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A Technical Lemmas

A.1 Concentration Inequalities

Our discussion on high-probability bounds is based on the following two concentration inequalities.
Lemma[A.T|quantifies the concentration behavior of martingales. Part (a) is the Azuma-Hoeffding
inequality for martingales with bounded increments [4]], and part (b) is a conditional Bernstein
inequality using the conditional variance to quantify better the concentration behavior of martingales
[10]. LemmalA.2]is the McDiarmid’s inequality to arbitrary real-valued functions of independent
random variables that satisfy a bounded increment condition [6].

Lemma A.1. Let 21, ..., 2, be a sequence of random variables such that zi may depend on the
previous random variables z1, ..., zx—1 forall k = 1,... n. Consider a sequence of functionals
(21, zk)k=1,...,n. Leto?2 =57 _E,, [(fk —-E,, [5;@])2} be the conditional variance.

(a) Assume that |€, — E,, [€k]| < by for each k. Let 0 € (0, 1). With probability at least 1 — & we

have
ng—ZEzk &l < (2 Zb2log ) . (A1)

(b) Assume that &, — E,, [€x] < bforeach k. Let p € (0,1] and § € (0,1). With probability at least
1 — 9 we have

n " J?L b log 1
>oG - Y Ele) < Br e —L (A2)
= k=1 P
Lemma A.2. Letcy,...,c, € Ry. Let Z1,. .., Z, be independent random variables taking values

in a set Z, and assume that f : Z" — R satisfies

sup |f(217 7Zn)*f(21,"‘ 7Zk—1azkazk+17"' 7ZTL)| <ck (A3)

214320, ,2k €EZ

fork =1,...,n. Then, forany 0 < § < 1, with probability at least 1 — § we have

) \/Zkl ik log(1/9)

(2., Z0) <E[f(Zy,....Z

A.2 Behavior of Objectives

In this section, we collect some lemmas on functions g satisfying
lg'(w)lI? < Ag(w) + B (A4)

for some constant 4, B > 0. Lemma|[A.3|shows that, if g satisfies (A.4), then both ||¢’(w)||? and
g(w) can be controlled by quadratic functions of ||w||.
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Lemma A.3. Let g : W — R be a convex function. If there exist A and B such that (A:4) holds for
all w e W. Then

I ()2 < 24%uwl]> +249(0) +2B and g(w) < (A*+ 3) [l + (A+1)g(0) + B. (A5)

Proof. According to (A4) and the convexity of g, we know
lg' (w2 < A(g(w) — 9(0)) + Ag(0) + B
< Aw, g'(w)) + Ag(0) + B < Afjwll[lg'(w)]|« + Ag(0) + B.
Solving the above quadratic inequality of || g’ (w)]|. shows
lg"(w)ll« < Allw] + v/ Ag(0) + B,
from which and the elementary inequality (a + b)? < 2(a? + b?) we derive the first inequality.

We now turn to the second inequality. By the convexity of ¢ and the first inequality in (A-3), we get
g(w) = g(0) < (w,g'(w)) < [lwl[lg"(w)]

2 ! 2 2

from which we derive the second inequality. The proof is complete. [

Lemma shows that functions of the form f(w, z) = ¢({w, z), y) would satisfy (3.1)) if ¢ satisfies

LemmaAd. Let{: RxY — Rand f(w, z) = 0((w, z),y) with z = (x,y). If there exist A, B > 0
such that

| (a,y)|* < Al(a,y) + B, YacR,yc. (A.6)
Then we have || f'(w, 2)||? < Af(w,z) + B foranyw € W and z € Z, where k = sup ¢ y ||z
A = Ak? and B = BK?.

*

Proof. For any w € W and z € Z, it follows from (A-6) that
2 ~ ~ ~ ~
1w, 212 = [ (w,), |2 < w2 (A((w, ), y) + B) = w2(Af(w, 2) + B).
The proof is complete. O

LemmaA.5|shows that regularizers ,(w) = [|w|[5, p € [1,2] satisfy the condition (3.I). For a € R,
denote by sgn(a) the sign of a, i.e., sgn(a) = 1ifa > 0, sgn(a) = —1if a < 0 and sgn(a) = 0 if
a=0.
Lemma A.S5. The function r,(w) = |[w||b with 1 < p < 2 defined on W satisfies

lrp ()3 < p(2(p = Dlfwl}h +2-p), YweW,

where p* = p% is the conjugate exponent of p.

Proof. If p = 1, then any 7} (w) € 9r1(w) would satisfy ||r] (w)]|c < 1, from which and p* = oo
we know ||} (w)[|2. < 1.

d
=1’

If p > 1, then the gradient of r, at w can be calculated by Vry,(w) = p(sgn(w(i))|w(i)[P~*)
from which we have

d 1 d 1
197 ()l =p( D [sen(w@lw@P )" = p( 3 lw@P" @) = plluljz.
i=1 i=1
It then follows from the Young’s inequality
b 11
ab < a——i—f, Ya,b,s,5§ > 0with — + - =1
s 5 s 8
that
ol "7 2y
V7 (w) 2. = p2 2P0 < p2( P__ + ) = p(2(p — Dllw]Z + 2 p).
2-1) p
The proof is complete by combining the above two cases together. O



B Proofs for Lemma 1 and Lemma

In this section, we prove Lemmal|I] quantifying the one-step progress of SCMD (2.2), and Lemma 2]
which plays an important role in removing the boundedness assumptions on subgradients.

Proof of Lemmall] According to the first-order optimality condition in (2.2)), there exists an
' (wip1) € Or(wyy1) satisfying

nef' (we, 2¢) + ner’ (we1) + V¥ (wig1) — VI (wy) =0,

from which and the identity Dy (w, wyy1) + Dy (wit1, w) — Dy (w, wy) = (w — wig1, VI (wy) —
VU (wii1)), we derive

Dy (w,wiy1) — Dy (w,wy) = Dy (w,wiq1) + Dy (wipr, wy) — Dy (w, wy) — Dy (wig1,wy)
= (w — wiy1, VY () — VU (wii1)) — Dy (wir1, wy)
= ne(w — wetr, [/ (we, 2) + 7" (wi41)) — Dy (wegr, wy)
< ne(w — weg, f(we, 20)) + me[r(w) = r(wis1) — 0p Do (w, wig1)] — D (wig1, wy)

= ne(w —wy, f'(we, 2)) +ne(we — wipr, f(we, 20)) + ner(w) —r(w)]

+ner(we) — r(wip1)] — oy Dy (w, weg1) — Dy (wigr, wy).
(B.1)

Here, we have used the o,.-strong convexity of » (3.3) in the inequality. From the convexity of , the
definition of dual norm and the strong convexity of W, it follows that

ui th — Wi, f/(wt7 Zt)> + T(wt) - T(wt+1)] - D\I/(thrlawt)

< nellwe — wep [[[|F (we, 26) [ + ne{we — wiegr, v’ (we)) — 2_1U\If||wt - wt+1||2

< nelwe — wiga | [Ilf’(wt,zt)H* + ||7'/(wt)||*} - 2_10‘11\\% - thHQ

<27 oy lwy — weal? + 27 g (L (we, )l + 11 ()] = 27 o lwy — wiss |

<oy g (I (we, 20112 + 1Y (we)17] < og'nf [Af(we, z2) + Ar(w,) + 2B],

where we have used the elementary inequality (a + b)? < 2(a? + b?) and (B.I) in the last two
inequalities. Plugging the above inequality back into (B:I), we get the stated inequality and complete
the proof. O

Proof of Lemma[2] Using the convexity of f in (3.4), we derive the following inequality for any
we W

Dy (w,wiy1) — Dy (w,wy)

<o (F(w, z) = fwe, 20)) + me(r(w) = r(wy)) + oy ng (Af (we, z¢) + Ar(w;) + 2B)

= me(f(w, 2¢) +1(w)) + (03 17 A = ne) (f(we, z¢) +r(wy)) + 205" By (B.2)
<ne(f(w, z) +r(w)) + A~ By,

where the last inequality is due to the assumption 7; < (24) !oy. Plugging w = 0 in the above
inequality and using the definition of C, we derive

D\p(O,th) — Dq,(O,wt) S nt(f(OV Zt) + 'I’(O)) + A_ant S ntCl.

It then follows that

t t
Dy (0, wi41) = Dy (0, w1 +Z [D (0, wit1) — Dw(0,wi)] < C me (B.3)
k=1 k=1

where we have used w; = 0 in the last inequality. The stated inequality (3:3) then follows from the
oy-strong convexity of W.

We now prove (3.6). Taking w = 0 in and using n; < 271 Aoy, we get
27 (f(we, 20) +r(we)) < me(£(0,2) +7(0)) + 205" Bnf + Dy (0,w;) — Dy (0, wes1). (B.4)



Multiplying both sides by 27, then gives

77,52 (f(wt, 2t) + r(wt)) < 277,52 (f(O7 zt) + ’I“(O)) + 40;1377,53 + 21y (D\p(O,wt) — Dq,(O,wH_l))
<207 (£(0,2) + r(0)) + 2A7' By} + 20, Dy (0, w¢) — 20441 Dy (0, wyp1)
<2017 + 20Dy (0, we) — 2041 D (0, wes 1),

where we have used 7; < (24) Yoy, 711 < 7 in the second inequality and the definition of C; in
the last inequality. Taking a summation of the above inequality further implies

t t t
> i (fw, zi) + r(wi)) <201 ni +2m Dy (0,wr) = 2C1 > ng,
k=1 k=1 k=1

where the last identity is due to wy = 0. This proves (3.6).
We now prove (3.7). Plugging the inequality 7; < (24) !0y into (B.4) and multiplying both sides
by 2n, ! we know

fwe, z¢) + r(wi) < 2(f(0,20) +7(0)) + 247 B + 2,1 (D (0, w;) — D (0, wes1)).
Taking a summation of the above inequality, we derive

t t

t
Z (wg, zi)+7( wk Z (0, z)+r( )—l—A_lB)—i—Qan_l (D\p(07wk)—Dq,(O,wk+1)).
k=1 k=1

The last term can be controlled by (note w; = 0)

t
> 0 (Dw (0, wr) ~ D (0, we11)) ZDW (0,wr) (' = k1) 407 "D (0, w1)—n; " D (0, wy1)
k=1

t

t
< D 07 k p = < D O <C —1’
_1?;?; w( wk)’;(ﬂ My 1) ggict w (0, wi)n, 1(; k)m

where the last inequality is due to (B.3). Combining the above two inequalities together and using the
definition of C', we derive the stated inequality (3.7). The proof is complete.

O

C Proofs for General Convex Objectives

In this section, we prove Theorem [3]and Theorem ] We first provide a proposition to show that
[wi1 — w*||? can be controlled by O ( S 3wy — w* |?) with high probability. To this aim,
we take w = w* in (3.4) to derive

t t
Dy (w*, wit1) Z Z p(wy)) + Ci Z% (C.D
k=1 k=1 k=1

where ¢, is defined in (C.4) and C) € R. Akey idea is to use a conditional Bernstein inequality to
show >4 &k < 3y i (S(wr) — (w*)) + Co X4 m2||wy, — w*||? with high probability. An
interesting observation is that one can offset the term 22:1 i (¢(w*) — ¢(wy)) in (CI) by the above

bound on 3.t _, &, leading to the inequality Dy (w*, wii1) < Cy S h_ 02 + Co Sk, 2 |lwi —
w*||? with high probability. In the discussion of the conditional variance, we use E_, [(fk —

E., [ﬁk])Q] < nE|lwg — w*||*(Ag(wy) + B) and introduce the following decomposition
Millwk —w|* (Ad(wr) + B) = ni wi —w* |2 A(¢(wr) = d(w”)) +ni | wr —w*||* (Ag(w*) + B).

We apply (3:3)) to control the first ||w; —w* ||? on the right-hand side to show n?|jwi —w* |2 A (¢(wy,)—

p(w*)) < Cani (d(wk) — d(w*)) fora Cs > 0. As a comparison, the second [|wy, — w* |2 is kept
intact.



Proposition C.1. Let {w; };en be the sequence produced by 2.2) with n, < (2A4) Loy and ni41 <
1. We assume Cg = supyey Mk 25;11 n; < oo. Then for any § € (0, 1), with probability at least
1 — 9 we have

2D\1; (w*, O) n 207 log %

*||2
P10T

t
w1 —w +og*(B+ACY) ) i,

k=1
(C.2)

*|12
A+ B ann |
where py = min{1, (24) ! (1 |w*||? + 2C1Cs03 ") 1 C7} and

Cr = m(sup fw*, 2) + |Jw*||* + AF(0) + B) +2(A% + 1)010510&
zeZ

Proof. Setting w = w* in (3:4) shows

Dy (w*,wit1) — Dy (w™,we) < ne(w™ — wy, f'(wy, 20)) + ne(r(w™) — r(wy))
+og'nf (Af(we, z) + Ar(w;) + 2B).

We write

o[ (Wi 20)]) 4 (W™ — we, By, [ (w4, 24)])
2 U (we, 20)]) + (F(W*) - F(wt))

(w* —wg, f'(we, 2¢)) = (W* —wy, f'(we, 2) —

E
<Aw* —wy, f'(wy, z) — E

Combining the above equations together and using the definition of ¢, we derive

Dy (w*, wii1) — Dy (w*,wy) < my(w* — wtaf/(wtazt) —E., [f’(wt,Zt)D
+ m(p(w*) = plwy)) + oy nf (Af (we, z) + Ar(wy) + 2B).

Together with w; = 0, it then follows that

t
Dy (w*,wy1) = Dy (w™, wy +Z Dy (w*, wi41) — Dy(w*, wy))
k=1

< Dy (w*,0) +an w* — wy, f (g, 2) — Bz, [f (g, 21)])
k=1
t t
+) e (w*) — d(wr)) + 05" Y ni (Af (wr, zi) + Ar(wy) +2B).  (C.3)

k=1 k=1

Introduce a sequence of random variables as follows

& = (W™ — wy, f'(wk, zx) — Bz, [f'(wr, 2)]), k€N (C4)

It is clear that E,, [(x] = 0 and therefore {{y } is a martingale difference sequence. Since E[( —
E[¢])?] < E[£?] for any real-valued random variable £, we know

E.. [|(w* — wi, f' (wi, 2) — Eoy [f (wies 2)D)| ] < Eay [[ (0" = wie, £ (wis 20)) ]
< [lw* = wi|PEay (1 (wrs z)[17] < llw* = wyo]|*Ex, [Af (wr, 21) + B
< [lw* — wi|* (AF (wy) + Ar(wy,) + B),



where we have used (3:1)) in the third inequality. Then, the conditional variance of &, can be controlled
by

ZEzk[( zk[fk anEzk (w* *wk,f(wk,zk)*Ezk[f/(wk,zk)]ﬂz]

k=1

sZ Pllw* — wl? (Ag(wr) — Ag(w +an||w — wi|*(Ap(w*) + B)
k=1

Z (w1 + lwkl*) (Ag(wi) — Ap(w +anllw — wil*(Ap(w”) + B)

t k—1
243 e (el |12 + 2G5 e > 0y ) (6(wi) = d(w)) + S - w I (A6(") + B)
k=1 j=1 k=1
t t
< 24(m w2 + 20105 Ce) 3 me(6(w) = o(w)) + Y nlwy — w* [P(Ag(w") + B),
k=1 k=1

(C.5)
where the last second inequality is due to (3:3) and the last inequality is due to the definition of Cj.
Furthermore, it follows from the convexity of f that

& — Bz (€] = mew™ — wis f(wre, 28)) + me{wi — w*, B, [ (whe, 2x)])
< m(f(w*, zi) — f(wi, 21)) + nellwe —
By the Schwarz’s inequality and Lemma[A.3] we know

[ — w* ||, [ (wr, 201,

L (wi, 28)]], (C.6)

1 1 .
< 5 (lhwox = w2+ 1P (i) |2) < 5 (2lwpl® + 2|2 + 242 x| + 24F(0) + 2B)
k—1
2(4% + 1)C1oy" Y m + || + AF(0) + B,
j=1

where the last inequality is due to (3:3). Plugging the above inequality back into (C.6)) and using the
non-negativity of f(wy, z;) then give

k—1
& — Ex 6] < m (sup f(w", 2) + w"|* + AF(0) + B) +2(A* + DCiog e Y n; < Cr.
z€ j=1

Applying Part (b) of Lemma[A-T| with the above estimates on magnitudes and variances of &, we
derive the following inequality with probability at least 1 — §

t

Zsk 2 (24(m Il 2+ 201051 Co) 3 me(0lwn) = o(w)) + Y- nilho — ' | (A0(u) + B)

k=1 k=1
Crlog & i . ow (Ap(w* i Lo Crlogs
+ ———< wg) — @(w Jr W — W + —
o S (o) — o) L k§:1:77,|\ P

where we have used 201 A(11||w*||? + 201 Csoy,') < Cr. By (3-6) we know

t
S (Af (i 20) + Ar(wy) +2B) < (24C +2B) Y i
ot k=1

Plugging the above two inequalities back into (C.3) gives the following inequality with probability
1-46

f1 t C’ o B t
Dy (w*, wy11) < Dy (w*,0)+ (42106 277 [ —w*||*+ 7p e +20y ' (B+AC) Z -
k=1 k=1



This together with the oy-strong convexity of U gives the stated bound with probability 1 — §. The
proof is complete.

O

We can use the assumption -, 17 < oo to show that the right-hand side of (C-2) can be bounded

by % maxi<p<¢ [|wy — w*||? + C'log 1 fora C > 0, from which we can show the boundedness of
||w; ||* with high probability (up to a logarithmic factor).

Proof of Theorem[3] It follows from the assumption > .- 177t2 < oo and m41 <y that

sup, M ZE: nj < Y ;1 m; < oo. Therefore, C5 = supyey 7k Zf;ll n; is well defined. We
define the set Q7 as

Ao(w*) + B 2Dg(w*,0)
Q:{ L : a2 2w )T o 2 2, 2Pe\wL )
T (21, 2r) ¢ lwepr —w*|? < 90, Codl k:177kHwk w*[|* + o
2C’710g% 9 i
+ 7T 4 457%(B + AC 2forallt:1,...,T},
pLOw v ( 1)Z”k

k=1

where p; is defined in Proposition [C.I] By Proposmon [C:1] and union bounds on probability
of events, we know Pr{QT} > 1 —4. Since Y o, n? < oo, we can find a #; € N such that
(Ap(w*) + B) Y02, 111k < C1CsA. With the occurrence of Qp, the following inequality holds
forallt=1,...,T

2C7log L 2Dy (w*,0)

llwerr — W*H2 -

P1O0w oy
A¢ _) : 2 *()2 (BJFACl)Zk 177k
< _
Ao 8 (annw P Y - =
k=t1+1
A¢<w*>+B( o 2, N 2 2\, AB+ACH) S ?
< —FA n? |lwe — w*||? + M sup Jlwg —w*|* ) + =
201CeA ;;1 k:tZ;Jrl 1sher 7y
Ad(w*) + B & = ooy w2 g ABHAC) Y g
< szl (2010\1; nkalm + flw™| )+§ SuP [lwr, — 1=+ \21/ )

where we have used ||wy, — w*||? < 2(||wg||® + ||w*||?) and @ in the last step. Under the event
Qr, we then have

AG(w') + B e 1o N
w* 2 1,2 * (12
Dax, [Jwe —w*||* < T OCeA (2C104 i an + [lw 1)
k=1 j=1
1 2C7log L 2Dy (w*,0 B+ AC
+ = sup ||wk_w*||2+ 7 108 B + ‘I’(w ) ) ( + 1)Zk lnk

2 1<k<T p1Ow oy o2

from which and Pr{Q21} > 1 — 6 we derive the following inequality with probability at least 1 — &
k-1
2(Ap(w*) + B) & _
* (12 1,2 *|2
el B e ror n BICE LR D DURS LYY
— =
L ACrlog s 4Dy(uw",0) | 8(B+AC) Yh i
P1Ow 0\21, oy
The stated inequality holds with C defined by (using (a + b)? < 2a? + 2b%)
k—1
4(A¢p(w*) + B) 8C~
Co=—Fp——— 2C
2 C1CsA ;( 10g nkalmﬂ\w ||) PlU\I/+

8Dy (w*,0 B+ AC )
+ ““(2 ) | 16 1)Z’f 1k + 2w 2.
Oy J\I/



The proof is complete. O

We are now in a position to prove Theorem 4| The basic idea is to control Zthl ne(d(wy) — p(w*))
in terms of a martingale, which can be further controlled by the Azuma-Hoeffding inequality. The
bound of ||w||? in Theorem [3| allows us to control the increments of martingale by logarithmic
functions of 7/4.
Proof of Theorem] 1t follows from (3:4) that
Dy (w, wet1) = Dy (w, we)
< nplw — wy, f(wy, 2¢)) + 1 (r(w) - r(wt)) + crq_,lnf (Af(wt, zt) + Ar(wy) + 2B)
< ne{w — wy, f1(we, 2¢) — B [ (we, 20)]) + me(d(w) — d(we)) + o507 (Af (we, 20) + Ar(w) + 2B),

(
where we have used the inequality (w — wy, E., [f'(wy, 2¢)]) < F(w) — F(w;) and the definition of
¢ in the last inequality.

Taking a summation over t = 1, ..., T followed with a reformulation, we derive

T
Z un (¢(wt) - ¢(w))
t=1

T T T
Z Z (Dy(w,w;) — Dy(w,wy1)) +og" > 12 (Af(wy, z) + Ar(w,) + 2B)
t=1 t=1 t=1
T T

<Y &+ Du(w,0) + 20y (AC1 + B) Y, (C.7)
t=1 t=1

where we have introduced a sequence of random variables
& = m{w — wy, f'(wy, 2¢) — Ba, [f (wy, 20)])
and used (3:6). Let
& = m(w —we, f/(we, 2) — Bz [f (we, 2))gw 2 <m0 22y, =12,

where I 4 denotes the indicator function of an event 4, i.e., [ 4 = 1 if .4 happens and 0 otherwise.
According to the elementary inequality (a + b)? < 2(a? + b?) fora,b € R

60 < Tl = wall? + 1 (e 20) = Eao [ e 2| Lpug <106 22

< [IIwH2 A+ llwell? + 11 (wes z) [+ 1Bz, [f (we, Zt)]lli}ﬂ{nwtu?scz log 2L }+
It follows from Lemmal[A_3| that
Lf" (we, ze) |2+ [1F (we) |7 < 242 [Jwe[|* + 2A (0, 2¢) + 2B + 2A4%||we||* + 2AF(0) + 2B
< 4A%||lw||? + 2A(sup £(0,2) + F(0)) + 4B
< 4A%|we||? +4AC,. (C.8)

Combining the above two inequalities together, we derive
& < m [Hsz + (447 4+ 1) [lw | + 4ACI}H{\|W\|2§@ log 27}
2T 2T
< e (Jlwl]? +4ACy + (447 + 1)Ca log - ) < Clw)nilog -,

where we introduce C'(w) = ||w||2+4AC] 4 (4A2+1)Cs. Itis clear that E, [¢]] = 0 and &, depends
only on z1, ..., z;. According to Part (a) of LemmalA.1| we can find an event Qp := {(21,...,27) :
21y 27 € Z} with Pr{} > 1 — g such that for any (21, ..., 27) € Qr the following inequality

holds
T

Zfiﬁc( 10g7( Zmlog )éﬁC(w)loggg(QZmQ)%.
=1



Furthermore, accordmg to Theorem 3] there exists an event Q. := {(21,...,27) : 21,..., 27 € Z}
with Pr{Q} > 1 — 2 such that for any (z1, ..., z7) € Q. the following inequality holds

2T
< —
[max. lwe||* < Cylog 5

Under the intersection of these two events, we have & = £, and therefore

T

T 1
S 6= th<0 Jog? 22 (237
t=1

which, together with Pr{Q7NQ/.} > 1—§ and (C.7)), shows the following inequality with probability
atleast1 — ¢

T T
s 2T 1
Znt(qb(wt)— w)) < Dy(w, 0)+2O"I, (ACy + ); w) log? 7(2;17,52)2
< (203 Dy (w,0) + Cy) log® ¥7

where
03:2*40;1(2?:773)% and Cy := 205" (AC,+B) i 24 4A01+4A202+02)(2§:nf) .
t=1 t=1

t=1

[

The stated inequality then follows from the convexity of ¢. The proof is complete. O

D Proofs for Strongly Convex Objectives

This section is devoted to proving Theorem ] First, we take a weighted summation of (3:4) and use

(377) to tackle 3", _, (f(wp, z) + r(wy)) without boundedness assumptions, yielding Lemma
We need the following simple lemma on step sizes in this derivation.

Lemma D.1. Let n;, = where ty € R. Then,

2
opk+20p+osto’

t

Z m < 20;1 log(et). (D.1)
k=1

Proof. 1t follows from the definition of 7, that

t

an < 2a¢1 Z k+to) 1< 20;1 log(et).
= k=1

The proof is complete. O

Lemma D.2. Assume o, > 0. Let {w;}ien be the sequence produced by Z.2) with n, =

m’ where tg > 4A/(owoy). Then the following inequality holds for allt =1,...,T

t
20, Z (k+to+1) (p(wr)—d(w*))+(t+to+1) (t+to+2) Dy (w*, wiy1) < (to+1)(to+2) Dy (w*, wr)
k=1
t

+20,0 Y (k+to + 1) + 16log(eT)oy 0, > (AC1 (2t + to + 2) + Bt), (D.2)
k=1

where we introduce

& = (w* — wk,f’(wk,zk) -E., [f’(wk,zk)b, k=1,...,T.



4A

oyoy’

Proof. Since tg >

in (3:4), we derive

Dy (w*, wey1) =Dy (w*, wi,) < me(w* —wy, f'(wi, 26) =, [f (Wi, 22)]) +m (w* —wp, F' (wy))
e (r(w*) = r(wi)) + oy 'i (Af (wi, 2x) + Ar(wy) + 2B) — ok Dy (w*, wyi1).

Plugging the inequality F(w*) — F(wy) > (w* — wg, F'(wg)) + op Dy (w*, wy,) into the above
inequality then shows

Dy (w*, wy41) — Dy (w*, wy) < m&y, + ni (F(w*) — F(wy) — op Dy (w*, wy))
+ Nk (r(w*) — r(wk)) + U\I_,lnﬁ (Af(wk, zk) + Ar(wg) + 2B) — o Dy (w*, wra1)-
According to the definition of ¢, we further get
(14 opni) Dy (w*, wiy1) < (1 — mror) Dy (w” wk) + i+ i (P(w*) — d(wy))
+ crq, M (Af(wk, 2k) + Ar(wg) + QB), (D.3)

we know 7; < (2A4) 1oy and therefore Lemmaholds. Taking w = w*

which can be reformulated as follows

1 (P (wr) — d(w*)) 1 —nkor Nk
+ D w*,w <———D U)*,’U) + —
L+ o d 1) 1+ ngor d ) L+ opnp
Af (g, z¢) + A 2B
LT 7 (Af (wys i) + Ar(wy,) ) D4
1+ Ork
: _ 2
Since Nk = m, we know

1—opny _ opk+20r +o0gto —20r _ k+1o
L+ome  ogk+20F +o04to+ 20,  k+tg+2’
N 2

1+Ur77k B 0¢(/€+t0 +2)
Plugging the above two equations back into (D.4), we derive

2(p(wi) — p(w*)) . k+ to
ook +to+2) + Du(w', i) < 5=

28k
O’qg(k + to + 2)
21 (Af(w;C7 zi) + Ar(wyg) + 2B)
+
0'\110'¢(k + t() + 2)

Dy (w*,wy) +

Multiplying both sides by (k + to + 1)(k + to + 2), we get
2(k+to+1 . .
PEA L) (gang) — 6(w")) + (k4 to + )0k + o+ 2) D", wp1)

@
2(k + to + 1)&, +2nk(l~c +to + 1) (Af (wk, 2x) + Ar(wy) + 2B)
O¢ Ov0g ’
Taking a summation of the above inequality from k& = 1 to k = ¢ and using the inequality (k + to +
D < 40;1, we derive

< (k+to)(k+to+1) Dy (w™, wy )+

t
20,1 > " (k+to+1) (¢(we) —d(w*))+(t+to+1) (t+t+2) Dy (0, wepn) < (to+1)(to+2) Dy (w*, wy)
k=1
t

t
+20,1 ) (k+to + 1)é + 80y ' Z Af(w, z) + Ar(wg) +2B).  (D.5)
k=1 k=

Accordmg to 37), (D-I) and m, ' < 27 1oy (¢ + to + 2), we know
(Af (w, 2zi) + Ar(wy) + 2B) < t(2AC, + 2B) + 2AC, an
k=1 k=1
< 2(AC) + B) + 24C, (20;1 1og(et)) (2—1%(75 Yo+ 2))
= 2t(AC, + B) 4+ 2AC: (t + to + 2) log(et)
< 2log(eT) (ACL (2t + to + 2) + Bt).

10



Plugging the above inequality into (D-3) gives the stated inequality. The proof is complete. O

In the following lemma, we establish bounds on magnitudes and conditional variances on { }«
defined in Lemmal[D.2

Lemma D.3. Let the assumptions of Lemmahold with ty > Ui‘g(b and &, be defined in Lemma
Then for all k < T we have

k| < Cslog(eT) and E.,[(& — Eo[6])°] < llw* — wi]|?(Ad(wy) + B),

where
Cs = (164% +4)Croy o, " + |w*||* + 4AC).

Proof. Since ty > -2 we know 7, < (24) 'oy and therefore (333) holds. According to

- U\I/U'd)’
Schwarz’s inequality, we have

|(w* = w, £ (Wi, 21) = Bz [ (wi, 26)]) | < lw* — wil (1 (wrs 20) [l + [1F (wi)]]+)

1, . 1 2
Slhw® = wpl? 4+ 5 (1w, ) o + 1 o))

w12 4 [fwl|* + 1 (w, 20113 4 1 (wi)][3-
Combining the above inequality and (C.8) together shows
[ — o £ s 28) — By [F s )] < (442 £ Dffun]? + 0" [P + 4AC,
k
< (847 +2)Choy" > ;i + [lw*||* + 4ACy < Cslog(ek),

i=1
where we have used (3:3) and Lemmato control Z;c: 1 1;. This shows a bound on |¢|.

It is clear that E ., [£] = 0 and therefore it follows from E[(¢ — E[¢])?] < E[¢?] for all real-valued
random variable ¢ that

Ezk [(fk - ]Ezk [5’6])2] = Ezk [513] < Ezk [<w* — Wk, f/(wka Zk)>2]
< lw* = wilPEz [ (wr, z1) 7] < Jw* — wy||* (AF (wy) + B)
< lw* — w|*(A¢(wi) + B),

IN

IN

where we have used
Ee, (1 (wi, 20) 7] < Bay [Af (wi, 21) + B] = AF (wy,) + B
due to (3:1). The proof is complete. O

Then, we apply a Bernstein inequality to show > _ (k+to+1)& < 3374 (k+to+1) (¢ (w) —
¢(w*)) + €, with high probability, where €; is the summation of the last two terms in (D-10). An

interesting observation is that 1 22:1 (k +to + 1) (¢(wr) — #(w*)) can be offset by the first term

in (D.2)), from which one can derive (3.10). To apply the Bernstein inequality, we use Lemma|[D.3]
to control the conditional variance as E., [(& — E., [gk])Q] < |lw* — wil|*(Ag(wy) + B), and
introduce the decomposition A¢(wy) + B = Ap(wy) — Ap(w*) + A¢p(w*) + B to get variance
partially offset by the first term in (D.2). This is a key trick for us to proceed with the discussion
without boundedness assumption on subgradients.

16Alog T _1
2298 and 6 < e 7, we know
TpOw -

Proof of Theorem[8] Let &, be defined in Lemma Since ty >
to > 44 and therefore Lemma and Lemma|D.3|hold. Define

owog¢

A(to + 1) Dy (w* 3t ) +AT'B
Or = mae [ W0 ¥ DDa(w 1) | Sololw) + A7) |
oy O¢p0v
64log(eT)(B + 2AC,) Csgtglog(eT) } (D.6)
03,02 T24 -

11



Let po = Cgt%c%;en. It is clear from the definition of C that po € (0, 1]. According to Lemma

we derive the following inequalities forall k = 1,...,t(t < T)
|(k +to + 1)&k| < Cs(t +to + 1) log(eT)

E.. [((k+to + 1)& — Eo, [(k + to + DE])] < (k +to + 1)%]|w* — wil*(Ad(wy) + B).

Plugging the above two inequalities back into Part (b) of Lemma [A.T] we derive the following

inequality with probability at least 1 — %

o _ 22 Sk (0 1o+ 20— wil (o) + B))
; o Cs(t +to + 1) log(eT)

N Cs(t +to + 1) log(eT) log L
P2 '

Taking union bounds on probabilities of events, it is clear that (D.7) holds with probability at least
1 — 4 simultaneously for all ¢ = 1,..., 7. In the remainder of the proof, we always assume that (D.7)
holds for all t = 1, ..., T, which happens with probability at least 1 — 4.

(D.7)

Applying the oy-strong convexity of ¥ to (D.2)) and dividing both sides by 27 oy (¢ + to + 1) (¢ +
to + 2), we derive the following inequality with probability 1 — ¢ forallt =1,...,T

43 ks (k + to + 1) (¢(wn) — d(w")) Ll — w2 < 200t Dl +2) Dy (w”, )
opou(t +to + 1)(t +to + 2) = oyt to + 1)(E+ Lo + 2)

AN (k+to+ 1)& 32log(eT) (AC (2t + to + 2) + Bt)
(t+to+1)(t+to +2)og0w (t+to+1)(t+1to+2)og0]

(D.8)

We now show by induction that ||w* — wy||? <
definition of C'r that

< t+t +1 forall¢ = 1,...,T. Itis clear from the

2Dq,(w*,w1)(t0 +2) < 4(t0 + 1)Dq,(w*,w1) < CT
O'\I/(to—l-Q) - Oqz(t0+2) - t0+2.

Therefore, the induction assumption holds for the case with # = 1. Suppose that ||w* —w;||? <

lw* —wn* <

= T+t
for all £ < t. We now need to show that it also holds for = ¢ + 1, i.e., [|w* — w;11]|? < t;:;
According to (D-8) multiplied by ¢ + o + 2, it suffices to show
_AX (kA to+ D (@(wr) = 9(w"))  2(to +1)(to +2) Da(w”, wn)
O’¢U\p(t+t0+1) Uq;(t+t0+1)
A _(k+to+1)&  32log(eT)(AC (2t +to + 2) + Bt) <Cp. D9)
00w (t+to + 1) oqoi(t+to+1) = '

Plugging the induction assumption ||w* — wz||> < Cr/(t + to + 1) for all £ < ¢ back into (D.7), we
derive

t

D (k+to+ 1)
k=1
g p2Cr Y5y ((k +to + 1) (Ad(wi) + B)) Cx(t+ 1o + 1) log(eT) log £
B Cs(t +to + 1) log(eT) + po
_ toA™! t " X 2(t +to + 1)ACT log %
SNttt D) z:l(k: +to + 1) (Ap(wi) — Ap(w*) + Ap(w*) + B) + :
t X .
%Z k4 to + 1) (6(wy) — (w*)) + to(Ag(w )Qzé?l%;l(;c +to+1) N (t+to+ ;)CT%W
k=1
(D.10)

12
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T
where we have used the definition of py in the first identity and the assumption £y > % in the
last inequality. Plugging the above inequality into (D.9), it suffices to show

2(t0 + 1)(t0 =+ Z)Dq/(w*, wl) n 2t0(¢>(w*) + AilB) ZZ:l(k +to + 1) n &

ou(t+to+1) owos(t+to +1)2 2
n 32(B+ 214;012) log(eT) <Cr
J\I/U¢
Since
ikthoJrl (t+22to+3)§3(t+t2+1)2’ .
k=1

it suffices to show

2 1)D * * A~'B 2(B +2A I T
(to + 1) Dy (w*, wy) n 3to(p(w™) + ) —I-@—i- 32(B + 2012) og(eT) <.
ow 2000 2 oy

2« _Cr
< i This proves

the first inequality in (3.10).
We now prove the second inequality in (3:10). According to (D.2)), we know

¢ *
Sk + o+ 1) (plan) — p(w)) < Zel0 T DO EDDLL )
k=1
i 8log(eT) (AC (2t + to + 2) + Bt)
;Uf +to + 1)& + v .

Plugging (D.T0) into the above inequality and using (D.1T)), we derive the following inequality with
probability atleast 1 — § forallt =1,...,T

22:1(19’ + o + 1)<¢(wk) - ¢(W*)) < og(to+1)(to + 2) Dy (w*, wq) n
2 - 2
3to(Ap(w*) + B)(t +to+1)  (t+to+1)Crosoy  8log(eT)(ACy(2t + to + 2) + Bt)
+ + )
8A 8 00w

With probability at least 1 — &, it then follows from the convexity of ¢ and the identity in (D.TT)) that

o) - (i kato+1) 1<zt:(k+to + 1) (¢(w) - o(w")) )
k=1

k=1

1 . 3to(Ap(w*) + B)(t+to + 1)
< "
< t(t—l—?to—‘rg) 2J¢(t0+1)(t0+2)D\p(w ,w1)+ 24

N (t +to +1)Crosoy N 32log(eT) (AC (2t + to + 2) + Bt)
2 Op0w

), forallt=1,...,T.

This establishes the second inequality in (3.10) with Cy- defined by

3to(Ap(w*) + B)  Crogow  32log(eT)(2AC: + B)
+ + .
2A 2 00w

5T = O‘¢(t0 + 1)D\p<’w*, wl) =+
The proof is complete. O

Remark 1. According to the definition of Cr and 5T, it is clear that both C'r and éT Qvnly involves
logarithmic functions of 7'/¢. It is also clear that Cr is a quadratic function of a;l and C is a linear
function of 0;1
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E Proofs for Almost Sure Convergence

In this section, we present a proposition on almost sure convergence which covers both the general
convex case (Theorem|[6) and the strongly convex case (Theorem(J). To this aim, we need to introduce
two lemmas. Lemma is the Doob’s martingale convergence theorem [see, e.g., 2, page 195]
which is a powerful tool to study almost sure convergence. We will use Lemma[E2][9] to show that
the random variable to which Dy (w*, w;) converges is zero almost surely in the strongly convex
case.

Lemma E.1. Ler {X,},cn be a sequence of non-negative random variables with E[X ] < oo and
let {}"t}teN be a nested sequence of sets of random variables with Fy C Fi4+1 forallt € N. If

E[Xt+1 |F] < Xt for every t €N, then Xt converges to a nonnegative random variable X almost
surely. Furthermore, X < 0o almost surely.

Lemma E.2. Ler {n; }:en be a sequence of non-negative numbers such that lim;_, . n; = 0 and
Soooim = oo. Leta > 0 and t1 € N such that n; < a~' for any t > t;. Then we have

. T 21777
lim7 ;00 Zt:tl U Hk:t+1(1 —ang) = 0.
The basic idea in proving Proposition [EJ3]is to construct non-negative supermartingales based on the
one-step progress inequality (3-4), whose almost sure convergence based on Lemma[E.T] will imply

the almost sure convergence of the random variables we are interested in. We will construct different
supermartingales in the general convex case and the strongly convex case.

PropOSItlon E.3. Let {wi}ien be the sequence produced by (22). If |w*|| < oo and
oo m? < oo, then { Dy (w*,wy)} converges almost surely to a non-negative random variable and
lim; s 0o Dy (w*,wy) < 00 almost surely. Furthermore,

(a) ifny < (24) Loy and g1 < 1y, then Zfil i (gb(wt) — gf)(w*)) < oo almost surely;

(b) ifog > 0and Zt 1 M = 00, then limy_, oo Dy (w*, wy) = 0 almost surely.

Proof. Since > ;= n? < oo, there exists a t2 € N such that 7, < min{(24) oy, 2051, o, 1} for
all t > ¢5. Taking conditional expectations w.r.t. z; on both sides of (D.3), we derive the following
inequality for all ¢ > ¢,

Dy (w*,wt) + #;m@(w*) — ¢(wy))

+ 0y "0} (Ag(we) — Ap(w") + Ap(w") + 2B),
where we have used 1 + opn, > 1 and E., [ft] = 0 for & defined in Lemma- According to
d(w*) < ¢(wy) and n; < min{(24) Loy, 0, 1}, we know

(1 +0pm) " (P(w™) = (we)) + oy 0 (Ap(w,) — Ad(w™))
<27y, (¢(1U*) - ¢(wt)) +27 (gzb(wt) - d’(U)*)) =0.

Combining the above two inequalities together, we derive

E.,[Dy(w*,wiy1)] < (1 —opn)(1+ Jrnt)_lD\p(w*, we) + 0\51773 (A(b(w*) + QB). (E.1)

1—opm
E, [D * <
Dy (w*, wip1)] < 1+ 0,1

Introduce a sequence of non-negative random variables X ¢ as
. oo
Xi = Dy(w*,wy) + 05! (Ag(w") +2B) Y 1,
k=t

which is well defined since Y-, 77 < oco. By (E.I), it is clear that E, [)?t.l'_l] < X, forall t > ts.
Taking w = w* and expectations on both sides of (B.2), we derive

E[Dy(w*, wiy1)] < E[Dg(w*,w;)] + 05 ' nf AE[p(w,)] + 205 Bn?, forallt € N,

where we have used ¢(w*) < ¢(w;). According to Lemma|A.3] the term E[¢(w,)] can be controlled
by E[Dy(w*, w)] and ||w*||. Therefore, we derive an upper bound on E[Dg(w*, ws41)] in terms

14



of E[Dy (w*,wy)], |[w*|| and step sizes, from which we know E[X,,] < oo (¢ is a fixed constant).
Therefore, one can apply Lemma m to show that X, converges almost surely to a non-negative
random variable, which, together with Zt 1 n? < oo, further 1mp11es limy_ oo Dy (w*,w) = X
almost surely for a non-negative random variable X. Itis clear that X < oo almost surely by Lemma

We now turn to part (a). Under the assumption 7; < (24) loy and 7,41 < nt, (C.7) holds.
According to (C.7) with w = w*, we know

t

t
> ke (d(wi) — p(w”) Z&H-Dw(w J0)+ 205 (ACv+ B) Y n, (B2)
k=1

k=1 k=1
where

& = (W™ — wg, (Wi, 21) — Bz [ (wh, 21)].)
Introduce a sequence of random variables

t
Xt/+1 ka + Dg(w*,0) + 204" (AC, + B)
k=1 .

n,%, t=0,1,...

M8

1
which is well defined since >, 7 < 0. It is clear from E., [£;] = 0 that

t—1 e}
E.,[X{i1] =D & +E., [&] + Du(w,0) + 20y, (AC) + B) Z = X;.
k=1 k=1

Furthermore, according to the definition of w* and @), we know X ;> 0 for all ¢ € N. Therefore,
one can apply Lemma to show that {X/},cn converges to a non-negative variable X’ almost
surely and X' < 0o almost surely. This, together with (E:2) and the definition of X/, implies that
> re 1k (¢(wi) — ¢(w*)) < oo almost surely. This finishes the proof of part (a).

We now turn to part (b). We have shown lim;_, oo Dy (w*, w;) = X almost surely. It suffices to show

X = 0 almost surely under the condition o, > 0 and Z;’i 1M = 00. Since ny < o7 Lforall t > to,
we know
l—opm  1+o.m —opm

L+om 1+ orn
Plugging the above inequality back into (E.I)) and taking expectations over both sides, we derive

E[Dy(w*, wi41)] < (1 - 2*10¢T)t)E[Dq,(w*,wt)] + O'\El(A(ﬁ(w*) + 23)7)?, Vit > ts.

<1-27toum, V>t

Applying this inequality iteratively fort = T,T — 1, ..., to yields

E[Dy(w”, wri1)] < [] (1 =27 0m)E[Dy (0", we,)]

t=to

T
+og (Apw™) +2B) > n¢ [[ 1 —27"oem), (E3)
t=to k=t+1

where we denote ngt (1= 271ognk) = 1 fort = T'. The first term of the above inequality can
be controlled by the standard inequality 1 — a < exp(—a),a > 0 together with > ;= 1 = 0o

T T
lim (1 — 27 oy E[Dg (w*, wy, )] < Th_r)réo H exp (— 27 oyn ) E[Dy (w*, wy,)]
—to

T—o0
t=to

= lim exp<—2 U¢Znt) [Dy(w*,wy,)] = 0.

T—o0
t=to
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Applying Lemmawith a = 27104, we get limp_, o0 Z;&T:tg Ui Hf:tﬂ(l —27toyme) = 0.
Plugging the above two expressions into (E-3) implies limy_, o E[Dy (w*, wr)] = 0. This together
with Fatou’s lemma shows

0 <E[X] = E[ lim Dy (w*,wr)] <lim_inf E[Dg(w*,wr)] =0,

T— 00 T—o0

from which and X > 0 we know X = 0 almost surely. This finishes the proof of part (b). The proof
is complete. O

F Proofs for Generalization Bounds

In this section, we prove generalization error bounds presented in Section[d} The following lemma is
a standard probabilistic bound on the uniform deviation between empirical errors and generalization
errors over a RKHS ball. In our case, we need to control the Lipschitz constants and the magnitudes
for functions satisfying Assumption According to (3.2) and Lemmawe know || f'(w, 2)||3 <
Af(w,z) + B with A = Ax? and B = Br?, where k = sup,cy || K.||2. Recall that f(w,z) =
L(hy (), y).

Lemma F.1. Let R > 0 and define Bg = {w € W : |w||z < R}. Then, for any 6 € (0,1), with
probability at least 1 — 6 we have

1 11
sup [E(w) — Ez(w)] < (C’gR2 + Clo)n_f log? 5 (F.1)
wEBR
where
- A2 1 - A41 - B
_ 2 2.2 Aan _ B
Co = k* +2A%k +<\/§+2\/§) and Chg (2A+ \@)Sgpf(o,z)+23+\/§.

Proof. We prove this lemma by McDiarmid’s inequality (Lemma[A.2). To this aim, we first show
that the function z — sup,cp,, [€(w) — &, (w)] satisfies a bounded difference property. Indeed, for

any z = {21,...,2i—1,2i, Zit1s---,2npand 2 = {z1,. .., 2i-1,Zi, Zit1, - - - , Zn }, We have
’ sup [E(w) — & (w)] — sup [E(w) —52(11))]‘ < sup |€z(w) — Ei(w)}
wEBR wEBR wEBR
1 1
< = sup |f(w,z) = f(w,z)| <= sup sup f(w,2)
N weBgr N weBR z€Z
<

%((A2 + %)RZ +(A+1)sup f(0.2) + B).

where the third inequality is due to the non-negativity of f and the last inequality is due to (A3)
applied to the function w — f(w, z). Applying McDiarmid’s inequality with increments bounded
above, we derive the following inequality with probability at least 1 — §

sup [E(w) — & (w)] < Ez[ sup [E(w) — Sz(w)]}
wEBR wEBR
log1/6 7, .o 1\ o
o ((A + §)R + (A + 1)sgp f(0,2) + B). (F.2)
We now control the term E,, {supweBR [E(w)—&, (w)]] .Letz = {Z,..., Z,} be training examples

independently drawn from p and independent of z. Let 04, ..., 0, be a sequence of independent
Rademacher variables with Pr{o; = 1} = Pr{o; = —1} = 1. By Jensen’s inequality and the
standard symmetrization technique, we get
Ez[ sup [S(w) — Ez(w)]} = Ez[ sup [Ei[é’g(w)] — 5z(w)]}
wEBR wEBR
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For any w € Bp, it follows from Lemma[A.3] that

1 (w, Ka),)|” < 242|(w, K, |2 + 24000, y) + 2B < 242 ||w]|3| K. |3 + 246(0,y) + 2B
< 2A%2R%k% + 24 5up £(0,y) + 2B,
Yy

from which we know

’ﬂ’((w,Kﬁ,y)’ < \/2A2R2I€2 +24supl(0,y) + 2B, Yw € Bg.
y

Applying Talagrand’s contraction lemma [3]] to the last term of (F3) together with f(w,z) =
£({w, K,),y) and the above bound on derivative of ¢, we derive

2\/2/12}3%2 +24 sup, £(0,y) + 2B n
<

EZJ[ sup ZUKUJ,K@«J]
weBR i

Ez{ sup [E(w)—fz(W)H

wEBR n

=1

(F4)
According to the Schwarz’s inequality and Jensen’s inequality, we get

n n

EU[ sup oi{w, Ky, } :EU[ sup (w, 0Kz, } SEU[ sup ||wl|2
wEBRizzl < > wEBR< ; > wEBR ” H

<R Ea<zaini,ZaiKm> =R |3 IK., I3 < Revn.
=1 =1 =1

Plugging the above inequality back into (F:4), we derive

2Rk [2A42R22 + 2Asup, £(0,y) + 2B
Vn '

Plugging the above inequality back into (F:2) and using 2ab < a? + b for a,b € R, we derive the
following inequality with probability at least 1 — §

E, [wseugR [E(w) — 5z(w)]} <

wEBR n

1 -~ ~ ~
sup [E(w) — & (w)] < n (R2H2 +2A*R?k* + 2Asup £(0,y) + 23)
y

log1/6
2n
which can be written as @ with the stated Cy and C1q. The proof is complete. O

((A2 + %)R2 + (A+1)sup f(0,2) + B),

The following lemma aims to bound &,(w)) — £(w,) with wy defined in (F:3). Since w is a fixed
element in VW, we do not need to resort to uniform deviation arguments. Instead, we can apply a
Bernstein inequality to study &, (wy) — €(w,), based on the observation that Assumption [3allows
us to control the variance of f(wy, z) by a linear function of sup, f(wy, 2).

Lemma F.2. Let A € (0, 1] and define
= 1 2- F'

wy = arg min €(w) + Al|wllz (F.5)

Let p € (0,1) and & € (0,1). Then, with probability at least 1 — § we have
Ex(wy) — E(wy) < p(ca + E(hy)) + (pn) " sup fwx, z)log 6"
Proof. Let&; = f(wx,2),i=1,...,n. According to the definition of wy and Assumption 3] we
know
E(wx) = E(hy) + Awall < ca?,

from which and A < 1 we derive
E(wy) < E(hy) + ca.
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It then follows that §; — E[¢;] < sup, f(wy, z) (non-negativity of ;) and
E[(& — E[&‘])Q] < E[f*(wn, z:)] < sup f(wa, 2)E[f(wx, 2)] < sup f(wy, 2)(ca + E(hy)).

Applying Part (b) of Lemma with & = f(wy,2;) and the above bounds on variances and
magnitudes, we derive the following inequality with probability at least 1 — §

_ 1 i& _ R < pnsup, f(wy, z) (ca +5(hp)) N sup, f(wy, 2) log%'

Ea(wy) — = nsup, f(wy, z) pr

The stated inequality then follows directly. The proof is complete. O

We are now in a position to prove Theorem [I0] Our basic idea is to use the decomposition (F.6)
with wy and \ proportional to n~ T+a. The term &, ( 5L ) Ez(wy) is the computational error
related to the optimization process. Both £ (w(Tl )) — & (w (1)) and &, (wy) — E(w,) are estimation
errors related to the sampling process. The term &(wy) — £(h,) is the approximation error. In

the following, we apply Lemma [F.I] and Lemma [F.2] to control estimation errors, Theorem [] to
control the computational error and Assumption [3]to control the approximation error. Here we use

three tricks to get almost optimal generalization error bounds. First, we show that ||ui§11 ) |3 grows
as a logarithmic function of T', which allows us to get E(w(T”) — Ez(w(Tl)) = O(n=2logT) (we
omit the dependency on 1/4 for brevity). Second, in the analysis of £,(wx) — £(w)), we show the
variance of f(wy, z) grows as a linear function of sup, f(wy, z) instead of a quadratic function of
sup, f(wy, z) by exploiting Assumption [3] which allows us to get a bound with a mild dependency
on [[wy 3. As a comparison, if we use [[w,||3 = O(A*!) due to Assumption [3|and the Azuma-

Hoeffding inequality we will get &, (wy) — £(wy) = O(A*~1n~2), which is suboptimal since X is
chosen to be very small to trade the estimation computational and approximation errors. Indeed, if
one plug &,(wy) — E(wy) = O()\“ !n=2) into (F.6), one can only derive the suboptimal bound
E(w(;)) —&(hy) =0(n~% log? T) worse than O(n~Ta log? T) in Theorem The third trick
is to choose wy with an appropriate X in (F26) to fully exploit Assumption [3]

Proof of Theorem[I0] Let X, p € (0,1] be real numbers to be fixed later and w = wy defined by
(F-5). We use the following error decomposition w.r.t. wy to study the excess generalization error

E(@i) — E(hy)

g(@Y) — E(hy) = (E@P) — &, (D)) + (E.(@L) — E,(w))
+ (Ea(wy) — E(wy)) + (E(wy) — E(hy)).  (F6)

It is clear that @I) is a specific instantiation of (2:2) with f(w,z) = (((w, K;),y), ¥(w) =
Ljwl|3, r(w) = 0 and j being the uniform distribution over {z1,...,z,}. During the iteration
of (@.I)), the training sample z = {z1,..., 2, } is fixed and the randomness comes from the index
sequence {j;}ten. Since j; is drawn from a uniform distribution over {1,...,n}, the objective
function minimized by the SGD scheme @.1)) is the empirical error ¢(w) = Ej, [f(w, 2;,)] = E4(w).
An application of Theorem [] to the SGD scheme @.I)) with w = wj then gives the following
inequality with probability 1 — §/4

5 8T
Ea(@) — (Z”t) (Csllwll3 + Ca) log? =-. (F.7)

We can apply Lemma to derive the following inequality with probability at least 1 — §/4
_ 4
Ea(wr) = E(wy) < pea +E(hy)) + (pn) ™' sup f(w, 2) log 5
z

< pca +E(hy)) + (pn)*l((A2 + %) wall3 + (A+1) sgpf((),z) + B) log %,

(F.8)
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where the last inequality is due to Lemma[A3]

According to Theorem with probability at least 1 — § /4 we have max;<;<7 [|[w]|2 < 1/C2log %
from which and the convexity of norm we derive the following inequality with probability 1 — §/4

AT
@5 [l </ Cslog 5 (F.9)

Furthermore, an application of Lemma with R = v/ Cs log % shows the following inequality
with probability 1 — §/4

wseué)ﬁ [E(w) — 5,,(10)} < (096’2 log % + Clo)n*% log% %

Combining the above inequality and (F-9) together, we derive the following inequality with probability
1-46/2
s AT

[5(15(;))—52(@;”)] (0902+010)n 3 log? =~ (F.10)

Plugging (F.7), (F-8) and (F10) into (F.6), we derive the following inequality with probability at
least 1 — 9

E(w)) — E(hy) < E(wy) — E(hy) + waH%(Cs(Zm)—l +(pn)"H(A2 + 2—1>) log® %

t=1

0

T

- 3 1 3 4T
+ 04(2 77t) 1 log? = + (0902 + Clo)n—f log?

K
+ p(ca +E(hy)) + (pn)~* ((A +1) sup £(0,2) + B) log %

We choose A = max { (3], 17,5)71, (pn)~'} in the above inequality and derive the following
inequality with probability 1 — ¢

5(w$>)—5(hp)<(03+A2+2-1)D(max{(§:m)1,(,,”)—1}) TT ((14 Zﬂt

1 s 8T 4
(0902 + C’m)n?) log% % + p(ca +E(hy)) + (pn) ! ((A + 1)sup f(0,2) + B) log 5

where in the first inequality we have used C3 + A% +27! > 1 and

T

E(wy) = E(hy) + [[wall3 (Cz(Zm)_l + (pn) 71 (A% + 2*1)) log? %
t=1

8

== (Ca+ A% +271)D() log? °

< (Cs+A%+271) (5(11&) —&(hy) + )\||wA||§> log?

Since the above inequality holds for any p € (0, 1], we can take p = n~ Ta to derive the following
inequality with probability at least 1 — §

T
_(1) — —a o a % 8T
E(wy)—E(hy) < Ca(03+A2+2 1) max{(;nt) ,n " Tra } g (C’4 Zm
_1 3 8T __a 4
(0902 + C’lg)n 2 | log? ra +n" T (co + E(hy) + (A+ 1) sup f(0,2) + B) log 5
from which it follows directly the stated inequality (4.2) with C; defined by
Cs = co(C3+ A +271) + Oy + CyC4 + Cro + co + E(hy) + (A + 1) sup f(0,2) + B.

It is clear both p and \ defined above satisfy p, A € (0, 1]. The proof is complete. O
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Dataset No. of Training Examples | No. of Test Examples | No. of Attributes | Source
ADULT 32,561 16, 281 123 [71
GISETTE 6,000 1,000 5,000 (3]
IJCNNI1 49,990 91,701 22 (8]
MUSHROOMS 4,062 4,062 112 [
PHISHING 5,527 5,528 68 1]
SPLICE 1,000 2,175 60 (L]

Table G.1: Description of datasets used in the experiments.

G Additional Information on Simulation

We present a detailed description of datasets, used in Section [f] in Table[G.1]
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