(T) non-negative

Alg. 3 (this paper) O(T
2
3) Õ(T

2
3) non-negative

Table 2: Summary of results in the bandit setting.

In addition to these two algorithms, we give an improved result in the bandit setting. In this more
difficult setting, the player cannot observe ft, but rather only the loss she has suffered, namely the

2

scalar f>t xt. We show how to extend our mirror descent-based algorithm to the bandit setting and
obtain the same O(T 2/3) regret as in (Kakade et al., 2009; Garber, 2017), but with a significantly
lower computational cost. See Table 2 for a comparison. We present our bandit result in Section 4.

1.2 Applications

The setting of online learning with approximation algorithms has been well studied since (Kalai and
Vempala, 2005) with numerous applications.

For example, in the online max-cut problem, a learner iteratively predicts a cut over a set of vertices
V , and afterwards the adjacency information for two vertices is revealed. The loss is zero or one,
depending on whether the learner correctly predicted the connectivity of the two vertices. The
offline version of this problem is NP-hard, but admits SDP-based approximation algorithms such
as the famous 0.878-approximation by Goemans and Williamson (1995). Our results imply an
online algorithm that can predict as accurate as the best 0.878-approximation to the maximum cut in
hindsight, and calls the SDP relaxation only logarithmically many times per iteration.

Numerous other examples exist for combinatorial graph optimization problems such as the traveling
salesman problem, sparsest graph cut, etc. Other applications include prominent machine learning
problems whose offline optimization problem is NP-hard, for example, matrix completion and
recommendation systems. The reader is referred to (Kakade et al., 2009; Garber, 2017) for more
detailed exposition of applications.

1.3 Related Work

The reduction from online learning to offline approximation algorithms was already considered
by Kalai and Vempala (2005). Their scheme, based on the follow-the-perturbed-leader (FTPL)
algorithm, requires very strong approximation guarantee from the approximation oracle, namely, a
fully polynomial time approximation scheme (FPTAS), and requires an approximation that improves
with time. Balcan and Blum (2006) used the same approach in the context of mechanism design.

Kalai and Vempala (2005) also proposed a specialized reduction that works under certain conditions
on the approximation oracle, satisfied by some known algorithms for problems such as MAX-CUT.
Fujita et al. (2013) further gave more general reductions that apply to problems whose approximation
algorithms are based on convex relaxations of mathematical programs. Their scheme is also based on
the FTPL method.

Recent advancements on black-box online-to-offline reductions were made in (Kakade et al., 2009;
Dudík et al., 2016; Garber, 2017). Hazan and Koren (2016) showed that efficient reductions are
in general impossible, unless special structure is present. In the settings we consider this special
structure is a linear cost function over the space.

Our algorithms fall into one of two templates. The first is the online mirror descent method, which
is an adaptive version of the follow-the-regularized-leader (FTRL) algorithm. The second is the
continuous multiplicative weight update method, which dates back to Cover’s portfolio selection
method (Cover, 1991) and Vovk’s aggregating algorithm (Vovk, 1990). The reader is referred to
the books (Cesa-Bianchi and Lugosi, 2006; Shalev-Shwartz, 2012; Hazan, 2016) for details and
background on these prediction frameworks. We also make use of polynomial-time algorithms for
sampling from log-concave distributions (Lovász and Vempala, 2007).

2 Preliminaries

For x ∈ Rd and r > 0, denote by B(x, r) the Euclidean ball in Rd of radius r centered at x.For
S,S ′ ⊆ Rd, β ∈ R, y ∈ Rd and A ∈ Rd′×d, define S + S ′ := {x + x′ : x ∈ S, x′ ∈ S ′},
βS := {βx : x ∈ S}, x + S := {x + y : y ∈ S}, and AS := {Ax : x ∈ S}. The convex hull of
S ⊆ Rd is denoted by CH(S). Denote by Vol(S) the volume (Lebesgue measure) of a set S ⊆ Rd.
Denote by ∆k−1 the probability simplex in Rk.

A set C ⊆ Rd is called a cone if for any β ≥ 0 we have βC ⊆ C. For any S ⊆ Rd, define the dual
cone of S as S◦ :=

{
y ∈ Rd : x>y ≥ 0, ∀x ∈ S

}
. S◦ is always a convex cone, even when S is

3

Algorithm 1 Online Mirror Descent using a Projection-and-Separation Oracle

Input: Learning rate η > 0, tolerance ε > 0, regularizer ϕ, convex cone W , time horizon T ∈ N+

1: y1 ← arg miny∈Dom(ϕ) ϕ(y).
2: for t = 1 to T do
3: (xt, V = (v1, . . . , vk), p)← PAD(yt, ε,W,ϕ)
4: Play x̃t = vi with probability pi (i ∈ [k]), and observe the loss vector ft.
5: ∇ϕ(yt+1)← ∇ϕ(xt)− ηft
6: end for

neither convex nor a cone. For any closed set S ⊆ Rd, define ΠS : Rd → S to be the projection onto
S, namely ΠS(x) := arg minx′∈S ‖x′ − x‖2.
Definition 2.1. A strictly convex function f : A → R (A ⊆ Rd is convex) is Legendre if ∇f is
continuous in int(A) and for any sequence x1, x2, · · · ∈ A converging to a boundary point of A,
limn→∞ ‖∇f(xn)‖ =∞.
Definition 2.2. For a Legendre function ϕ : A → R, the Bregman divergence with respect to ϕ is
defined as Dϕ(x, y) := ϕ(x)− ϕ(y)−∇ϕ(y)>(x− y) (∀x, y ∈ A).
Lemma 2.3 (Generalized Pythagorean theorem, see e.g. Lemma 11.3 in (Cesa-Bianchi and Lugosi,
2006)). For any closed convex set S ⊆ Rd, x ∈ Rd, y ∈ S , and any Legendre function ϕ : Rd → R,
letting z = arg minx′∈S Dϕ(x′, x), we must have Dϕ(y, x) ≥ Dϕ(y, z) +Dϕ(z, x).
Definition 2.4 (Pairwise non-negative inner product). For a twice-differentiable Legendre function
ϕ : A → R with domain A ⊆ Rd and a convex cone W ⊆ Rd, we say (ϕ,W) satisfies the
pairwise non-negative inner product (PNIP) property, if for all w,w′ ∈W and H ∈ CH(H), where
H = {∇2ϕ(x) : x ∈ A}, it holds that w>H−1w′ ≥ 0.

Examples. (ϕ,W) satisfies the PNIP property if:

1. ϕ(x) = 1
2‖x‖

2, x ∈ Rd and W ⊆ W ◦, such as the non-negative orthant Rd+, the positive
semidefinite matrix cone, and the Lorentz cone Ld+1 = {(x, z) ∈ Rd × R : ‖x‖2 ≤ z}.

2. ϕ(x) =
∑d
i=1 xi(log xi − 1) (with domain Rd+) and W = Rd+;

3. ϕ(x) = 1
2x
>Q−1x (with domain Rd), where Q = MM>, M ∈ Rd×d is an invertible

matrix, and W = (M>)−1Rd+.

This is useful in our bandit algorithm in Section 4.

Log-concave distributions. A distribution over Rd with a density function f is log-concave if
log(f) is a concave function. For a convex set S equipped with a membership oracle, there exist
polynomial-time algorithms for sampling from any log-concave distribution over S (Lovász and
Vempala, 2007). This can be used to approximately compute the mean of any log-concave distribution.
For ease of presentation, we will assume that we can compute the mean of bounded-supported log-
concave distributions exactly. Detailed explanation is provided in Appendix D.

3 Mirror Descent with an Approximation Oracle

In this section, we give an efficient online improper linear optimization algorithm (Algorithm 1) in
the full information setting based on online mirror descent (OMD) equipped with a strongly convex
regularizer ϕ, which achieves O(

√
T) regret when the regularizer ϕ and the domain of linear loss

functions W satisfy the pairwise non-negative inner product (PNIP) property (Definition 2.4).

We suppose K,K∗ ⊆ B(0, R), and the loss vectors {ft} come from a convex cone W ⊆ Rd and
‖ft‖ ≤ L (R,L > 0). Omitted proofs in this section are given in Appendix A.
Theorem 3.1. Suppose (ϕ,W) satisfies the PNIP property (Definition 2.4). Then for any ε, η > 0,
Algorithm 1 satisfies the following regret guarantee:

∀x∗ ∈ K∗ : E

[
T∑
t=1

(ft(x̃t)− ft(x∗))

]
≤ 1

η

(
ϕ(x∗)− ϕ(y1) +

T∑
t=1

Dϕ(xt, yt+1)

)
+ εLT.

4

In particular, if ϕ is µ-strongly convex and A ≥ maxx∗∈K∗(ϕ(x∗) − ϕ(y1)), setting ε = R
T and

η = 1
L

√
2µA
T , we have

∀x∗ ∈ K∗ : E

[
T∑
t=1

(ft(x̃t)− ft(x∗))

]
≤ L

√
2AT

µ
+ LR,

and in this case, Algorithm 1 makes at most
⌈
5d log

((
6
√
T + 4

R

√
A
µ + 4

)
T
)⌉

calls of OK,K∗ per
round.

For the problem of α-regret minimization using an α-approximation oracle, we have the following
regret guarantee, which is an immediate corollary of Theorem 3.1.
Corollary 3.2. If W ⊆ Rd+, K ⊆ B(0, R), K∗ = αK, ϕ(x) = 1

2‖x‖
2, setting ε = αR

T , η = αR
L
√
T

,
Algorithm 1 has the following regret guarantee:

∀x∗ ∈ K : E

[
T∑
t=1

ft(x̃t)− α
T∑
t=1

ft(x
∗)

]
= E

[
T∑
t=1

ft(x̃t)−
T∑
t=1

ft(αx
∗)

]
≤ αLR(

√
T + 1).

Algorithm 1 is a variant of the OMD algorithm that makes use of a projection-and-decomposition
(PAD) oracle, defined as follows:
Definition 3.3 (Projection-and-decomposition oracle). A projection-and-decomposition (PAD) oracle
onto K∗, PAD(y, ε,W, ϕ), is defined as a procedure that given y ∈ Rd, ε > 0, a convex cone W
and a Legendre function ϕ produces a tuple (y′, V, p), where y′ ∈ Rd, V = (v1, . . . , vk) ∈ Rd×k
and p = (p1, . . . , pk)> ∈ ∆k−1, such that:

1. y′ is “closer” to K∗ than y with respect to the Bregman divergence of ϕ (and hence is an
“infeasible projection”): ∀x∗ ∈ K∗, Dϕ(x∗, y′) ≤ Dϕ(x∗, y);

2. v1, . . . , vk ∈ K, and
∑k
i=1 pivi is a point that “almost dominates” y′ in all directions in

W . In other words, there exists c ∈W ◦ such that ‖
∑k
i=1 pivi + c− y′‖ ≤ ε.

The purpose of the PAD oracle is the following. Suppose the OMD algorithm tells us to play a point
y. Since y might not be in the feasible set K, we can call the PAD oracle to find another point y′ as
well as a distribution p over points v1, . . . , vk ∈ K. The first property in Definition 3.3 is sufficient to
ensure that playing y′ also gives low regret, and the second property further ensures that we have a
distribution of points in K that suffers less loss than y′ for every possible loss function so we can play
according to that distribution.

Assuming the availability of a PAD oracle, one can use a standard analysis of OMD to prove a regret
bound for Algorithm 1 as in Theorem 3.1. The proof is given in Appendix A.

Next we show how to construct a PAD oracle using the optimization oracle OK,K∗ . Our construction
is given in Algorithm 2. Theorem 3.4 gives its guarantee.
Theorem 3.4. Suppose (ϕ,W) satisfies PNIP condition (Definition 2.4) and ϕ is µ-strongly convex.

Then for any y ∈ Rd,ε ∈ (0, R], Algorithm 2 terminates in
⌈

5d log
4R+2

√
2 minx∗∈K∗ Dϕ(x∗,y)/µ

ε

⌉
iterations, and it correctly implements the projection-and-decomposition oracle PAD(y, ε,W, ϕ),
i.e., its output (y′, V, p) satisfies the two properties in Definition 3.3.
Remark. We can use random walk methods to compute an 1

T -approximation of the gravity center
(line 3 in Algorithm 2) in poly(T) time, which is enough for the purpose of bounding regret. We
can also replace the center of gravity method with the ellipsoid method, or any other optimization
method with a similar “optimization interface” (i.e., any method that is based on separation queries
and guarantees similar bounds on the number of iterations required to find a feasible point), as
pointed out by Garber (2017). Specifically, using the ellipsoid method, we can significantly reduce
the computational complexity to depend only polynomially in log T (rather than T), at the cost of
a slightly higher oracle complexity, namely O(d2 log T) calls to the oracle per round. We choose
center of gravity over other optimization methods only because it has the best oracle complexity,
which is the main focus of this paper.

5

Algorithm 2 Projection-and-Decomposition Oracle, PAD(y, ε,W, ϕ)

Input: Point y ∈ Rd, tolerance ε > 0, convex cone W , regularizer ϕ,
Output: (y′, V, p), where y′ ∈ Rd, V = (v1, . . . , vk) ∈ Rd×k for some k such that vi ∈ K

(∀i ∈ [k]), and p = (p1, . . . , pk)> ∈ ∆k−1

1: W1 ←W ∩B(0, 1), z1 ← y, i← 0

2: while i < 5d log 2(R+‖zi+1‖)
ε do

3: i← i+ 1, wi ←
∫
Wi

wdw

Vol(Wi)
, vi ← OK,K∗(wi).

4: zi+1 ← arg min
z∈Rd,w>i (z−vi)≥0

Dϕ(z, zi), Wi+1 ←Wi ∩ {w ∈ Rd : w>(vi − zi+1) ≥ 0}.

5: end while
6: k ← i and solve min

p∈∆k−1,c∈W◦
‖
∑k
i=1 pivi + c− zk+1‖ to get p

7: return y′ = zk+1, V = (v1, . . . , vk), p

We break the proof of Theorem 3.4 into several lemmas.

Lemma 3.5. If (ϕ,W) satisfies the PNIP condition (Definition 2.4), then z1, . . . , zk+1 computed in
Algorithm 2 satisfy zi+1 − zi ∈W ◦ for all i ∈ [k].

Proof. Since we have zi+1 = arg min
z∈Rd:w>i (z−vi)≥0

Dϕ(z, zi), by the KKT condition, we have

0 =
∂

∂z

(
Dϕ(z, zi)− λw>i (z − vi)

) ∣∣∣
z=zi+1

= ∇ϕ(zi+1)−∇ϕ(zi)− λwi

for some λ ≥ 0. On the other hand, note that ∇ϕ(zi+1)−∇ϕ(zi) =
∫ 1

0
∇2ϕ(γzi+1 + (1− γ)zi) ·

(zi+1 − zi)dγ = H(zi+1 − zi), for some H ∈ CH(H), where H =
{
∇2ϕ(x) : x ∈ Dom(ϕ)

}
.

Therefore, for all w ∈ W we have w>(zi+1 − zi) = w>H−1H(zi+1 − zi) = λw>H−1wi ≥ 0.
This means zi+1 − zi ∈W ◦.

Lemma 3.6. Under the setting of Theorem 3.4, Algorithm 2 terminates in at most⌈
5d log

4R+2
√

2 minx∗∈K∗ Dϕ(x∗,y)/µ

ε

⌉
iterations.

Proof. According to the algorithm, for each i, zi+1 is the Bregman projection of zi onto a half-
space containing K∗, since the oracle OK,K∗ ensures w>i vi ≤ w>i x

∗ for all x∗ ∈ K∗. Then by
the generalized Pythagorean theorem (Lemma 2.3) we know Dϕ(x∗, zi+1) ≤ Dϕ(x∗, zi) for all
x∗ ∈ K∗ and i. Therefore we have Dϕ(x∗, zi) ≤ Dϕ(x∗, z1) = Dϕ(x∗, y) for all x∗ ∈ K∗ and i.

Let P := minx∗∈K∗ Dϕ(x∗, y). Then there exists x∗ ∈ K∗ such that P = Dϕ(x∗, y) ≥
Dϕ(x∗, zi) ≥ µ

2 ‖x
∗ − zi‖2 for all i, where the last inequality is due to the µ-strong convexity of ϕ.

This implies ‖zi‖ ≤ ‖x∗‖+
√

2P
µ ≤ R+

√
2P
µ for all i. Therefore, when i ≥ 5d log

4R+2
√

2P/µ

ε ,

we must have i ≥ 5d log 2(R+‖zi+1‖)
ε , which means the loop must have terminated at this time.

Lemma 3.7. Under Theorem 3.4’s setting, ∀w ∈W, ‖w‖ = 1, ∃i ∈ [k], such that w>(vi − y′) ≤ ε.

Proof. We assume for contradiction that there exists a unit vector h ∈W such that mini∈[k] h
>(vi−

y′) > ε. Note that ‖vi − y′‖ ≤ ‖vi‖ + ‖y′‖ ≤ R + ‖y′‖. Letting r := ε
2(R+‖y′‖) , we have

∀w ∈ h
2 + (W ∩B(0, r)) : mini∈[k] w

>(vi − y′) > 0.

Since r ≤ 1
2 for ε ≤ R, we have h

2 +(W∩B(0, r)) ⊆ h
2 +(W∩B(0, 1/2)) ⊆W∩B(0, 1) = W1. By

the algorithm, we know that for all w ∈W1 \Wk+1, there exists i ∈ [k] such that w>(vi−zi+1) ≤ 0.
Notice that from Lemma 3.5 we know zj+1 − zj ∈W ◦ for all j ∈ [k]. Thus for all w ∈W1 \Wk+1

there exists i ∈ [k] such that w>(vi − y′) = w>(vi − zk+1) ≤ wT (vi − zi+1) ≤ 0. In other words,
we have ∀w ∈W1 \Wk+1 : mini∈[k] w

>(vi − y′) ≤ 0.

6

Therefore, we must have h
2 + (W ∩ B(0, r)) ⊆ Wk+1. We also have Vol(Wi+1) ≤ (1 −

1/(2e))Vol(Wi) for each i ∈ [k] from Lemma D.2, since Wi+1 is the intersection of Wi with
a half-space that does not contain Wi’s centroid wi in the interior. Then we have

Vol(W1) = Vol(W ∩B(0, 1)) = r−dVol(W ∩B(0, r)) ≤ r−dVol(Wk+1)

≤ r−d(1− 1/(2e))kVol(W1) < Vol(W1),

where the last step is due to k ≥ 5d log 1
r = 5d log 2(R+‖y′‖)

ε = 5d log 2(R+‖zk+1‖)
ε , which is true

according to the termination condition of the loop. Therefore we have a contradiction.

The following lemma is a more general version of Lemma 6 in (Garber, 2017).

Lemma 3.8. Given v1, . . . , vk ∈ Rd, ε ≥ 0 and a convex cone W ∈ Rd, for any x ∈ Rd, the
following two statements are equivalent:

(A) There exists p = (p1, . . . , pk)> ∈ ∆k−1 and c ∈W ◦ such that ‖
∑k
i=1 pivi + c− x‖ ≤ ε.

(B) For all w ∈W , ‖w‖ = 1, there exists i ∈ [k] such that w>(vi − x) ≤ ε.

W

W ◦

(a) Convex cone W and its dual cone W ◦

CH(V)

CH(V) +W ◦

x

ΠF (x)
x′

v1

v2

v3

v4

(b) An example for CH(V) + W ◦, where V =
{vi}4i=1.

Figure 1: Geometric Interpretation of Lemma 3.8.

Geometric interpretation of Lemma 3.8. We defer the proof of Lemma 3.8 to Appendix A, and
discuss its geometric intuition here. For simplicity of illustration, we only consider ε = 0 here
(Figure 1). First we look at the case where W = Rd, W ◦ = {0}. In this case the lemma simply
degenerated to the fact

x ∈ CH({vi}ki=1)⇐⇒ There is no hyperplane that separates x and all vi’s.

In the general case where W ⊆ Rd is an arbitrary convex cone, lemma 3.8 becomes

x ∈ CH({vi}ki=1) +W ◦ ⇐⇒ There is no direction w ∈W such that w>x < w>vi for all i.

Denote F := CH({vi}ki=1) + W ◦. For the “⇒” side, if x ∈ F , it is clear that for all w ∈ W we
must have w>x ≥ w>vi for some i. For the “⇐” side, if x /∈ F , then w = ΠF (x) − x satisfies
w>x < w>vi for all i. Moreover it is easy to see ΠF (x)− x ∈W , which completes the proof.

Theorem 3.4 can be proved now using the above lemmas.

Proof of Theorem 3.4. The upper bound on the number of iterations is proved in Lemma 3.6. In the
proof of Lemma 3.6, we have shown Dϕ(x∗, zi+1) ≤ Dϕ(x∗, zi) for all x∗ ∈ K∗ and i. This implies
Dϕ(x∗, y′) = Dϕ(x∗, zk+1) ≤ Dϕ(x∗, zk) ≤ · · · ≤ Dϕ(x∗, z1) = Dϕ(x∗, y) for all x∗ ∈ K∗,
which verifies the first property in Definition 3.3. The second property is a direct consequence of
combining Lemmas 3.7 and 3.8.

7

Algorithm 3 Online Stochastic Mirror Descent with Barycentric Regularization

Input: Learning rate η > 0, tolerance ε > 0, {q1, . . . , qd} - a β-BS(K) for some β > 0, exploration
probability γ ∈ (0, 1), time horizon T ∈ N+

1: Instantiate Algorithm 1 with parameters η, ε, ϕ(x) = 1
2x
>Q−1x, W ′ = (M>)−1Rd+, and T

2: for t = 1 to T do
3: Receive x̃t (the point to play in round t) from Algorithm 1

4: bt ←
{

EXPLORE, with probability γ
EXPLOIT, with probability 1− γ

5: if bt = EXPLORE then
6: Sample it ∈ [d] uniformly at random, and play qit
7: Receive loss lt = q>itft
8: f̃t ← d

γ ltQ
−1qit

9: else
10: Play x̃t and receive loss lt = x̃>t ft
11: f̃t ← 0
12: end if
13: Feed f̃t to Algorithm 1 as the loss vector for round t (Note that when f̃t = 0, in the next round

Algorithm 1 can simply play according to the distribution computed in this round without any
oracle calls.)

14: end for

4 α-Regret Minimization in the Bandit Setting

In this section we consider the α-regret minimization problem in the bandit setting, where W = Rd+,
K ⊆ Rd+ ∩ B(0, R) and K∗ = αK. Suppose the loss vectors {ft} come from Rd and ‖ft‖ ≤ L.
Similar to (Kakade et al., 2009), we assume we know a β-barycentric spanner for K. This concept
was first introduced by Awerbuch and Kleinberg (2004).
Definition 4.1 (Barycentric spanner). A set of d linearly independent vectors {q1, . . . , qd} ⊂ Rd is
a β-barycentric spanner for a set K ⊂ Rd, denoted by β-BS(K), if {q1, . . . , qd} ⊆ K and for all
x ∈ K, there exist β1, . . . , βd ∈ [−β, β] such that x =

∑d
i=1 βiqi.

Given {q1, . . . , qd} which is a β-BS(K), define Q :=
∑d
i=1 qiq

>
i and M := (q1, . . . , qd) ∈ Rd×d.

The need for a new regularization. The bandit algorithm of Garber (2017) additionally requires
a certain boundedness property of barycentric spanners, namely:

max
i∈[d]

q>i Q
−2qi ≤ χ.

However, for certain bounded sets this quantity may be unbounded, such as the two-dimensional axis-
aligned rectangle with one axis being of size unity, and the other arbitrarily small. This unboundedness
creates problems with the unbiased estimator of loss vector, whose variance can be as large as certain
geometric properties of the decision set. To circumvent this issue, we design a new regularizer called
barycentric regularizer, which gives rise to an unbiased estimator coupled with an online mirror
descent variant that automatically ensures constant variance.

Similar to (Kakade et al., 2009; Garber, 2017), our bandit algorithm also simulates the full information
algorithm with estimated loss vectors. Namely, our algorithm implements Algorithm 1 with a specific
barycentric regularizer ϕ(x) = 1

2x
>Q−1x. The algorithm is detailed in Algorithm 3, and its regret

guarantee is given in Theorem 4.2. We prove Theorem 4.2 in Appendix C.
Theorem 4.2. Denote by zt the point played by Algorithm 3 in round t.

Suppose we set η = αβ4/3

LRT 2/3 , ε = αR
T and γ = β2/3d

T 1/3 in Algorithm 3 (assuming T > β2d3 so γ < 1).
Then we have

∀x∗ ∈ K : E

[
T∑
t=1

(ft(zt)− αft(x∗))

]
≤ αLR

(
3d(βT)2/3 + 1

)
,

and the expected total number of oracle calls to OK,αK in T rounds is at most O
(
d2(βT)2/3 log T

)
.

8

5 Conclusion and Open Problems

We have described two different algorithmic approaches to reducing regret minimization to offline
approximation algorithms and maintaining optimal regret and poly-logarithmic oracle complexity per
iteration, resolving previously stated open questions.

An intriguing open problem remaining is to find an efficient algorithm in the bandit setting that
guarantees both Õ(

√
T) regret and poly(log T) oracle complexity per iteration (at least on average).

References
Awerbuch, B. and Kleinberg, R. D. (2004). Adaptive routing with end-to-end feedback: Distributed

learning and geometric approaches. In Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 45–53. ACM.

Balcan, M.-F. and Blum, A. (2006). Approximation algorithms and online mechanisms for item
pricing. In Proceedings of the 7th ACM Conference on Electronic Commerce, pages 29–35. ACM.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games. Cambridge university
press.

Cover, T. M. (1991). Universal portfolios. Mathematical Finance, 1(1):1–29.

Dudík, M., Haghtalab, N., Luo, H., Schapire, R. E., Syrgkanis, V., and Vaughan, J. W. (2016).
Oracle-efficient online learning and auction design. arXiv preprint arXiv:1611.01688.

Fujita, T., Hatano, K., and Takimoto, E. (2013). Combinatorial online prediction via metarounding.
In International Conference on Algorithmic Learning Theory, pages 68–82. Springer.

Garber, D. (2017). Efficient online linear optimization with approximation algorithms. In Advances
in Neural Information Processing Systems, pages 627–635.

Goemans, M. X. and Williamson, D. P. (1995). Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145.

Hazan, E. (2016). Introduction to online convex optimization. Foundations and Trends R© in
Optimization, 2(3-4):157–325.

Hazan, E. and Koren, T. (2016). The computational power of optimization in online learning. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 128–141.
ACM.

Kakade, S. M., Kalai, A. T., and Ligett, K. (2009). Playing games with approximation algorithms.
SIAM Journal on Computing, 39(3):1088–1106.

Kalai, A. and Vempala, S. (2005). Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291–307.

Lovász, L. and Vempala, S. (2007). The geometry of logconcave functions and sampling algorithms.
Random Structures & Algorithms, 30(3):307–358.

Prékopa, A. (1973). On logarithmic concave measures and functions. Acta Scientiarum Mathemati-
carum, 34:335–343.

Shalev-Shwartz, S. (2012). Online learning and online convex optimization. Foundations and
Trends R© in Machine Learning, 4(2):107–194.

Vovk, V. G. (1990). Aggregating strategies. In Proceedings of the Third Annual Workshop on
Computational Learning Theory, COLT ’90, pages 371–386.

9

Appendix
A Omitted Proofs in Section 3

Theorem A.1 (Restatement of Theorem 3.1). Suppose (ϕ,W) satisfies the PNIP property (Defini-
tion 2.4). Then for any ε, η > 0, Algorithm 1 satisfies the following regret guarantee:

∀x∗ ∈ K∗ : E

[
T∑
t=1

(ft(x̃t)− ft(x∗))

]
≤ 1

η

(
ϕ(x∗)− ϕ(y1) +

T∑
t=1

Dϕ(xt, yt+1)

)
+ εLT.

In particular, if ϕ is µ-strongly convex and A ≥ maxx∗∈K∗(ϕ(x∗) − ϕ(y1)), setting ε = R
T and

η = 1
L

√
2µA
T , we have

∀x∗ ∈ K∗ : E

[
T∑
t=1

(ft(x̃t)− ft(x∗))

]
≤ L

√
2AT

µ
+ LR.

Moreover, Algorithm 1 makes at most
⌈
5d log

((
6
√
T + 4

R

√
A
µ + 4

)
T
)⌉

calls of OK,K∗ per round.

Proof. First, for any fixed round t ∈ [T], let (xt, V, p) be the output of PAD(yt, ε,W,ϕ) in this
round. We know by the second property of the PAD oracle that there exists c ∈ W ◦ such that
‖
∑
i pivi + c− xt‖ ≤ ε. Since x̃t is equal to vi with probability pi, letting xt := E[x̃t] =

∑
i pivi,

we have

ft(xt)− ft(xt) = E [ft(x̃t)− ft(xt)] = ft

(∑
i

pivi − xt

)
≤ ft

(∑
i

pivi − xt + c

)
≤ εL.

(1)

We make use of the following properties of Bregman divergence, which can be verified easily (see
e.g. Section 11.2 in (Cesa-Bianchi and Lugosi, 2006)):

∀x, y, z : (x− y)>(∇ϕ(z)−∇ϕ(y)) = Dϕ(x, y)−Dϕ(x, z) +Dϕ(y, z). (2)

Consider any x∗ ∈ K∗. We have
T∑
t=1

(ft(xt)− ft(x∗))

=

T∑
t=1

1

η
(∇ϕ(xt)−∇ϕ(yt+1))

>
(xt − x∗) (by algorithm definition)

=
1

η

T∑
t=1

(Dϕ(x∗, xt)−Dϕ(x∗, yt+1) +Dϕ(xt, yt+1)) (by (2))

≤ 1

η

T∑
t=1

(Dϕ(x∗, yt)−Dϕ(x∗, yt+1) +Dϕ(xt, yt+1)) (by property of the PAD oracle)

=
1

η

(
Dϕ(x∗, y1)−Dϕ(x∗, yT+1) +

T∑
t=1

Dϕ(xt, yt+1))

)
. (by telescoping)

(3)
Combining (1) and (3), we can bound the expected improper regret of Algorithm 1 as

∀x∗ ∈ K∗ : E

[
T∑
t=1

(ft(x̃t)− ft(x∗))

]
=

T∑
t=1

(ft(xt)− ft(x∗))

≤ 1

η

(
Dϕ(x∗, y1)−Dϕ(x∗, yT+1) +

T∑
t=1

Dϕ(xt, yt+1))

)
+ εLT.

(4)

10

By the optimality condition∇ϕ(y1)>(x∗ − y1) ≥ 0, we have

Dϕ(x∗, y1) ≤ ϕ(x∗)− ϕ(y1). (5)

Plugging (5) into (4) and noting Dϕ(x∗, yT+1) ≥ 0, we finish the proof of the first regret bound.

When ϕ is µ-strongly convex, for any fixed y, f(x) = ϕ(x) − ∇ϕ(y)>x is also strongly convex,
achieving its unique minimum at y. From strong convexity we have

f(z) ≥ f(x) +∇f(x)>(z − x) +
µ

2
‖x− z‖2, ∀x, z.

Minimizing both sides of the above inequality over z, we get f(y) ≥ f(x)− 1
2µ‖∇f(x)‖2. Thus,

Dϕ(x, y) = f(x)− f(y) ≤ 1

2µ
‖∇f(x)‖2 =

1

2µ
‖∇ϕ(x)−∇ϕ(y)‖2.

Then by the definition in Algorithm 1 we have

∀t ∈ [T] : Dϕ(xt, yt+1) ≤ 1

2µ
‖∇ϕ(xt)−∇ϕ(yt+1)‖2 =

1

2µ
‖ηft‖2 ≤

η2L2

2µ
. (6)

From the above inequality and the choices of parameters ε = R
T and η = 1

L

√
2µA
T , we have

E

[
T∑
t=1

(ft(x̃t)− ft(x∗))

]
≤ A

η
+
ηL2T

2µ
+ LR ≤ L

√
2AT

µ
+ LR.

Next we bound the number of oracle calls made by Algorithm 1.

According to Theorem 3.4, round t of Algorithm 1 calls OK,K∗ for at most5d log
4R+ 2

√
2
µ minx∗∈K∗ Dϕ(x∗, yt)

ε

times. Hence it suffices to obtain an upper bound on minx∗∈K∗ Dϕ(x∗, yt).

According to (4) (substituting T with t), we have:

∀t ∈ [T], ∀x∗ ∈ K∗ : Dϕ(x∗, yt+1) ≤ Dϕ(x∗, y1) +

t∑
j=1

Dϕ(xj , yj+1)− η
t∑

j=1

(fj(xj)− fj(x∗)) + εηLt.

Plug (5) and (6) into the above inequality, we have

∀t ∈ [T], ∀x∗ ∈ K∗ : Dϕ(x∗, yt+1) ≤ Dϕ(x∗, y1) +

t∑
j=1

Dϕ(xj , yj+1)− η
t∑

j=1

(fj(xj)− fj(x∗)) + εηLt

≤ ϕ(x∗)− ϕ(y1) +
η2L2

2µ
t− η

t∑
j=1

(fj(xj)− fj(x∗)) + εηLt

≤ A+
η2L2

2µ
t+ η

t∑
j=1

‖fj‖ · ‖xj − x∗‖+ εηLt

≤ A+
η2L2

2µ
T + 2ηLRT + εηLT.

For t = 1 we also have Dϕ(x∗, y1) ≤ A. Therefore Algorithm 1 calls OK,K∗ for at most5d log

4R+ 2

√
2
µ

(
A+

(
η2L2

2µ + 2ηLR+ εηL
)
T
)

ε

11

times per round.

When ε = R
T and η = 1

L

√
2µA
T , we have

2

µ

(
A+

(
η2L2

2µ
+ 2ηLR+ εηL

)
T

)
≤ 4A

µ
+ 6R

√
2AT

µ
≤

(
2

√
A

µ
+ 3R

√
T

)2

,

so the number of oracle calls per iteration is at most
⌈
5d log

((
6
√
T + 4

R

√
A
µ + 4

)
T
)⌉

.

Next we prove Lemma 3.8. First we need the following basic properties of projections.

Lemma A.2 (Pythagorean theorem). For any closed convex set S ⊆ Rd, x ∈ Rd and y ∈ S, we
have (ΠS(x)− x)>(ΠS(x)− y) ≤ 0, or equivalently, ‖x− y‖2 ≥ ‖ΠS(x)− x‖2 + ‖ΠS(x)− y‖2.

Lemma A.3. For any closed convex cone W ⊆ Rd and any x ∈ Rd, we have ΠW (x)− x ∈W ◦.

Proof. Since W is a convex cone and ΠW (x) ∈ W , we have w + ΠW (x) ∈ W (∀w ∈ W).
By Pythagorean theorem, we have (ΠW (x) − x)>(y − ΠW (x)) ≥ 0 (∀y ∈ W). Letting y =
w + ΠW (x) ∈W (∀w ∈W), we get (ΠW (x)− x)>w ≥ 0, which means ΠW (x)− x ∈W ◦.

Lemma A.4 (Restatement of Lemma 3.8). Given v1, . . . , vk ∈ Rd, ε ≥ 0 and a convex cone
W ∈ Rd, for any x ∈ Rd, the following two statements are equivalent:

(A) There exists p = (p1, . . . , pk)> ∈ ∆k−1 and c ∈W ◦ such that ‖
∑k
i=1 pivi + c− x‖ ≤ ε.

(B) For all w ∈W , ‖w‖ = 1, there exists i ∈ [k] such that w>(vi − x) ≤ ε.

Proof. Suppose (A) holds. Then for any w ∈W , ‖w‖ = 1, we have

min
i∈[k]

w>(vi − x) ≤ w>
(

k∑
i=1

pivi − x

)
≤ w>

(
k∑
i=1

pivi + c− x

)
≤ ‖w‖ ·

∥∥∥∥∥
k∑
i=1

pivi + c− x

∥∥∥∥∥ ≤ ε.
So we have (A) =⇒ (B).

Now suppose (B) holds. Let (p∗, c∗) = arg min
p∈∆k−1,c∈W◦

‖
∑k
i=1 pivi + c− x‖. Since 0 ∈ W , by the

Pythagorean theorem (Lemma A.2), we have∥∥∥∥∥
k∑
i=1

p∗i vi − x+ c∗

∥∥∥∥∥ ≥
∥∥∥∥∥ΠW

(
k∑
i=1

p∗i vi − x+ c∗

)∥∥∥∥∥ ,
where the equality holds only when

∑k
i=1 p

∗
i vi−x+c∗ ∈W . Now we claim

∑k
i=1 p

∗
i vi−x+c∗ ∈W .

Otherwise, letting c′ = c∗ + ΠW

(∑k
i=1 p

∗
i vi − x+ c∗

)
−
(∑k

i=1 p
∗
i vi − x+ c∗

)
, by Lemma A.3

we have c′ ∈W ◦, and furthermore∥∥∥∥∥
k∑
i=1

p∗i vi − x+ c′

∥∥∥∥∥ =

∥∥∥∥∥ΠW

(
k∑
i=1

p∗i vi − x+ c∗

)∥∥∥∥∥ <
∥∥∥∥∥
k∑
i=1

p∗i vi − x+ c∗

∥∥∥∥∥ ,
which contradicts the optimality of (p∗, c∗).

Thus we have
∑k
i=1 p

∗
i vi+c∗−x ∈W . Let w =

∑k
i=1 p

∗
i vi+c∗−x andG = CH({v1, . . . , vk})+

W ◦ + {−x}. Then we have w = ΠG(0) by the definition of (p∗, c∗). Since G is convex and
vi − x ∈ G for all i ∈ [k], by the Pythagorean theorem (Lemma A.2) we have w>(vi − x− w) ≥ 0
for all i ∈ [k], which implies ‖w‖2 ≤ mini∈[k] w

>(vi − x) ≤ ε‖w‖, i.e., ‖w‖ ≤ ε. Hence we have
(B) =⇒ (A).

12

B Efficient Online Improper Linear Optimization via Continuous
Multiplicative Weight Update (CMWU)

In this section, we design our second online improper linear optimization algorithm (in the full
information setting) based on the continuous multiplicative weight update (CMWU) method. Same
as in Section 3, we suppose K,K∗ ⊆ B(0, R), and the loss vectors {ft} come from a convex cone
W ⊆ Rd and ‖ft‖ ≤ L (R,L > 0). Compared with Algorithm 1, the CMWU-based algorithm
allows loss vectors to come from a general convex cone W and does not require the PNIP condition
(Definition 2.4).

B.1 Separation-or-Decomposition Oracle

We first construct a separation-or-decomposition (SOD) oracle (Algorithm 4) using OK,K∗ , which
we will use to design the online improper linear optimization algorithm later in this section. Given
a point x ∈ B(0, R), the SOD oracle either outputs a separating hyperplane between x and K∗, or
outputs a distribution of points in K which approximately dominates x in every direction in W . The
guarantee of the SOD oracle is summarized in Theorem B.1.

Algorithm 4 Separation-or-Decomposition Oracle, SOD(x, ε,W)

Input: Point x ∈ B(0, R), tolerance ε > 0, convex cone W ⊆ Rd
Output: Decomposition V = (v1, . . . , vk) ∈ Rd×k, p = (p1, . . . , pk)> ∈ ∆k−1, such that vi ∈ K

(∀i ∈ [k]) and ‖
∑k
i=1 pivi − x+ c‖ ≤ 3ε for some c ∈W ◦.

Or: Separating hyperplane (w, b) ∈ Rd × R, such that ‖w‖ = 1 and w>x ≤ b − ε ≤
minx∗∈K∗ w

>x∗ − ε.
1: k ←

⌈
5d log 4R

ε

⌉
2: W1 ←W ∩B(0, 1)
3: for i = 1 to k do
4: wi ←

∫
Wi

wdw

Vol(Wi)

5: vi ← OK,K∗(wi)
6: if w>i x ≤ w>i vi − ε then
7: return Separating hyperplane

(
wi
‖wi‖ ,

w>i vi
‖wi‖

)
8: else
9: Wi+1 ←Wi ∩ {w ∈ Rd : w>(vi − x) ≥ ε}

10: end if
11: end for
12: Solve min

p∈∆k−1,c∈W◦
‖
∑k
i=1 pivi + c− x‖ to get p

13: return V = (v1, . . . , vk), p

Theorem B.1. For any x ∈ B(0, R) and ε ∈ (0, 2R], the separation-or-decomposition oracle in
Algorithm 4, SOD(x, ε,W), returns one of the two followings, using at most k =

⌈
5d log 4R

ε

⌉
calls

of OK,K∗ :

1. a decomposition V = (v1, . . . , vk) ∈ Rd×k, p = (p1, . . . , pk)> ∈ ∆k−1, such that vi ∈ K
(∀i ∈ [k]) and ‖

∑k
i=1 pivi − x+ c‖ ≤ 3ε for some c ∈W ◦.

2. a separating hyperplane (w, b) ∈ Rd × R, where ‖w‖ = 1 and w>x ≤ b − ε ≤
minx∗∈K∗ w

>x∗ − ε.

Before proving Theorem B.1, we first prove the following lemma using a similar argument in
Lemma 3.7.

Lemma B.2. For x ∈ B(0, R) and ε ∈ (0, 2R], if SOD(x, ε,W) returns a decomposition (V, p),
then for all unit vector w ∈W , we have mini∈[k] w

>(vi − x) ≤ 3ε.

13

Proof. Suppose that there exists a unit vector h ∈W such that mini∈[k] h
>(vi − x) > 3ε. Note that

‖vi − x‖ ≤ ‖vi‖+ ‖x‖ ≤ 2R. Denoting r = ε
4R , we have

∀h′ ∈ h

2
+ (W ∩B(0, r)) : min

i∈[k]
h′>(vi − x) > ε.

Since r ≤ 1
2 for ε ≤ 2R, we have h

2 +(W ∩B(0, r)) ⊆ h
2 +(W ∩B(0, 1/2)) ⊆W ∩B(0, 1) = W1.

Because the algorithm returns a decomposition, we have that after the last iteration,

∀w ∈W1 \Wk+1 : ∃i ∈ [k], s.t. w>(vi − x) ≤ ε.

Therefore, we must have h
2 +(W∩B(0, r)) ⊆Wk+1. We also have Vol(Wi+1) ≤ (1−1/2e)Vol(Wi)

from Lemma D.2 since Wi+1 is the intersection of Wi with a half-space that does not contain Wi’s
centroid. Then we have

Vol(W1) = Vol(W ∩B(0, 1)) = r−dVol(W ∩B(0, r)) ≤ r−dVol(Wk+1)

≤ r−d(1− 1/2e)kVol(W1) < Vol(W1),

where the last step is due to k ≥ 5d log 1
r = 5d log 4R

ε . Therefore we have a contradiction.

Proof of Theorem B.1. If SOD(x, ε,W) returns a decomposition (V, p), by Lemmas B.2 and 3.8,
we know that there exists c ∈W ◦ such that ‖

∑k
i=1 pivi + c− x‖ ≤ 3ε.

If SOD(x, ε,W) returns a separating hyperplane (w, b) at iteration i ∈ [k], we know w>i x ≤
w>i vi − ε. Since w = wi

‖wi‖ , b = w>vi and ‖wi‖ ≤ 1, we have w>x ≤ w>vi − ε
‖wi‖ ≤ b− ε. By

the guarantee of OK,K∗ , we have b− ε = w>vi − ε ≤ minx∗∈K∗ w
>x∗ − ε.

The number of calls of OK,K∗ is clearly upper bounded by k =
⌈
5d log 4R

ε

⌉
since there are at most k

iterations and each iteration only calls OK,K∗ once.

B.2 CMWU with Refining Domains

Now we look at a general online learning setting where the feasible domain is shrinking over time
while being a superset of the target domain. Namely, suppose K∗ is the target domain and Kt
is the feasible domain in the t-th round. We assume B(0, R) ⊇ K0 ⊇ K1 ⊇ K2 · · · ⊇ KT ⊇
(1− γ)K∗ + γK0 for some γ ∈ (0, 1]. In round t, the player only knows K1, . . . ,Kt and does not
know Kj for all j > t. We can still run CMWU in this setting, using the knowledge of Kt at iteration
t - the algorithm is given in Algorithm 5. Theorem B.3 bounds the regret of Algorithm 5 in this
setting.

Algorithm 5 Continuous Multiplicative Weight Update (CMWU) with Refining Domains

Input: Learning rate η > 0, time horizon T ∈ N+

1: for t = 1 to T do
2: Receive current domain Kt

3: Play xt =

∫
Kt
e−η

∑t−1
i=1

fi(x)xdx∫
Kt
e−η

∑t−1
i=1

fi(x)dx

4: Receive loss vector ft
5: end for

Theorem B.3. Suppose B(0, R) ⊇ K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ KT ⊇ (1−γ)K∗+γK0 for γ ∈ (0, 1].
Then for any 0 < η ≤ 1

LR , Algorithm 5 has the following regret guarantee:

∀x∗ ∈ K∗ :

T∑
t=1

(ft(xt)− ft(x∗)) ≤
d log 1

γ

η
+ ηL2R2T + γLRT −

∑T
t=1 δt
η

,

where

δt := log

∫
Kt−1

e−η
∑t−1
i=1 fi(x)dx∫

Kt e
−η

∑t−1
i=1 fi(x)dx

.

14

In particular, setting γ = 1/T and η = 1
LR min

{
1,
√

d log T
T

}
, we have

∀x∗ ∈ K∗ :

T∑
t=1

(ft(xt)− ft(x∗)) ≤ LR
(

1 + 2 max
{√

dT log T , d log T
})

.

Proof. We fix any x∗ ∈ K∗ and denote K̄ := (1− γ)x∗ + γK0. Since (1− γ)K∗ + γK0 ⊆ KT , we
have K̄ ⊆ KT . We define

zt(x) := e−η
∑t−1
i=1 fi(x), Zt :=

∫
Kt
zt(x)dx, Z ′t :=

∫
Kt−1

zt(x)dx.

A straightforward calculation gives us:

log
Z ′T+1

Z ′1
= log

(∫
KT e

−η
∑T
t=1 ft(x)dx∫

K0
1dx

)

≥ log

(∫
K̄ e
−η

∑T
t=1 ft(x)dx∫

K0
1dx

)

= log

(∫
K0
e−η

∑T
t=1 ft((1−γ)x∗+γx)γddx∫
K0

1dx

)

= log

(∫
K0
e−η

∑T
t=1((1−γ)ft(x

∗)+γft(x))γddx∫
K0

1dx

)

≥ log

(∫
K0
e−η

∑T
t=1(ft(x

∗)+γLR)γddx∫
K0

1dx

)

= d log γ − η
T∑
t=1

ft(x
∗)− ηγLRT.

On the other hand, we have

log
Z ′t+1

Zt
= log

(∫
Kt

zt(x)

Zt
e−ηft(x)dx

)
≤ log

(∫
Kt

zt(x)

Zt

(
1− ηft(x) + (ηft(x))2

)
dx

)
≤
(∫
Kt

zt(x)

Zt

(
1− ηft(x) + (ηft(x))2

)
dx

)
− 1

≤
∫
Kt

zt(x)

Zt

(
−ηft(x) + η2L2R2

)
dx

=− ηft
(∫
Kt

zt(x)

Zt
xdx

)
+ η2L2R2

=− ηft(xt) + η2L2R2,

where the first inequality is due to ea ≤ 1 + a+ a2 (∀a ≤ 1) and |ηft(x)| ≤ ηLR ≤ 1, the second
inequality is due to log a ≤ a− 1 (∀a > 0), and the third inequality is due to |ηft(x)| ≤ ηLR.

Note that δt = log
Z′t
Zt

. Combining the two bounds above, we get:

T∑
t=1

(
−ηft(xt) + η2L2R2

)
≥

T∑
t=1

log
Z ′t+1

Zt
= log

Z ′T+1

Z ′1
+

T∑
t=1

log
Z ′t
Zt

≥ d log γ − η
T∑
t=1

ft(x
∗)− ηγLRT +

T∑
t=1

δt.

15

In other words,
T∑
t=1

(ft(xt)− ft(x∗)) ≤
d log 1

γ

η
+ ηL2R2T + γLRT −

∑T
t=1 δt
η

.

The second regret bound in the theorem follows directly by plugging in the values of γ and η stated
in the theorem. Note that δt ≥ 0 for all t ∈ [T] since Kt ⊆ Kt−1.

B.3 Online Improper Linear Optimization via CMWU

Now we are ready to present our CMWU-based online improper learning algorithm. At a high
level, this algorithm is a specialized implementation of Algorithm 5 for the online improper linear
optimization problem. The algorithm starts with an initial convex domain K0 which is a superset of
K∗, and maintains a convex domain Kt at iteration t. In iteration t, the algorithm first computes the
mean xt of a log-linear distribution over Kt using random walk, as in Line 3 of Algorithm 5. Then
the algorithm calls the SOD oracle on xt. If the SOD oracle returns a distribution of points in K, then
we can play according to that distribution, since the SOD oracle ensures that the expected loss of
this distribution is not much larger than that of xt. If the SOD oracle returns a separating hyperplane
between xt and K∗, then the algorithm replaces Kt with the intersection of the original Kt and the
half-space given by this hyperplane that contains K∗, and repeats the same process for the new Kt
until a decomposition is returned by the SOD oracle. Note that each time Kt is updated, the mean
xt of the log-linear distribution is not in the new Kt, which according to Lemma D.2 implies that a
constant probability mass is removed. This allows us to bound the total number of oracle calls. We
detail our algorithm in Algorithm 6 and its regret bound in Theorem B.4.

Algorithm 6 CMWU for Online Improper Linear Optimization

Input: Learning rate η > 0, tolerance γ > 0, initial convex domain K0, convex cone W , time
horizon T ∈ N+

1: K1 ← K0

2: for t = 1 to T do

3: xt ←
∫
Kt
e−η

∑t−1
i=1

fi(x)xdx∫
Kt
e−η

∑t−1
i=1

fi(x)dx

4: while SOD(xt, 2γR,W) returns a separating hyperplane (w, b) ∈ Rd × R do
5: Kt ← Kt ∩ {x ∈ Rd : w>x ≥ b− 2γR}

6: xt ←
∫
Kt
e−η

∑t−1
i=1

fi(x)xdx∫
Kt
e−η

∑t−1
i=1

fi(x)dx

7: end while
8: Let (V, p) ∈ Rd×k ×∆k−1 be the output of SOD(xt, 2γR,W)
9: Play x̃t = vi with probability pi (i = 1, . . . , k), where V = (v1, . . . , vk)

10: Kt+1 ← Kt
11: Receive loss vector ft
12: end for

Theorem B.4. Suppose that the initial convex domain K0 satisfies K∗ ⊆ K0 ⊆ B(0, R). Then for
any γ ∈ (0, 1] and η ∈

(
0, 1

LR

]
, Algorithm 6 satisfies the following regret guarantee:

∀x∗ ∈ K∗ : E

[
T∑
t=1

(ft(x̃t)− ft(x∗))

]
≤
d log 1

γ

η
+ ηL2R2T + 7γLRT − s

5η
,

where s =
∑T
t=1 st, and st is the number of separating hyperplanes returned by the SOD oracle

during round t.

In particular, if we set γ = 1
T , η = 1

LR min

{
1,
√

d log T
T

}
, then we have

∀x∗ ∈ K∗ : E

[
T∑
t=1

(ft(x̃t)− ft(x∗))

]
≤ LR

(
7 + 2 max

{√
dT log T , d log T

})
,

and in this case Algorithm 6 calls OK,K∗ for O (dT log T) times in T rounds.

16

Proof. In the proof, we use K̄t and x̄t to denote the values of Kt and xt at the end of iteration t
(K̄0 = K0). We define

zt(x) := e−η
∑t−1
i=1 fi(x), Zt :=

∫
K̄t
zt(x)dx, Z ′t :=

∫
K̄t−1

zt(x)dx, δt := log
Z ′t
Zt
.

We first prove the following two claims:

(i) For all t ∈ {0, 1, . . . , T}, we have (1− γ)K∗ + γK̄0 ⊆ K̄t.

(ii) For all t ∈ [T], we have δt ≥ st
5 .

We use induction to prove (i). It holds for t = 0 since K∗ ⊆ K0 = K̄0 and K0 is convex. Suppose
it holds for t − 1. If K̄t = K̄t−1, then it already holds for t. Otherwise, consider any separating
hyperplane (w, b) ∈ Rd ×R obtained in round t, which is the output of SOD(x′, 2γR,W) for some
x′. By the guarantee of the SOD oracle, we have

w>x′ ≤ b− 2γR ≤ min
x∗∈K∗

w>x∗ − 2γR.

This implies

(1− γ)K∗ + γK̄0 ⊆ (1− γ)K∗ + γB(0, R) ⊆ K∗ +B(0, 2γR) ⊆ {x ∈ Rd : w>x ≥ b− 2γR}.

Note that {x ∈ Rd : w>x ≥ b− 2γR} is exactly the half-space to intersect with when updating Kt.
Hence we know that during the execution of the algorithm,Kt is always a superset of (1−γ)K∗+γK̄0.
This proves (i).

For (ii), note that each time Kt is updated, the mean of the distribution over Kt with density
proportional to zt(x) is not included in the interior of the new Kt. By Lemma D.2, this implies∫

newKt zt(x)dx ≤
(
1− 1

2e

) ∫
oldKt zt(x)dx. Hence we have −δt = log Zt

Z′t
≤ log

(
1− 1

2e

)st , which
gives δt ≥ st

5 .

Now we show the regret bound. From (i) we know

(1− γ)K∗ + γK̄0 ⊆ K̄T ⊆ K̄T−1 ⊆ · · · ⊆ K̄1 ⊆ K̄0 ⊆ B(0, R).

Therefore, we can apply Theorem B.3 to get

∀x∗ ∈ K∗ :

T∑
t=1

(ft(x̄t)− ft(x∗)) ≤
d log 1

γ

η
+ ηL2R2T + γLRT −

∑T
t=1 δt
η

≤
d log 1

γ

η
+ ηL2R2T + γLRT − s

5η
,

where the second inequality is due to (ii).

The actual algorithm does not play x̄t, but a random x̃t. Namely, letting (V, p) ∈ Rd×k ×∆k−1 be
the output of SOD(x̄t, 2γR,W), we have that x̃t is equal to vi with probability pi (i = 1, . . . , k),
where V = (v1, . . . , vk). By Theorem B.1 we know that there exists c ∈W ◦ such that ‖

∑k
i=1 pivi+

c− x̄t‖ ≤ 6γR, which implies (note ft ∈W ∩B(0, L))

E[ft(x̃t)] = ft

(
k∑
i=1

pivi

)
≤ ft

(
k∑
i=1

pivi + c

)
≤ ft(x̄t) + 6γLR.

Therefore we have

∀x∗ ∈ K∗ : E

[
T∑
t=1

(ft(x̃t)− ft(x∗))

]
=E

[
T∑
t=1

(ft(x̃t)− ft(x̄t))

]
+

T∑
t=1

(ft(x̄t)− ft(x∗))

≤ 6γLRT +
d log 1

γ

η
+ ηL2R2T + γLRT − s

5η

17

=
d log 1

γ

η
+ ηL2R2T + 7γLRT − s

5η
.

Setting γ = 1
T and η = 1

LR min

{
1,
√

d log T
T

}
, the above bound becomes

∀x∗ ∈ K∗ : E

[
T∑
t=1

(ft(x̃t)− ft(x∗))

]
≤ LR

(
7 + 2 max

{√
dT log T , d log T

}(
1− s

10d log T

))
.

We can use the above regret bound to bound the number of oracle calls in Algorithm 6. Since
the regret is always lower bounded by −2LRT , the above regret upper bound implies s = O (T).
Therefore Algorithm 6 calls the SOD oracle for s+T = O (T) times. Note that each implementation
of SOD needs to call OK,K∗ for O

(
d log 4R

2γR

)
= O(d log T) times (Theorem B.1). We conclude

that the total number of calls to OK,K∗ in Algorithm 6 is at most O (dT log T).

Remark. Intuitively, when the SOD oracle is called in Algorithm 6, between the two outcomes
(separation and decomposition) we should prefer decomposition, since this means we can make
the play and move on to the next iteration. However, Theorem B.4 shows an interesting trade-off
between oracle complexity and regret: the more oracle calls, the less the regret. This means obtaining
separating hyperplanes helps the regret. Interestingly, we obtain our upper bound on the oracle calls
by observing that regret can never be lower by −2LRT .

C Proof for the Bandit Setting (Theorem 4.2)

We prove the following more general theorem than Theorem 4.2.

Theorem C.1. Denote by zt the point played by Algorithm 3 in round t. Then for any γ ∈ (0, 1),
ε ∈ (0, αR] and η > 0, Algorithm 3 satisfies the following regret guarantee:

∀x∗ ∈ K : E

[
T∑
t=1

(ft(zt)− αft(x∗))

]
≤ α2β2d

2η
+
ηL2R2d2

2γ
T + 2γαLRT + εLT,

and the expected total number of calls to the oracle OK,αK in T rounds is at most

(1 + γT)

1 + 5d log
4αR+ 2R

√
α2β2d2 + η2L2R2d3

γ T + 6ηαLRdT

ε

 .

In particular, setting η = αβ4/3

LRT 2/3 , ε = αR
T and γ = β2/3d

T 1/3 (assuming T > β2d3 so γ < 1), we have

∀x∗ ∈ K : E

[
T∑
t=1

(ft(zt)− αft(x∗))

]
≤ αLR

(
3d(βT)2/3 + 1

)
,

and the expected total number of oracle calls in T rounds is at most O
(
d2(βT)2/3 log T

)
.

Proof. Let xt, yt and x̃t be the same xt, yt and x̃t appearing in Algorithm 1 during our implementa-
tion. We define xt := E[x̃t|yt] similarly to the proof of Theorem 3.1. It is easy to see that (ϕ,W ′)

satisfies the PNIP property (Definition 2.4) and f̃t ∈W ′ for all t ∈ [T], where W ′ = (M>)−1Rd+.

Note that∇ϕ(x) = Q−1x, which implies

Dϕ(xt, yt+1) =
1

2
(xt − yt+1)>Q−1(xt − yt+1) =

1

2
(∇ϕ(xt)−∇ϕ(yt+1))>Q(∇ϕ(xt)−∇ϕ(yt+1))

=
η2

2
f̃>t Qf̃t.

18

Using the regret bound (3) in the proof of Theorem 3.1, for any x∗ ∈ K we have

T∑
t=1

(
f̃t(xt)− αf̃t(x∗)

)
≤ 1

η

(
Dϕ(αx∗, y1)−Dϕ(αx∗, yT+1) +

T∑
t=1

Dϕ(xt, yt+1)

)

≤ 1

η

(
ϕ(αx∗)− min

y∈Rd
ϕ(y) +

T∑
t=1

Dϕ(xt, yt+1)

)

=
1

η
ϕ(αx∗) +

η

2

T∑
t=1

f̃>t Qf̃t.

(7)

Since {qi}di=1 is a β-BS(K), there exist β1, . . . , βd ∈ [−β, β] such that x∗ =
∑d
i=1 βiqi. Then we

have

ϕ(αx∗) =
1

2
(αx∗)>Q−1(αx∗) =

α2

2
‖M−1x∗‖2 =

α2

2

∥∥∥∥∥
d∑
i=1

βiM
−1qi

∥∥∥∥∥
2

=
α2

2

∥∥∥∥∥
d∑
i=1

βiei

∥∥∥∥∥
2

≤ α2β2d

2
.

We also have

E
[
f̃>t Qf̃t

]
= γ

d∑
i=1

1

d

(
d

γ
q>i ft

)2

q>i Q
−1QQ−1qi =

d

γ

d∑
i=1

(
q>i ft

)2
q>i Q

−1qi

≤ L2R2d

γ

d∑
i=1

q>i (MM>)−1qi =
L2R2d

γ

d∑
i=1

e>i ei =
L2R2d2

γ
.

Hence by taking expectation on (7) we get

E

[
T∑
t=1

(
f̃t(xt)− αf̃t(x∗)

)]
≤ α2β2d

2η
+
ηL2R2d2

2γ
T. (8)

Note that E[f̃t|xt] = γ
∑d
i=1

1
d
d
γQ
−1qiq

>
i ft = Q−1

(∑d
i=1 qiq

>
i

)
ft = ft. Therefore (8) becomes

E

[
T∑
t=1

(ft(xt)− αft(x∗))

]
≤ α2β2d

2η
+
ηL2R2d2

2γ
T. (9)

Next, by the guarantee of the PAD oracle, for any t ∈ [T] we know that there exists ct ∈ (W ′)◦ such
that ‖xt + ct − xt‖ ≤ ε. It is easy to see that Rd+ ⊆ W ′, which implies (W ′)◦ ⊆ Rd+, so we know
ct ∈ Rd+. Then we have

∀t ∈ [T] : E [ft(xt)− ft(xt)] = E
[
f>t (xt − xt)

]
≤ E

[
f>t (xt + ct − xt)

]
≤ εL.

Thus (9) implies

E

[
T∑
t=1

(ft(xt)− αft(x∗))

]
≤ α2β2d

2η
+
ηL2R2d2

2γ
T + εLT. (10)

Finally, since the point played in round t, zt, is equal to x̃t (whose expectation is xt) with probability
1− γ, we have

E

[
T∑
t=1

(ft(zt)− αft(x∗))

]
≤ (1− γ)E

[
T∑
t=1

(ft(x̃t)− αft(x∗))

]
+ γ · 2αLRT

= (1− γ)E

[
T∑
t=1

(ft(xt)− αft(x∗))

]
+ 2γαLRT

≤ α2β2d

2η
+
ηL2R2d2

2γ
T + εLT + 2γαLRT.

19

Oracle complexity. Using Theorem 3.4, we know that when bt = EXPLORE, the number of calls

to the oracle OK,αK in round t is at most

⌈
5d log

4αR+2
√

2
µ minx∗∈KDϕ(αx∗,yt)

ε

⌉
, where µ is the

strong convexity parameter of ϕ.

In the above proof of the regret bound, we have ignored the term Dϕ(αx∗, yT+1) in (7). If we instead
keep this term, the regret bound (10) will become

∀x∗ ∈ K : E

[
T∑
t=1

(ft(xt)− αft(x∗))

]
≤ α2β2d

2η
+
ηL2R2d2

2γ
T + εLT − 1

η
E [Dϕ(αx∗, yT+1)] .

In the above inequality, substituting T with t, we have

∀t ∈ [T],∀x∗ ∈ K : E [Dϕ(αx∗, yt+1)] ≤ α2β2d

2
+
η2L2R2d2

2γ
t+ εηLt− ηE

 t∑
j=1

(fj(xj)− αfj(x∗))

≤ α2β2d

2
+
η2L2R2d2

2γ
T + εηLT + η · 2αLRT

≤ α2β2d

2
+
η2L2R2d2

2γ
T + 3ηαLRT.

The above upper bound is also clearly valid for Dϕ(αx∗, y1).

Since ϕ(x) = 1
2x
>Q−1x is quadratic, we know that µ = λmin(Q−1) = 1

λmax(Q) =
1

max
u∈Rd,‖u‖=1

‖Qu‖ = 1
max

u∈Rd,‖u‖=1
‖
∑d
i=1 qiq

>
i u‖

≥ 1∑d
i=1 ‖qi‖2

≥ 1
R2d , where λmin(P) and

λmax(P) are respectively the smallest and the largest eigenvalues of a symmetric matrix P .

Note that log(a +
√
x) is a concave function in x for a > 0. By Jensen’s inequality, the expected

number of calls to the oracle OαK in round t when bt = EXPLORE is upper bounded by:

E

1 + 5d log
4αR+ 2

√
2
µ min
x∗∈K

Dϕ(αx∗, yt)

ε

≤ 1 + min

x∗∈K
E

5d log
4αR+ 2

√
2
µDϕ(αx∗, yt)

ε

≤ 1 + min

x∗∈K
5d log

4αR+ 2
√

2
µE [Dϕ(αx∗, yt)]

ε

≤ 1 + 5d log

4αR+ 2

√
2R2d

(
α2β2d

2 + η2L2R2d2

2γ T + 3ηαLRT
)

ε

= 1 + 5d log
4αR+ 2R

√
α2β2d2 + η2L2R2d3

γ T + 6ηαLRdT

ε
.

Therefore the expected total number of calls to the oracle OαK in T rounds is at most

(1 + γT)

1 + 5d log
4αR+ 2R

√
α2β2d2 + η2L2R2d3

γ T + 6ηαLRdT

ε

 .

The second part of the theorem can be directly verified using the specific choices of η, ε and γ and
noting log(poly(βd)) = O (log T) since T > β2d3.

D Log-Concave Distributions

A distribution over Rd with a density function f is log-concave if log(f) is a concave function.
For a convex set S equipped with a membership oracle, there exist polynomial-time algorithms for

20

sampling from any log-concave distribution over S (Lovász and Vempala, 2007). This can be used to
approximately compute the mean of any log-concave distribution.

We have the following classical result which says that every half-space close enough to the mean of a
log-concave distribution must contain at least constant probability mass. For simplicity, we only state
and prove the result for isotropic (i.e., identity covariance) log-concave distributions, but the result
can be easily generalized to allow arbitrary covariance.
Lemma D.1. Consider any isotropic (identity covariance) log-concave distribution p over Rd with
mean x∗. Then for any half-space H such that ‖x∗ −ΠH(x∗)‖ ≤ 1

2e , we have
∫
H
p(x)dx ≥ 1

2e .

Proof. Let H = {x ∈ Rd : w>x ≥ b} for a unit vector w ∈ Rd and b ∈ R, and assume without loss
of generality that x∗ = 0. Consider the one-dimensional random variable Y := w>X − b, where
X ∼ p. Denote by q : R→ R the density function of y. Then we have∫

H

p(x)dx =

∫ ∞
0

q(y)dy.

Let y∗ := E[Y] = w>x∗ − b = −b. By our assumption, we know |y∗| ≤ 1
2e . Moreover, since

log-concavity is preserved under linear transformations (Prékopa, 1973), we know that y also follows
a log-concave distribution, and it is easy to see that it is also isotropic. Using Lemma 5.4 in (Lovász
and Vempala, 2007), we know

∫∞
y∗
q(y)dy ≥ 1

e . In addition, from Lemma 5.5 in (Lovász and
Vempala, 2007) we know q(y) ≤ 1 (∀y ∈ R). Therefore, we have

1

e
−
∫ ∞

0

q(y)dy ≤
∫ ∞
y∗

q(y)dy −
∫ ∞

0

q(y)dy ≤ |y∗| sup
y∈R

q(y) ≤ 1

2e
,

which implies
∫∞

0
q(y)dy ≥ 1

2e , completing the proof.

As an implication, we have the following lemma regarding mean computation of a log-concave
distribution, which is useful in this paper.
Lemma D.2. For any log-concave distribution p in Rd with mean x∗, whose support supp(p) is
in B(0, R) (R > 0), and any ε > 0 and 0 < δ < 1, it is possible to compute a point x̃∗ in
poly

(
d, 1

ε , log 1
δ

)
time such that with probability at least 1− δ we have: (1) ‖x̃∗− x∗‖ ≤ Rε; (2)for

any half space H containing x̃∗,
∫
H
p(x)dx ≥ 1

2e .

For our purpose in this paper, it always suffices to choose ε = 1
T and δ = 1

poly(T) (T being the total
number of rounds) without hurting our regret bounds.

21

	Introduction
	Problem Setting and Our Results
	Applications
	Related Work

	Preliminaries
	Mirror Descent with an Approximation Oracle
	-Regret Minimization in the Bandit Setting
	Conclusion and Open Problems
	Omitted Proofs in Section 3
	Efficient Online Improper Linear Optimization via Continuous Multiplicative Weight Update (CMWU)
	Separation-or-Decomposition Oracle
	CMWU with Refining Domains
	Online Improper Linear Optimization via CMWU

	Proof for the Bandit Setting (Theorem 4.2)
	Log-Concave Distributions

