
A Experimental Setup

In Section A.1, we provide details regarding the architectures used in our analysis. Then in Section A.2
we discuss the specifics of the setup and measurements used in our experiments.

A.1 Models

We use two standard deep architectures – a VGG-like network, and a deep linear network (DLN). The
VGG model achieves close to state-of-the-art performance while being fairly simple4. Preliminary
experiments on other architectures gave similar results. We study DLNs with full-batch training
since they allow us to isolate the effect of non-linearities, as well as the stochasticity of the training
procedure. Both these architectures show clear a performance benefits with BatchNorm.

Specific details regarding both architectures are provided below:

1. Convolutional VGG architecture on CIFAR10 (VGG):
We fit a VGG-like network, a standard convolutional architecture [26], to a canonical image
classification problem (CIFAR10 [15]). We optimize using standard stochastic gradient
descent and train for 15, 000 steps (training accuracy plateaus). We use a batch size of 128
and a fixed learning rate of 0.1 unless otherwise specified. Moreover, since our focus is on
training, we do not use data augmentation. This architecture can fit the training dataset well
and achieves close to state-of-the art test performance. Our network achieves a test accuracy
of 83% with BatchNorm and 80% without (this becomes 92% and 88% respectively with
data augmentation).

2. 25-Layer Deep Linear Network on Synthetic Gaussian Data (DLN):
DLN are a factorized approach to solving a simple regression problem, i.e., fitting Ax from
x. Specifically, we consider a deep network with k fully connected layers and an `2 loss.
Thus, we are minimizing ‖W1 . . .Wkx − Ax‖22 over Wi

5. We generate inputs x from a
Gaussian Distribution and a matrix A with i.i.d. Gaussian entries. We choose k to be 25,
and the dimensions of A to be 10× 10. All the matrices Wi are square and have the same
dimensions. We train DLN using full-batch gradient descent for 10, 000 steps (training loss
plateaus).The size of the dataset is 1000 (same as the batch size) and the learning rate is
10−6 unless otherwise specified.

For both networks we use standard Glorot initialization [4]. Further the learning rates were selected
based on hyperparameter optimization to find a configuration where the training performance for the
network was the best.

A.2 Details

A.2.1 “Noisy” BatchNorm Layers

Consider ai,j , the j-th activation of the i-th example in the batch. Note that batch norm will ensure
that the distribution of a·,j for some j will have fixed mean and variance (possibly learnable).

At every time step, our noise model consists of perturbing each activation for each sample in a batch
with noise i.i.d. from a non-zero mean, non-unit variance distribution Dt

j . The distributionDt
j itself is

time varying and its parameters are drawn i.i.d from another distributionDj . The specific noise model
is described in Algorithm 1. In our experiments, nµ = 0.5, nσ = 1.25 and rµ = rσ = 0.1. (For
convolutional layers, we follow the standard convention of treating the height and width dimensions
as part of the batch.)

4We choose to not experiment with ResNets [7] since they seem to provide several similar benefits to
BatchNorm [6] and would introduce conflating factors into our study.

5While the factorized formulation is equivalent to a single matrix in terms of expressivity, the optimization
landscape is drastically different [6].
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Algorithm 1 “Noisy” BatchNorm

1: % For constants nm, nv , rm, rv .
2:
3: for each layer at time t do
4: ati,j ← Batch-normalized activation for unit j and sample i
5:
6: for each j do . Sample the parameters (mt

j , v
t
j) of Dt

j from Dj

7: µt ∼ U(−nµ, nµ)
8: σt ∼ U(1, nσ)

9:
10: for each i do . Sample noise from Dt

j
11: for each j do
12: mt

i,j ∼ U(µ− rµ, µ+ rµ)

13: sti,j ∼ N (σ, rσ)

14: ati,j ← sti,j · ai,j +mt
i,j

While plotting the distribution of activations, we sample random activations from any given layer of
the network and plot its distribution over the batch dimension for fully connected layers, and over the
batch, height, width dimension for convolutional layers as is standard convention in BatchNorm for
convolutional networks.

A.2.2 Loss Landscape

To measure the smoothness of the loss landscape of a network during the course of training, we
essentially take steps of different lengths in the direction of the gradient and measure the loss values
obtained at each step. Note that this is not a training procedure, but an evaluation of the local loss
landscape at every step of the training process.

For VGG we consider steps of length ranging from [1/2, 4]× step size, whereas for DLN we choose
[1/100, 30]× step size. Here step size denotes the hyperparameter setting with which the network is
being trained. We choose these ranges to roughly reflect the range of parameters that are valid for
standard training of these models. The VGG network is much more sensitive to the learning rate
choices (probably due to the non-linearities it includes), so we perform line search over a restricted
range of parameters. Further, the maximum step size was chosen slightly smaller than the learning
rate at which the standard (no BatchNorm) network diverges during training.

B Omitted Figures

Additional visualizations for the analysis performed in Section 3.1 are presented below.
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Figure 6: Measurement of ICS (as defined in Definition 2.1) in networks with and without BatchNorm
layers. For a layer we measure the cosine angle (ideally 1) and `2-difference of the gradients (ideally
0) before and after updates to the preceding layers (see Definition 2.1). Models with BatchNorm have
similar, or even worse, internal covariate shift, despite performing better in terms of accuracy and
loss. (Stabilization of BatchNorm faster during training is an artifact of parameter convergence.)
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Figure 7: Comparison of change in the first two moments (mean and variance) of distributions of
example activations for a given layer between two successive steps of the training process. Here
we compare VGG networks trained without BatchNorm (Standard), with BatchNorm (Standard +
BatchNorm) and with explicit “covariate shift” added to BatchNorm layers (Standard + “Noisy”
BatchNorm). “Noisy” BatchNorm layers have significantly higher ICS than standard networks, yet
perform better from an optimization perspective (cf. Figure 2).

Layer#: 1 Layer#: 11 Layer#: 24

Figure 8: Distributions of activations from different layers of a 25-Layer deep linear network. Here
we sample a random activation from a given layer to visualize its distribution over training.
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Figure 9: Analysis of the optimization landscape during training of deep linear networks with and
without BatchNorm. At a particular training step, we measure the variation (shaded region) in
loss (a) and `2 changes in the gradient (b) as we move in the gradient direction. The “effective”
β-smoothness (c) captures the maximum β value observed while moving in this direction. There
is a clear improvement in each of these measures of smoothness of the optimization landscape in
networks with BatchNorm layers. (Here, we cap the maximum distance moved to be η = 30× the
gradient since for larger steps the standard network just performs works (see Figure 1). However,
BatchNorm continues to provide smoothing for even larger distances.)
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Figure 10: Comparison of the predictiveness of gradients with and without BatchNorm. Here, at
a given step in the optimization, we measure the `2 error between the current gradient, and new
gradients which are observed while moving in the direction of the current gradient. We then evaluate
how this error varies based on distance traversed in the direction of the gradient. We observe that
gradients are significantly more predictive in networks with BatchNorm and change slowly in a given
local neighborhood. This explains why networks with BatchNorm are largely robust to a broad range
of learning rates.
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Figure 11: Evaluation of VGG networks trained with different `p normalization strategies discussed
in Section 3.3. (a): Comparison of the training performance of the models. (b, c, d): Evaluation of
the smoothness of optimization landscape in the various models. At a particular training step, we
measure the variation (shaded region) in loss (b) and `2 changes in the gradient (c) as we move in
the gradient direction. We also measure the maximum β-smoothness while moving in this direction
(d). We observe that networks with any normalization strategy have improved performance and
smoothness of the loss landscape over standard training.
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Figure 12: Evaluation of deep linear networks trained with different `p normalization strategies. We
observe that networks with any normalization strategy have improved performance and smoothness
of the loss landscape over standard training. Details of the plots are the same as Figure 11 above.
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Figure 13: Evaluation of the training performance of `p normalization techniques discussed in
Section 3.3. For both networks, all `p normalization strategies perform comparably or even better
than BatchNorm. This indicates that the performance gain with BatchNorm is not about distributional
stability (controlling mean and variance).
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Figure 14: Activation histograms for the VGG network under different normalizations. Here, we
randomly sample activations from a given layer and visualize their distributions. Note that the `p-
normalization techniques leads to larger distributional covariate shift compared to normal networks,
yet yield improved optimization performance.
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C Proofs

We now prove the stated theorems regarding the landscape induced by batch normalization.

We begin with a few facts that can be derived directly from the closed-form of Batch Normalization,
which we use freely in proving the following theorems.

C.1 Useful facts and setup

We consider the same setup pictured in Figure 5 and described in Section 4.1. Note that in proving
the theorems we use partial derivative notation instead of gradient notation, and also rely on a few
simple but key facts:

Fact C.1 (Gradient through BatchNorm). The gradient ∂f
∂A(b) through BN and another function

f := f(C), where C = γ ·B + β, and B = BN0,1(A) :=
A−µ
σ where A(b) are scalar elements of a

batch of size m and variance σ2 is

∂f

∂A(b)
=

γ

mσ

(
m

∂f

∂C(b)
−

m∑

k=1

∂f

∂C(k)
−B(b)

m∑

k=1

∂f

∂C(k)
B(k)

)

Fact C.2 (Gradients of normalized outputs). A convenient gradient of BN is given as

∂ŷ(b)

∂y(k)
=

1

σ

(
1[b = k]− 1

m
− 1

m
ŷ(b)ŷ(k)

)
, (1)

and thus
∂z

(b)
j

∂y(k)
=
γ

σ

(
1[b = k]− 1

m
− 1

m
ŷ(b)ŷ(k)

)
, (2)
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C.2 Lipschitzness proofs

Now, we provide a proof for the Lipschitzness of the loss landscape in terms of the layer activations.
In particular, we prove the following theorem from Section 4.

Theorem 4.1 (The effect of BatchNorm on the Lipschitzness of the loss). For a BatchNorm network
with loss L̂ and an identical non-BN network with (identical) loss L,

∣∣∣
∣∣∣∇yj

L̂
∣∣∣
∣∣∣
2

≤ γ2

σ2
j

(∣∣∣∣∇yj
L
∣∣∣∣2 − 1

m

〈
1,∇yj

L
〉2 − 1√

m

〈
∇yj
L, ŷj

〉2
)
.

Proof. Proving this is simply a direct application of Fact C.1. In particular, we have that

∂L̂
∂yj(b)

=

(
γ

mσj

)(
m

∂L̂
∂zj(b)

−
m∑

k=1

∂L̂
∂zj(k)

− ŷ(b)j
m∑

k=1

∂L̂
∂zj(k)

ŷ
(k)
j

)
, (3)

which we can write in vectorized form as

∂L̂
∂yj

=

(
γ

mσj

)(
m
∂L̂
∂zj
− 1

〈
1,
∂L̂
∂zj

〉
− ŷj

〈
∂L̂
∂zj

, ŷj

〉)
(4)

Now, let µg = 1
m

〈
1, ∂L̂/∂zj

〉
be the mean of the gradient vector, we can rewrite the above as the

following (in the subsequent steps taking advantage of the fact that ŷj is mean-zero and norm-
√
m:

∂L̂
∂yj

=

(
γ

σj

)((
∂L̂
∂zj
− 1µg

)
− 1

m
ŷj

〈(
∂L̂
∂zj
− 1µg

)
, ŷj

〉)
(5)

=
γ

σ

((
∂L̂
∂zj
− 1µg

)
− ŷj
||ŷj ||

〈(
∂L̂
∂zj
− 1µg

)
,
ŷj
||ŷj ||

〉)
(6)

∣∣∣∣∣

∣∣∣∣∣
∂L̂
∂yj

∣∣∣∣∣

∣∣∣∣∣

2

=
γ2

σ2

∣∣∣∣∣

∣∣∣∣∣

(
∂L̂
∂zj
− 1µg

)
− ŷj
||ŷj ||

〈(
∂L̂
∂zj
− 1µg

)
,
ŷj
||ŷj ||

〉∣∣∣∣∣

∣∣∣∣∣

2

(7)

=
γ2

σ2



∣∣∣∣∣

∣∣∣∣∣

(
∂L̂
∂zj
− 1µg

)∣∣∣∣∣

∣∣∣∣∣

2

−
〈(

∂L̂
∂zj
− 1µg

)
,
ŷj
||ŷj ||

〉2

 (8)

=
γ2

σ2



∣∣∣∣∣

∣∣∣∣∣
∂L̂
∂zj

∣∣∣∣∣

∣∣∣∣∣

2

− 1

m

〈
1,
∂L̂
∂zj

〉2

− 1√
m

〈
∂L̂
∂zj

, ŷj

〉2

 (9)

Exploiting the fact that ∂L̂/∂zj = ∂L/∂y gives the desired result.

Next, we can use this to prove the minimax bound on the Lipschitzness with respect to the weights.
Theorem 4.4 (Minimax bound on weight-space Lipschitzness). For a BatchNorm network with loss
L̂ and an identical non-BN network (with identical loss L), if

gj = max
||X||≤λ

||∇WL||2 , ĝj = max
||X||≤λ

∣∣∣∣∣∣∇W L̂∣∣∣∣∣∣2 =⇒ ĝj ≤
γ2

σ2
j

(
g2j −mµ2

gj − λ
2 〈∇yjL, ŷj

〉2)
.

Proof. To prove this, we start with the following identity for the largest eigenvalue λ0 of M ∈ Rd×d:

λ0 = max
x∈Rd;||x||2=1

x>Mx, (10)

which in turn implies that for a matrix X with ||X||2 ≤ λ, it must be that v>Xv ≤ λ||v||2, with the
choice of X = λI making this bound tight.
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Now, we derive the gradient with respect to the weights via the chain rule:

∂L̂
∂Wij

=

m∑

b=1

∂L̂
∂yj(b)

∂yj
(b)

∂Wij
(11)

∂L̂
∂Wij

=

m∑

b=1

∂L̂
∂yj(b)

xi
(b) (12)

=

〈
∂L̂
∂yj

,xi

〉
(13)

∂L̂
∂W·j

=X>

(
∂L̂
∂yj

)
, (14)

whereX ∈ Rm×d is the input matrix holding Xbi = x
(b)
i . Thus,

∣∣∣∣∣

∣∣∣∣∣
∂L̂
∂W·j

∣∣∣∣∣

∣∣∣∣∣

2

=

(
∂L̂
∂yj

)>
XX>

(
∂L̂
∂yj

)
, (15)

and since we have ||X||2 ≤ λ, we must have ||XX>||2 ≤ λ2, and so recalling (10),

max
||X||2<λ

∣∣∣∣∣

∣∣∣∣∣
∂L̂
∂W·j

∣∣∣∣∣

∣∣∣∣∣

2

≤ λ2
(
∂L̂
∂yj

)>(
∂L̂
∂yj

)
= λ2

∣∣∣∣∣

∣∣∣∣∣
∂L̂
∂yj

∣∣∣∣∣

∣∣∣∣∣

2

, (16)

and applying Theorem 4.1 yields:

ĝj := max
||X||2<λ

∣∣∣∣∣

∣∣∣∣∣
∂L̂
∂W·j

∣∣∣∣∣

∣∣∣∣∣

2

≤ λ2γ2

σ2

(∣∣∣∣
∣∣∣∣
∂L
∂yj

∣∣∣∣
∣∣∣∣
2

− 1

m

〈
1,
∂L
∂yj

〉2

− 1√
m

〈
∂L
∂yj

, ŷj

〉2
)
. (17)

Finally, by applying (10) again, note that in fact in the normal network,

gj := max
||X||2<λ

∣∣∣∣∣

∣∣∣∣∣
∂L̂
∂W·j

∣∣∣∣∣

∣∣∣∣∣

2

= λ2
∣∣∣∣
∣∣∣∣
∂L
∂yj

∣∣∣∣
∣∣∣∣
2

, (18)

and thus

ĝj ≤
γ2

σ2

(
g2j −mµ2

gj − λ2
〈
∂L
∂yj

, ŷj

〉2
)
.
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Theorem 4.2 (The effect of BN to smoothness). Let ĝj = ∇yj
L andHjj =

∂L
∂yj∂yj

be the gradient
and Hessian of the loss with respect to the layer outputs respectively. Then

(
∇yj L̂

)> ∂L̂
∂yj∂yj

(
∇yj L̂

)
≤ γ2

σ2

(
∂L̂
∂yj

)>
Hjj

(
∂L̂
∂yj

)
− γ

mσ2
〈ĝj , ŷj〉

∣∣∣∣∣
∣∣∣∣∣ ∂L̂∂yj

∣∣∣∣∣
∣∣∣∣∣
2

If we also have that theHjj preserves the relative norms of ĝj and ∇yj
L̂,

(
∇yj L̂

)> ∂L̂
∂yj∂yj

(
∇yj L̂

)
≤ γ2

σ2

(
ĝ>j Hjj ĝj −

1

mγ
〈ĝj , ŷj〉

∣∣∣∣∣
∣∣∣∣∣ ∂L̂∂yj

∣∣∣∣∣
∣∣∣∣∣
2)

Proof. We use the following notation freely in the following. First, we introduce the hessian with
respect to the final activations as:

Hjk ∈ Rm×m;Hjk :=
∂L̂

∂zj∂zk
=

∂L
∂yj∂yk

,

where the final equality is by the assumptions of our setup. Once again for convenience, we define a
function µ(·) which operates on vectors and matrices and gives their element-wise mean; in particular,
µ(v) = 1

d1
>v for v ∈ Rd and we write µ(·) = µ(·)1 to be a vector with all elements equal to µ.

Finally, we denote the gradient with respect to the batch-normalized outputs as ĝj , such that:

ĝj =
∂L̂
∂zj

=
∂L
∂yj

,

where again the last equality is by assumption.

Now, we begin by looking at the Hessian of the loss with respect to the pre-BN activations yj using
the expanded gradient as above:

∂L̂
∂yj∂yj

=
∂

∂yj

((
γ

mσj

)[
mĝj −mµ(ĝj) − ŷ

(b)
j 〈ĝj , ŷj〉

])
(19)

Using the product rule and the chain rule:

=
γ

mσ

(
∂

∂zq

[
mĝj −mµ(ĝj) − ŷj 〈ĝj , ŷj〉

])
· ∂zq
∂yj

(20)

+

(
∂

∂yj

(
γ

mσj

))
·
(
mĝj −mµ(ĝj) − ŷj 〈ĝj , ŷj〉

)
(21)

Distributing the derivative across subtraction:

=

(
γ

σj

)(
Hjj −

∂µ(ĝj)

∂zj
− ∂

∂zj

(
1

m
ŷj 〈ĝj , ŷj〉

))
· ∂zj
∂yj

(22)

+

(
ĝj − µ(ĝj) −

1

m
ŷj 〈ĝj , ŷj〉

)(
∂

∂yj

(
γ

σj

))
(23)

We address each of the terms in the above (22) and (23) one by one:

∂µ(ĝj)

∂zj
=

1

m

∂1>ĝj
∂zj

=
1

m
1 · 1>Hjj (24)
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∂

∂zj
(ŷj 〈ŷj , ĝj〉) =

1

γ

∂

∂ŷj
(ŷj 〈ŷj , ĝj〉) (25)

=
1

γ

∂ŷj
∂ŷj
〈ĝj , ŷj〉+ ŷj ŷ>j Hjj +

1

γ
ŷj ĝ
>
j

∂ŷj
∂ŷj

(26)

=
1

γ
I 〈ĝj , ŷj〉+ ŷj ŷ>j Hjj +

1

γ
ŷj ĝ
>
j I (27)

∂

∂yj

(
γ

σj

)
= γ
√
m
∂
((
yj − µ(yj)

)> (
yj − µ(yj)

))− 1
2

∂yj
(28)

=
−1
2
γ
√
m
(
(yj − µ(yj))

>(yj − µ(yj))
)− 3

2 (2(yj − µ(yj))) (29)

= − γ

mσ2
ŷj (30)

Now, we can use the preceding to rewrite the Hessian as:

∂L̂
∂yj∂yj

=

(
γ

mσj

)(
mHjj − 1 · 1>Hjj −

1

γ
I 〈ĝj , ŷj〉 − ŷj ŷ>j Hjj −

1

γ

(
ŷj ĝ
>
j

))
· ∂zj
∂yj

(31)

− γ

mσ2

(
ĝj − µ(ĝj) −

1

m
ŷj 〈ĝj , ŷj〉

)
ŷ>j (32)

Now, using Fact C.2, we have that:

∂zj
∂yj

=

(
γ

σj

)(
I − 1

m
1 · 1> − 1

m
ŷj ŷ

>
j

)
, (33)

and substituting this yields (lettingM = 1 · 1> for convenience):

∂L̂
∂yj∂yj

=
γ2

mσ2

(
mHjj −MHjj −

1

γ
I 〈ĝj , ŷj〉 − ŷj ŷ>j Hjj −

1

γ

(
ŷj ĝ
>
j

))
(34)

− γ2

mσ2

(
HjjM − 1

m
MHjjM − 1

mγ
M 〈ĝj , ŷj〉 −

1

m
ŷj ŷ

>
j HjjM − 1

mγ

(
ŷj ĝ
>
j M

))

(35)

− γ2

mσ2

(
Hjj ŷj ŷ

>
j −

1

m
MHjj ŷj ŷ

>
j −

1

mγ
ŷj ŷ

>
j 〈ĝj , ŷj〉 −

1

m
ŷj ŷ

>
j Hjj ŷj ŷ

>
j −

1

mγ

(
ŷj ĝ
>
j ŷj ŷ

>
j

))

(36)

− γ

mσ2

(
ĝj − µ(ĝj) −

1

m
ŷj 〈ĝj , ŷj〉

)
ŷ>j (37)

Collecting the terms, and letting ĝj = ĝj − µ(ĝj):

∂L̂
∂yj∂yj

=
γ2

mσ2

[
mHjj −MHjj − ŷj ŷ>j Hjj −HjjM +

1

m
MHjjM (38)

+
1

m
ŷj ŷ

>
j HjjM −Hjj ŷj ŷ

>
j +

1

m
MHjj ŷj ŷ

>
j +

1

m
ŷj ŷ

>
j Hjj ŷj ŷ

>
j

]
(39)

− γ

mσ2

(
ĝj ŷ

>
j − µ(ĝj)ŷ

>
j −

3

m
ŷj ŷ

>
j 〈ĝj , ŷj〉+

(
〈ĝj , ŷj〉 I + ŷj ĝ>j

)(
I − 1

m
M

))

(40)

=
γ2

σ2

[(
I − 1

m
ŷj ŷ

>
j −

1

m
M

)
Hjj

(
I − 1

m
ŷj ŷ

>
j −

1

m
M

)
(41)

− 1

mγ

(
ĝj ŷ

>
j + ŷj ĝj

> − 3

m
ŷj ĝ
>
j ŷŷ

>
j + 〈ĝj , ŷj〉

(
I − 1

m
M

))]
(42)
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Now, we wish to calculate the effective beta smoothness with respect to a batch of activations, which
corresponds to g>Hg, where g is the gradient with respect to the activations (as derived in the
previous proof). We expand this product noting the following identities:

Mĝj = 0 (43)
(
I − 1

m
M − 1

m
ŷj ŷ

>
j

)2

=

(
I − 1

m
M − 1

m
ŷj ŷ

>
j

)
(44)

ŷ>j

(
I − 1

m
ŷj ŷ

>
j

)
= 0 (45)

(
I − 1

m
M

)(
I − 1

m
ŷj ŷ

>
j

)
ĝj =

(
I − 1

m
ŷj ŷ

>
j

)
ĝj (46)

Also recall from (5) that:

∂L̂
∂yj

=
γ

σ
ĝj
>
(
I − 1

m
ŷj ŷ

>
j

)
(47)

Applying these while expanding the product gives:

∂L̂
∂yj

>

· ∂L̂
∂yj∂yj

· ∂L̂
∂yj

=
γ4

σ4
ĝj
>
(
I − 1

m
ŷj ŷ

>
j

)
Hjj

(
I − 1

m
ŷj ŷ

>
j

)
ĝj (48)

− γ3

mσ4
ĝj
>
(
I − 1

m
ŷj ŷ

>
j

)
ĝj 〈ĝj , ŷj〉 (49)

=
γ2

σ2

(
∂L̂
∂yj

)>
Hjj

(
∂L̂
∂yj

)
− γ

mσ2
〈ĝj , ŷj〉

∣∣∣∣∣

∣∣∣∣∣
∂L̂
∂yj

∣∣∣∣∣

∣∣∣∣∣

2

(50)

This concludes the first part of the proof. Note that if Hjj preserves the relative norms of ĝj and
∇yj
L̂, then the final statement follows trivially, since the first term of the above is simply the induced

squared norm
∣∣∣
∣∣∣ ∂L̂∂yj

∣∣∣
∣∣∣
2

Hjj

, and so

∂L̂
∂yj

>

· ∂L̂
∂yj∂yj

· ∂L̂
∂yj

≤ γ2

σ2


ĝ>j Hjj ĝj −

1

mγ
〈ĝj , ŷj〉

∣∣∣∣∣

∣∣∣∣∣
∂L̂
∂yj

∣∣∣∣∣

∣∣∣∣∣

2

 (51)

Once again, the same techniques also give us a minimax separation:
Theorem C.1 (Minimax smoothness bound). Under the same conditions as the previous theorem,

max
||X||≤λ

(
∂L̂
∂W·j

)>
∂L̂

∂W·j∂W·j

(
∂L̂
∂W·j

)
<
γ2

σ2

[
max
||X||≤λ

(
∂L
∂W·j

)>
∂L

∂W·j∂W·j

(
∂L
∂W·j

)
− λ4κ

]
,

where κ is the separation given in the previous theorem.

Proof.

∂L
∂Wij∂Wkj

= x>i
∂L

∂yj∂yj
xk (52)

∂L̂
∂Wij∂Wkj

= x>i
∂L̂

∂yj∂yj
xk (53)

∂L̂
∂W·j∂W·j

=X>
∂L̂

∂yj∂yj
X (54)

(55)
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Looking at the gradient predictiveness using the gradient we derived in the first proofs:

β :=

(
∂L̂
∂W·j

)>
∂L̂

∂W·j∂W·j

(
∂L̂
∂W·j

)
(56)

= ĝ>j

(
I − 1

m
ŷj ŷ

>
j

)
XX>

∂L̂
∂yj∂yj

XX>
(
I − 1

m
ŷj ŷ

>
j

)
ĝj (57)

Maximizing the norm with respect to X yields:

max
||X||≤λ

β = λ4ĝ>j

(
I − 1

m
ŷj ŷ

>
j

)
∂L̂

∂yj∂yj

(
I − 1

m
ŷj ŷ

>
j

)
ĝj , (58)

at which the previous proof can be applied to conclude.
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Lemma 4.5 (BatchNorm leads to a favourable initialization). LetW ∗ and Ŵ ∗ be the set of local
optima for the weights in the normal and BN networks, respectively. For any initialization W0

∣∣∣
∣∣∣W0 − Ŵ ∗

∣∣∣
∣∣∣
2

≤ ||W0 −W ∗||2 −
1

||W ∗||2
(
||W ∗||2 − 〈W ∗,W0〉

)2
,

if 〈W0,W
∗〉 > 0, where Ŵ ∗ and W ∗ are closest optima for BN and standard network, respectively.

Proof. This is as a result of the scale-invariance of batch normalization. In particular, first note that
for any optimum W in the standard network, we have that any scalar multiple of W must also be an
optimum in the BN network (since BN((aW )x) = BN(Wx) for all a > 0). Recall that we have
defined k > 0 to be propertial to the correlation between W0 and W ∗:

k =
〈W ∗,W0〉
||W ∗||2

Thus, for any optimum W ∗, we must have that Ŵ := kW ∗ must be an optimum in the BN network.
The difference between distance to this optimum and the distance to W is given by:

∣∣∣
∣∣∣W0 − Ŵ

∣∣∣
∣∣∣
2

− ||W0 −W ∗||2 = ||W0 − kW ∗||2 − ||W0 −W ∗||2 (59)

=
(
||W0||2 − k2 ||W ∗||2

)
−
(
||W0||2 − 2k ||W ∗||2 + ||W ∗||2

)

(60)

= 2k ||W ∗||2 − k2 ||W ∗||2 − ||W ∗||2 (61)

= − ||W ∗||2 · (1− k)2 (62)
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