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A Technical Lemmas

A.1 Concentration Inequalities

Our discussion on high-probability bounds is based on the following two concentration inequalities.
Lemma A.1 quantifies the concentration behavior of martingales. Part (a) is the Azuma-Hoeffding
inequality for martingales with bounded increments [4], and part (b) is a conditional Bernstein
inequality using the conditional variance to quantify better the concentration behavior of martingales
[10]. Lemma A.2 is the McDiarmid’s inequality to arbitrary real-valued functions of independent
random variables that satisfy a bounded increment condition [6].
Lemma A.1. Let z1, . . . , zn be a sequence of random variables such that zk may depend on the
previous random variables z1, . . . , zk−1 for all k = 1, . . . , n. Consider a sequence of functionals
ξk(z1, . . . , zk), k = 1, . . . , n. Let σ2

n =
∑n
k=1 Ezk

[(
ξk − Ezk [ξk]

)2]
be the conditional variance.

(a) Assume that |ξk − Ezk [ξk]| ≤ bk for each k. Let δ ∈ (0, 1). With probability at least 1− δ we
have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤
(

2

n∑
k=1

b2k log
1

δ

) 1
2

. (A.1)

(b) Assume that ξk − Ezk [ξk] ≤ b for each k. Let ρ ∈ (0, 1] and δ ∈ (0, 1). With probability at least
1− δ we have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤ ρσ2
n

b
+
b log 1

δ

ρ
. (A.2)

Lemma A.2. Let c1, . . . , cn ∈ R+. Let Z1, . . . , Zn be independent random variables taking values
in a set Z , and assume that f : Zn → R satisfies

sup
z1,...,zn,z̄k∈Z

|f(z1, · · · , zn)− f(z1, · · · , zk−1, z̄k, zk+1, · · · , zn)| ≤ ck (A.3)

for k = 1, . . . , n. Then, for any 0 < δ < 1, with probability at least 1− δ we have

f(Z1, . . . , Zn) ≤ E
[
f(Z1, . . . , Zn)

]
+

√∑n
k=1 c

2
k log(1/δ)

2
.

A.2 Behavior of Objectives

In this section, we collect some lemmas on functions g satisfying

‖g′(w)‖2∗ ≤ Ag(w) +B (A.4)

for some constant A,B ≥ 0. Lemma A.3 shows that, if g satisfies (A.4), then both ‖g′(w)‖2∗ and
g(w) can be controlled by quadratic functions of ‖w‖.
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Lemma A.3. Let g :W 7→ R be a convex function. If there exist A and B such that (A.4) holds for
all w ∈ W . Then

‖g′(w)‖2∗ ≤ 2A2‖w‖2 + 2Ag(0) + 2B and g(w) ≤
(
A2 +

1

2

)
‖w‖2 + (A+ 1)g(0) +B. (A.5)

Proof. According to (A.4) and the convexity of g, we know
‖g′(w)‖2∗ ≤ A

(
g(w)− g(0)

)
+Ag(0) +B

≤ A〈w, g′(w)〉+Ag(0) +B ≤ A‖w‖‖g′(w)‖∗ +Ag(0) +B.

Solving the above quadratic inequality of ‖g′(w)‖∗ shows

‖g′(w)‖∗ ≤ A‖w‖+
√
Ag(0) +B,

from which and the elementary inequality (a+ b)2 ≤ 2(a2 + b2) we derive the first inequality.

We now turn to the second inequality. By the convexity of g and the first inequality in (A.5), we get
g(w)− g(0) ≤ 〈w, g′(w)〉 ≤ ‖w‖‖g′(w)‖∗

≤ ‖w‖
2

2
+
‖g′(w)‖2∗

2
≤ ‖w‖

2

2
+A2‖w‖2 +Ag(0) +B,

from which we derive the second inequality. The proof is complete.

Lemma A.4 shows that functions of the form f(w, z) = `(〈w, x〉, y) would satisfy (3.1) if ` satisfies
(A.6).
Lemma A.4. Let ` : R×Y 7→ R and f(w, z) = `(〈w, x〉, y) with z = (x, y). If there exist Ã, B̃ ≥ 0
such that

|`′(a, y)|2 ≤ Ã`(a, y) + B̃, ∀a ∈ R, y ∈ Y. (A.6)
Then we have ‖f ′(w, z)‖2∗ ≤ Af(w, z) + B for any w ∈ W and z ∈ Z , where κ = supx∈X ‖x‖∗,
A = Ãκ2 and B = B̃κ2.

Proof. For any w ∈ W and z ∈ Z , it follows from (A.6) that

‖f ′(w, z)‖2∗ =
∥∥`′(〈w, x〉, y)x

∥∥2

∗ ≤ κ
2
(
Ã`(〈w, x〉, y) + B̃

)
= κ2

(
Ãf(w, z) + B̃

)
.

The proof is complete.

Lemma A.5 shows that regularizers rp(w) = ‖w‖pp, p ∈ [1, 2] satisfy the condition (3.1). For a ∈ R,
denote by sgn(a) the sign of a, i.e., sgn(a) = 1 if a > 0, sgn(a) = −1 if a < 0 and sgn(a) = 0 if
a = 0.
Lemma A.5. The function rp(w) = ‖w‖pp with 1 ≤ p ≤ 2 defined onW satisfies

‖r′p(w)‖2p∗ ≤ p
(
2(p− 1)‖w‖pp + 2− p

)
, ∀w ∈ W,

where p∗ = p
p−1 is the conjugate exponent of p.

Proof. If p = 1, then any r′1(w) ∈ ∂r1(w) would satisfy ‖r′1(w)‖∞ ≤ 1, from which and p∗ =∞
we know ‖r′1(w)‖2p∗ ≤ 1.

If p > 1, then the gradient of rp at w can be calculated by ∇rp(w) = p
(
sgn(w(i))|w(i)|p−1

)d
i=1

,
from which we have

‖∇rp(w)‖p∗ = p
( d∑
i=1

∣∣sgn(w(i))|w(i)|p−1
∣∣p∗) 1

p∗
= p
( d∑
i=1

|w(i)|p
∗(p−1)

) 1
p∗

= p‖w‖p−1
p .

It then follows from the Young’s inequality

ab ≤ as

s
+
bs̃

s̃
, ∀a, b, s, s̃ > 0 with

1

s
+

1

s̃
= 1

that

‖∇rp(w)‖2p∗ = p2‖w‖2(p−1)
p ≤ p2

(
‖w‖

2(p−1) p
2(p−1)

p
p

2(p−1)

+
2− p
p

)
= p
(
2(p− 1)‖w‖pp + 2− p

)
.

The proof is complete by combining the above two cases together.
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B Proofs for Lemma 1 and Lemma 2

In this section, we prove Lemma 1 quantifying the one-step progress of SCMD (2.2), and Lemma 2
which plays an important role in removing the boundedness assumptions on subgradients.

Proof of Lemma 1. According to the first-order optimality condition in (2.2), there exists an
r′(wt+1) ∈ ∂r(wt+1) satisfying

ηtf
′(wt, zt) + ηtr

′(wt+1) +∇Ψ(wt+1)−∇Ψ(wt) = 0,

from which and the identity DΨ(w,wt+1) +DΨ(wt+1, wt)−DΨ(w,wt) = 〈w−wt+1,∇Ψ(wt)−
∇Ψ(wt+1)〉, we derive

DΨ(w,wt+1)−DΨ(w,wt) = DΨ(w,wt+1) +DΨ(wt+1, wt)−DΨ(w,wt)−DΨ(wt+1, wt)

= 〈w − wt+1,∇Ψ(wt)−∇Ψ(wt+1)〉 −DΨ(wt+1, wt)

= ηt〈w − wt+1, f
′(wt, zt) + r′(wt+1)〉 −DΨ(wt+1, wt)

≤ ηt〈w − wt+1, f
′(wt, zt)〉+ ηt

[
r(w)− r(wt+1)− σrDΨ(w,wt+1)

]
−DΨ(wt+1, wt)

= ηt〈w − wt, f ′(wt, zt)〉+ ηt〈wt − wt+1, f
′(wt, zt)〉+ ηt[r(w)− r(wt)]

+ ηt[r(wt)− r(wt+1)]− σrηtDΨ(w,wt+1)−DΨ(wt+1, wt).
(B.1)

Here, we have used the σr-strong convexity of r (3.3) in the inequality. From the convexity of r, the
definition of dual norm and the strong convexity of Ψ, it follows that

ηt
[
〈wt − wt+1, f

′(wt, zt)〉+ r(wt)− r(wt+1)
]
−DΨ(wt+1, wt)

≤ ηt‖wt − wt+1‖‖f ′(wt, zt)‖∗ + ηt〈wt − wt+1, r
′(wt)〉 − 2−1σΨ‖wt − wt+1‖2

≤ ηt‖wt − wt+1‖
[
‖f ′(wt, zt)‖∗ + ‖r′(wt)‖∗

]
− 2−1σΨ‖wt − wt+1‖2

≤ 2−1σΨ‖wt − wt+1‖2 + 2−1σ−1
Ψ η2

t

[
‖f ′(wt, zt)‖∗ + ‖r′(wt)‖∗

]2 − 2−1σΨ‖wt − wt+1‖2

≤ σ−1
Ψ η2

t

[
‖f ′(wt, zt)‖2∗ + ‖r′(wt)‖2∗

]
≤ σ−1

Ψ η2
t

[
Af(wt, zt) +Ar(wt) + 2B

]
,

where we have used the elementary inequality (a + b)2 ≤ 2(a2 + b2) and (3.1) in the last two
inequalities. Plugging the above inequality back into (B.1), we get the stated inequality and complete
the proof.

Proof of Lemma 2. Using the convexity of f in (3.4), we derive the following inequality for any
w ∈ W

DΨ(w,wt+1)−DΨ(w,wt)

≤ ηt
(
f(w, zt)− f(wt, zt)

)
+ ηt(r(w)− r(wt)) + σ−1

Ψ η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)
= ηt(f(w, zt) + r(w)) + (σ−1

Ψ η2
tA− ηt)

(
f(wt, zt) + r(wt)

)
+ 2σ−1

Ψ Bη2
t (B.2)

≤ ηt(f(w, zt) + r(w)) +A−1Bηt,

where the last inequality is due to the assumption ηt ≤ (2A)−1σΨ. Plugging w = 0 in the above
inequality and using the definition of C1, we derive

DΨ(0, wt+1)−DΨ(0, wt) ≤ ηt(f(0, zt) + r(0)) +A−1Bηt ≤ ηtC1.

It then follows that

DΨ(0, wt+1) = DΨ(0, w1) +

t∑
k=1

[
DΨ(0, wk+1)−DΨ(0, wk)

]
≤ C1

t∑
k=1

ηk, (B.3)

where we have used w1 = 0 in the last inequality. The stated inequality (3.5) then follows from the
σΨ-strong convexity of Ψ.

We now prove (3.6). Taking w = 0 in (B.2) and using ηt ≤ 2−1A−1σΨ, we get

2−1ηt
(
f(wt, zt) + r(wt)

)
≤ ηt

(
f(0, zt) + r(0)

)
+ 2σ−1

Ψ Bη2
t +DΨ(0, wt)−DΨ(0, wt+1). (B.4)
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Multiplying both sides by 2ηt then gives

η2
t

(
f(wt, zt) + r(wt)

)
≤ 2η2

t

(
f(0, zt) + r(0)

)
+ 4σ−1

Ψ Bη3
t + 2ηt

(
DΨ(0, wt)−DΨ(0, wt+1)

)
≤ 2η2

t

(
f(0, zt) + r(0)

)
+ 2A−1Bη2

t + 2ηtDΨ(0, wt)− 2ηt+1DΨ(0, wt+1)

≤ 2C1η
2
t + 2ηtDΨ(0, wt)− 2ηt+1DΨ(0, wt+1),

where we have used ηt ≤ (2A)−1σΨ, ηt+1 ≤ ηt in the second inequality and the definition of C1 in
the last inequality. Taking a summation of the above inequality further implies

t∑
k=1

η2
k

(
f(wk, zk) + r(wk)

)
≤ 2C1

t∑
k=1

η2
k + 2η1DΨ(0, w1) = 2C1

t∑
k=1

η2
k,

where the last identity is due to w1 = 0. This proves (3.6).

We now prove (3.7). Plugging the inequality ηt ≤ (2A)−1σΨ into (B.4) and multiplying both sides
by 2η−1

t , we know

f(wt, zt) + r(wt) ≤ 2
(
f(0, zt) + r(0)

)
+ 2A−1B + 2η−1

t

(
DΨ(0, wt)−DΨ(0, wt+1)

)
.

Taking a summation of the above inequality, we derive
t∑

k=1

(
f(wk, zk)+r(wk)

)
≤ 2

t∑
k=1

(
f(0, zk)+r(0)+A−1B

)
+2

t∑
k=1

η−1
k

(
DΨ(0, wk)−DΨ(0, wk+1)

)
.

The last term can be controlled by (note w1 = 0)

t∑
k=1

η−1
k

(
DΨ(0, wk)−DΨ(0, wk+1)

)
=

t∑
k=2

DΨ(0, wk)
(
η−1
k −η

−1
k−1

)
+η−1

1 DΨ(0, w1)−η−1
t DΨ(0, wt+1)

≤ max
1≤k̃≤t

DΨ(0, wk̃)

t∑
k=2

(
η−1
k − η

−1
k−1

)
≤ max

1≤k̃≤t
DΨ(0, wk̃)η−1

t ≤ C1

( t∑
k=1

ηk
)
η−1
t ,

where the last inequality is due to (B.3). Combining the above two inequalities together and using the
definition of C1, we derive the stated inequality (3.7). The proof is complete.

C Proofs for General Convex Objectives

In this section, we prove Theorem 3 and Theorem 4. We first provide a proposition to show that
‖wt+1 − w∗‖2 can be controlled by O

(∑t
k=1 η

2
k‖wk − w∗‖2

)
with high probability. To this aim,

we take w = w∗ in (3.4) to derive

DΨ(w∗, wt+1) ≤
t∑

k=1

ξk +

t∑
k=1

ηk
(
φ(w∗)− φ(wk)

)
+ C̃1

t∑
k=1

η2
k, (C.1)

where ξk is defined in (C.4) and C̃1 ∈ R. A key idea is to use a conditional Bernstein inequality to
show

∑t
k=1 ξk ≤

∑t
k=1 ηk

(
φ(wk)− φ(w∗)

)
+ C̃2

∑t
k=1 η

2
k‖wk −w∗‖2 with high probability. An

interesting observation is that one can offset the term
∑t
k=1 ηk

(
φ(w∗)−φ(wk)

)
in (C.1) by the above

bound on
∑t
k=1 ξk, leading to the inequality DΨ(w∗, wt+1) ≤ C̃1

∑t
k=1 η

2
k + C̃2

∑t
k=1 η

2
k‖wk −

w∗‖2 with high probability. In the discussion of the conditional variance, we use Ezk
[(
ξk −

Ezk [ξk]
)2] ≤ η2

k‖wk − w∗‖2(Aφ(wk) +B) and introduce the following decomposition

η2
k‖wk−w∗‖2

(
Aφ(wk)+B

)
= η2

k‖wk−w∗‖2A
(
φ(wk)−φ(w∗)

)
+η2

k‖wk−w∗‖2
(
Aφ(w∗)+B

)
.

We apply (3.5) to control the first ‖wk−w∗‖2 on the right-hand side to show η2
k‖wk−w∗‖2A

(
φ(wk)−

φ(w∗)
)
≤ C̃3ηk

(
φ(wk)− φ(w∗)

)
for a C̃3 > 0. As a comparison, the second ‖wk − w∗‖2 is kept

intact.
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Proposition C.1. Let {wt}t∈N be the sequence produced by (2.2) with ηt ≤ (2A)−1σΨ and ηt+1 ≤
ηt. We assume C6 = supk∈N ηk

∑k−1
j=1 ηj < ∞. Then for any δ ∈ (0, 1), with probability at least

1− δ we have

‖wt+1−w∗‖2 ≤
Aφ(w∗) +B

2C1C6A

t∑
k=1

η2
k‖wk−w∗‖2+

2DΨ(w∗, 0)

σΨ
+

2C7 log 1
δ

ρ1σΨ
+4σ−2

Ψ (B+AC1)

t∑
k=1

η2
k,

(C.2)
where ρ1 = min{1, (2A)−1(η1‖w∗‖2 + 2C1C6σ

−1
Ψ )−1C7} and

C7 = η1

(
sup
z∈Z

f(w∗, z) + ‖w∗‖2 +AF (0) +B
)

+ 2(A2 + 1)C1σ
−1
Ψ C6.

Proof. Setting w = w∗ in (3.4) shows

DΨ(w∗, wt+1)−DΨ(w∗, wt) ≤ ηt〈w∗ − wt, f ′(wt, zt)〉+ ηt(r(w
∗)− r(wt))

+ σ−1
Ψ η2

t

(
Af(wt, zt) +Ar(wt) + 2B

)
.

We write

〈w∗ − wt, f ′(wt, zt)〉 = 〈w∗ − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉+ 〈w∗ − wt,Ezt [f ′(wt, zt)]〉
≤ 〈w∗ − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉+

(
F (w∗)− F (wt)

)
.

Combining the above equations together and using the definition of φ, we derive

DΨ(w∗, wt+1)−DΨ(w∗, wt) ≤ ηt〈w∗ − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉
+ ηt(φ(w∗)− φ(wt)) + σ−1

Ψ η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)
.

Together with w1 = 0, it then follows that

DΨ(w∗, wt+1) = DΨ(w∗, w1) +

t∑
k=1

(
DΨ(w∗, wk+1)−DΨ(w∗, wk)

)
≤ DΨ(w∗, 0) +

t∑
k=1

ηk〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉

+

t∑
k=1

ηk
(
φ(w∗)− φ(wk)

)
+ σ−1

Ψ

t∑
k=1

η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
. (C.3)

Introduce a sequence of random variables as follows

ξk = ηk〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉, k ∈ N. (C.4)

It is clear that Ezk [ξk] = 0 and therefore {ξk}k is a martingale difference sequence. Since E[(ξ −
E[ξ])2] ≤ E[ξ2] for any real-valued random variable ξ, we know

Ezk
[∣∣〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉

∣∣2] ≤ Ezk
[∣∣〈w∗ − wk, f ′(wk, zk)〉

∣∣2]
≤ ‖w∗ − wk‖2Ezk

[
‖f ′(wk, zk)‖2∗

]
≤ ‖w∗ − wk‖2Ezk

[
Af(wk, zk) +B

]
≤ ‖w∗ − wk‖2

(
AF (wk) +Ar(wk) +B

)
,
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where we have used (3.1) in the third inequality. Then, the conditional variance of ξk can be controlled
by
t∑

k=1

Ezk
[(
ξk − Ezk [ξk]

)2]
=

t∑
k=1

η2
kEzk

[∣∣〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉
∣∣2]

≤
t∑

k=1

η2
k‖w∗ − wk‖2

(
Aφ(wk)−Aφ(w∗)

)
+

t∑
k=1

η2
k‖w∗ − wk‖2

(
Aφ(w∗) +B

)
≤ 2

t∑
k=1

η2
k(‖w∗‖2 + ‖wk‖2)

(
Aφ(wk)−Aφ(w∗)

)
+

t∑
k=1

η2
k‖w∗ − wk‖2

(
Aφ(w∗) +B

)
≤ 2A

t∑
k=1

ηk

(
ηk‖w∗‖2 + 2C1σ

−1
Ψ ηk

k−1∑
j=1

ηj

)(
φ(wk)− φ(w∗)

)
+

t∑
k=1

η2
k‖wk − w∗‖2

(
Aφ(w∗) +B

)
≤ 2A(η1‖w∗‖2 + 2C1σ

−1
Ψ C6)

t∑
k=1

ηk
(
φ(wk)− φ(w∗)

)
+

t∑
k=1

η2
k‖wk − w∗‖2

(
Aφ(w∗) +B

)
,

(C.5)

where the last second inequality is due to (3.5) and the last inequality is due to the definition of C6.

Furthermore, it follows from the convexity of f that

ξk − Ezk [ξk] = ηk〈w∗ − wk, f ′(wk, zk)〉+ ηk〈wk − w∗,Ezk [f ′(wk, zk)]〉
≤ ηk(f(w∗, zk)− f(wk, zk)) + ηk‖wk − w∗‖

∥∥Ezk [f ′(wk, zk)]
∥∥
∗. (C.6)

By the Schwarz’s inequality and Lemma A.3, we know

‖wk − w∗‖
∥∥Ezk [f ′(wk, zk)]

∥∥
∗

≤ 1

2

(
‖wk − w∗‖2 + ‖F ′(wk)‖2∗

)
≤ 1

2

(
2‖wk‖2 + 2‖w∗‖2 + 2A2‖wk‖2 + 2AF (0) + 2B

)
≤ 2(A2 + 1)C1σ

−1
Ψ

k−1∑
j=1

ηj + ‖w∗‖2 +AF (0) +B,

where the last inequality is due to (3.5). Plugging the above inequality back into (C.6) and using the
non-negativity of f(wt, zt) then give

ξk − Ezk [ξk] ≤ η1

(
sup
z∈Z

f(w∗, z) + ‖w∗‖2 +AF (0) +B
)

+ 2(A2 + 1)C1σ
−1
Ψ ηk

k−1∑
j=1

ηj ≤ C7.

Applying Part (b) of Lemma A.1 with the above estimates on magnitudes and variances of ξk, we
derive the following inequality with probability at least 1− δ
t∑

k=1

ξk ≤
ρ1

C7

(
2A
(
η1‖w∗‖2 + 2C1σ

−1
Ψ C6

) t∑
k=1

ηk
(
φ(wk)− φ(w∗)

)
+

t∑
k=1

η2
k‖wk − w∗‖2

(
Aφ(w∗) +B

))
+
C7 log 1

δ

ρ1
≤

t∑
k=1

ηk
(
φ(wk)− φ(w∗)

)
+
σΨ

(
Aφ(w∗) +B

)
4C1C6A

t∑
k=1

η2
k‖wk − w∗‖2 +

C7 log 1
δ

ρ1
,

where we have used 2ρ1A(η1‖w∗‖2 + 2C1C6σ
−1
Ψ ) ≤ C7. By (3.6) we know

t∑
k=1

η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
≤
(
2AC1 + 2B

) t∑
k=1

η2
k.

Plugging the above two inequalities back into (C.3) gives the following inequality with probability
1− δ

DΨ(w∗, wt+1) ≤ DΨ(w∗, 0)+
σΨ(Aφ(w∗) +B)

4C1C6A

t∑
k=1

η2
k‖wk−w∗‖2+

C7 log 1
δ

ρ1
+2σ−1

Ψ (B+AC1)

t∑
k=1

η2
k.
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This together with the σΨ-strong convexity of Ψ gives the stated bound with probability 1− δ. The
proof is complete.

We can use the assumption
∑∞
k=1 η

2
k <∞ to show that the right-hand side of (C.2) can be bounded

by 1
2 max1≤k≤t ‖wk − w∗‖2 + C̃ log 1

δ for a C̃ > 0, from which we can show the boundedness of
‖wt‖2 with high probability (up to a logarithmic factor).

Proof of Theorem 3. It follows from the assumption
∑∞
t=1 η

2
t < ∞ and ηt+1 ≤ ηt that

supt ηt
∑t−1
j=1 ηj ≤

∑∞
j=1 η

2
j < ∞. Therefore, C6 = supk∈N ηk

∑k−1
j=1 ηj is well defined. We

define the set ΩT as

ΩT =
{(
z1, . . . , zT

)
: ‖wt+1 − w∗‖2 ≤

Aφ(w∗) +B

2C1C6A

t∑
k=1

η2
k‖wk − w∗‖2 +

2DΨ(w∗, 0)

σΨ

+
2C7 log T

δ

ρ1σΨ
+ 4σ−2

Ψ (B +AC1)

t∑
k=1

η2
k for all t = 1, . . . , T

}
,

where ρ1 is defined in Proposition C.1. By Proposition C.1 and union bounds on probability
of events, we know Pr{ΩT } ≥ 1 − δ. Since

∑∞
t=1 η

2
t < ∞, we can find a t1 ∈ N such that(

Aφ(w∗) +B
)∑∞

k=t1+1 η
2
k ≤ C1C6A. With the occurrence of ΩT , the following inequality holds

for all t = 1, . . . , T

‖wt+1 − w∗‖2 −
2C7 log T

δ

ρ1σΨ
− 2DΨ(w∗, 0)

σΨ

≤ Aφ(w∗) +B

2C1C6A

( t1∑
k=1

η2
k‖wk − w∗‖2 +

t∑
k=t1+1

η2
k‖wk − w∗‖2

)
+

4(B +AC1)
∑t
k=1 η

2
k

σ2
Ψ

≤ Aφ(w∗) +B

2C1C6A

( t1∑
k=1

η2
k‖wk − w∗‖2 +

t∑
k=t1+1

η2
k sup

1≤k̃≤T
‖wk̃ − w

∗‖2
)

+
4(B +AC1)

∑t
k=1 η

2
k

σ2
Ψ

≤ Aφ(w∗) +B

C1C6A

t1∑
k=1

(
2C1σ

−1
Ψ η2

k

k−1∑
j=1

ηj + ‖w∗‖2
)

+
1

2
sup

1≤k≤T
‖wk − w∗‖2 +

4(B +AC1)
∑t
k=1 η

2
k

σ2
Ψ

,

where we have used ‖wk − w∗‖2 ≤ 2(‖wk‖2 + ‖w∗‖2) and (3.5) in the last step. Under the event
ΩT , we then have

max
1≤t≤T

‖wt − w∗‖2 ≤
Aφ(w∗) +B

C1C6A

t1∑
k=1

(
2C1σ

−1
Ψ η2

k

k−1∑
j=1

ηj + ‖w∗‖2
)

+
1

2
sup

1≤k≤T
‖wk − w∗‖2 +

2C7 log T
δ

ρ1σΨ
+

2DΨ(w∗, 0)

σΨ
+

4(B +AC1)
∑t
k=1 η

2
k

σ2
Ψ

,

from which and Pr{ΩT } ≥ 1− δ we derive the following inequality with probability at least 1− δ

max
1≤t≤T

‖wt − w∗‖2 ≤
2(Aφ(w∗) +B)

C1C6A

t1∑
k=1

(
2C1σ

−1
Ψ η2

k

k−1∑
j=1

ηj + ‖w∗‖2
)

+
4C7 log T

δ

ρ1σΨ
+

4DΨ(w∗, 0)

σ2
Ψ

+
8(B +AC1)

∑t
k=1 η

2
k

σΨ
.

The stated inequality holds with C2 defined by (using (a+ b)2 ≤ 2a2 + 2b2)

C2 =
4(Aφ(w∗) +B)

C1C6A

t1∑
k=1

(
2C1σ

−1
Ψ η2

k

k−1∑
j=1

ηj + ‖w∗‖2
)

+
8C7

ρ1σΨ
+

+
8DΨ(w∗, 0)

σ2
Ψ

+
16(B +AC1)

∑t
k=1 η

2
k

σ2
Ψ

+ 2‖w∗‖2.
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The proof is complete.

We are now in a position to prove Theorem 4. The basic idea is to control
∑T
t=1 ηt

(
φ(wt)− φ(w∗)

)
in terms of a martingale, which can be further controlled by the Azuma-Hoeffding inequality. The
bound of ‖wt‖2 in Theorem 3 allows us to control the increments of martingale by logarithmic
functions of T/δ.

Proof of Theorem 4. It follows from (3.4) that

DΨ(w,wt+1)−DΨ(w,wt)

≤ ηt〈w − wt, f ′(wt, zt)〉+ ηt
(
r(w)− r(wt)

)
+ σ−1

Ψ η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)
≤ ηt〈w − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉+ ηt

(
φ(w)− φ(wt)

)
+ σ−1

Ψ η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)
,

where we have used the inequality 〈w − wt,Ezt [f ′(wt, zt)]〉 ≤ F (w)− F (wt) and the definition of
φ in the last inequality.

Taking a summation over t = 1, . . . , T followed with a reformulation, we derive
T∑
t=1

ηt
(
φ(wt)− φ(w)

)
≤

T∑
t=1

ξt +

T∑
t=1

(
DΨ(w,wt)−DΨ(w,wt+1)

)
+ σ−1

Ψ

T∑
t=1

η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)
≤

T∑
t=1

ξt +DΨ(w, 0) + 2σ−1
Ψ (AC1 +B)

T∑
t=1

η2
t , (C.7)

where we have introduced a sequence of random variables

ξt = ηt〈w − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉
and used (3.6). Let

ξ′t = ηt〈w − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉I{‖wt‖2≤C2 log 2T
δ }
, t = 1, . . . , T,

where IA denotes the indicator function of an event A, i.e., IA = 1 if A happens and 0 otherwise.
According to the elementary inequality (a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R

|ξ′t| ≤
ηt
2

[
‖w − wt‖2 + ‖f ′(wt, zt)− Ezt [f ′(wt, zt)]‖2∗

]
I{‖wt‖2≤C2 log 2T

δ }

≤ ηt
[
‖w‖2 + ‖wt‖2 + ‖f ′(wt, zt)‖2∗ + ‖Ezt [f ′(wt, zt)]‖2∗

]
I{‖wt‖2≤C2 log 2T

δ }
.

It follows from Lemma A.3 that

‖f ′(wt, zt)‖2∗ + ‖F ′(wt)‖2∗ ≤ 2A2‖wt‖2 + 2Af(0, zt) + 2B + 2A2‖wt‖2 + 2AF (0) + 2B

≤ 4A2‖wt‖2 + 2A
(

sup
z
f(0, z) + F (0)

)
+ 4B

≤ 4A2‖wt‖2 + 4AC1. (C.8)

Combining the above two inequalities together, we derive

|ξ′t| ≤ ηt
[
‖w‖2 + (4A2 + 1)‖wt‖2 + 4AC1

]
I{‖wt‖2≤C2 log 2T

δ }

≤ ηt
(
‖w‖2 + 4AC1 + (4A2 + 1)C2 log

2T

δ

)
≤ C(w)ηt log

2T

δ
,

where we introduceC(w) = ‖w‖2 +4AC1 +(4A2 +1)C2. It is clear that Ezt [ξ′t] = 0 and ξ′t depends
only on z1, . . . , zt. According to Part (a) of Lemma A.1, we can find an event ΩT := {(z1, . . . , zT ) :
z1, . . . , zT ∈ Z} with Pr{Ωt} ≥ 1− δ

2 such that for any (z1, . . . , zT ) ∈ ΩT the following inequality
holds

T∑
t=1

ξ′t ≤ C(w) log
2T

δ

(
2

T∑
t=1

η2
t log

2

δ

) 1
2 ≤ C(w) log

3
2

2T

δ

(
2

T∑
t=1

η2
t

) 1
2

.
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Furthermore, according to Theorem 3, there exists an event Ω′T := {(z1, . . . , zT ) : z1, . . . , zT ∈ Z}
with Pr{Ω′t} ≥ 1− δ

2 such that for any (z1, . . . , zT ) ∈ Ω′T the following inequality holds

max
1≤t≤T

‖wt‖2 ≤ C2 log
2T

δ
.

Under the intersection of these two events, we have ξt = ξ′t and therefore

T∑
t=1

ξt =

T∑
t=1

ξ′t ≤ C(w) log
3
2

2T

δ

(
2

T∑
t=1

η2
t

) 1
2

,

which, together with Pr{ΩT ∩Ω′T } ≥ 1−δ and (C.7), shows the following inequality with probability
at least 1− δ

T∑
t=1

ηt
(
φ(wt)− φ(w)

)
≤ DΨ(w, 0) + 2σ−1

Ψ

(
AC1 +B

) T∑
t=1

η2
t + C(w) log

3
2

2T

δ

(
2

T∑
t=1

η2
t

) 1
2

≤
(
2C3DΨ(w, 0) + C4

)
log

3
2

2T

δ
,

where

C3 = 2−1+σ−1
Ψ

(
2

∞∑
t=1

η2
t

) 1
2

and C4 := 2σ−1
Ψ (AC1+B)

∞∑
t=1

η2
t+(4AC1+4A2C2+C2)

(
2

∞∑
t=1

η2
t

) 1
2

.

The stated inequality then follows from the convexity of φ. The proof is complete.

D Proofs for Strongly Convex Objectives

This section is devoted to proving Theorem 8. First, we take a weighted summation of (3.4) and use
(3.7) to tackle

∑t
k=1

(
f(wk, zk) + r(wk)

)
without boundedness assumptions, yielding Lemma D.2.

We need the following simple lemma on step sizes in this derivation.

Lemma D.1. Let ηk = 2
σφk+2σF+σφt0

, where t0 ∈ R+. Then,

t∑
k=1

ηk ≤ 2σ−1
φ log(et). (D.1)

Proof. It follows from the definition of ηt that

t∑
k=1

ηk ≤ 2σ−1
φ

t∑
k=1

(k + t0)−1 ≤ 2σ−1
φ log(et).

The proof is complete.

Lemma D.2. Assume σφ > 0. Let {wt}t∈N be the sequence produced by (2.2) with ηt =
2

σφt+2σF+σφt0
, where t0 ≥ 4A/(σΨσφ). Then the following inequality holds for all t = 1, . . . , T

2σ−1
φ

t∑
k=1

(k+t0+1)
(
φ(wk)−φ(w∗)

)
+(t+t0+1)(t+t0+2)DΨ(w∗, wt+1) ≤ (t0+1)(t0+2)DΨ(w∗, w1)

+ 2σ−1
φ

t∑
k=1

(k + t0 + 1)ξk + 16 log(eT )σ−1
Ψ σ−2

φ

(
AC1(2t+ t0 + 2) +Bt

)
, (D.2)

where we introduce

ξk = 〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉, k = 1, . . . , T.
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Proof. Since t0 ≥ 4A
σΨσφ

, we know ηt ≤ (2A)−1σΨ and therefore Lemma 2 holds. Taking w = w∗

in (3.4), we derive

DΨ(w∗, wk+1)−DΨ(w∗, wk) ≤ ηk〈w∗−wk, f ′(wk, zk)−Ezk [f ′(wk, zk)]〉+ηk〈w∗−wk, F ′(wk)〉
+ ηk

(
r(w∗)− r(wk)

)
+ σ−1

Ψ η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
− σrηkDΨ(w∗, wk+1).

Plugging the inequality F (w∗) − F (wk) ≥ 〈w∗ − wk, F ′(wk)〉 + σFDΨ(w∗, wk) into the above
inequality then shows

DΨ(w∗, wk+1)−DΨ(w∗, wk) ≤ ηkξk + ηk
(
F (w∗)− F (wk)− σFDΨ(w∗, wk)

)
+ ηk

(
r(w∗)− r(wk)

)
+ σ−1

Ψ η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
− σrηkDΨ(w∗, wk+1).

According to the definition of φ, we further get

(1 + σrηk)DΨ(w∗, wk+1) ≤ (1− ηkσF )DΨ(w∗, wk) + ηkξk + ηk
(
φ(w∗)− φ(wk)

)
+ σ−1

Ψ η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
, (D.3)

which can be reformulated as follows
ηk
(
φ(wk)− φ(w∗)

)
1 + σrηk

+DΨ(w∗, wk+1) ≤ 1− ηkσF
1 + ηkσr

DΨ(w∗, wk) +
ηkξk

1 + σrηk

+
σ−1

Ψ η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
1 + σrηk

. (D.4)

Since ηk = 2
σφk+2σF+σφt0

, we know

1− σF ηk
1 + σrηk

=
σφk + 2σF + σφt0 − 2σF
σφk + 2σF + σφt0 + 2σr

=
k + t0

k + t0 + 2
,

ηk
1 + σrηk

=
2

σφ(k + t0 + 2)
.

Plugging the above two equations back into (D.4), we derive

2
(
φ(wk)− φ(w∗)

)
σφ(k + t0 + 2)

+DΨ(w∗, wk+1) ≤ k + t0
k + t0 + 2

DΨ(w∗, wk) +
2ξk

σφ(k + t0 + 2)

+
2ηk
(
Af(wk, zk) +Ar(wk) + 2B

)
σΨσφ(k + t0 + 2)

.

Multiplying both sides by (k + t0 + 1)(k + t0 + 2), we get

2(k + t0 + 1)

σφ

(
φ(wk)− φ(w∗)

)
+ (k + t0 + 1)(k + t0 + 2)DΨ(w∗, wk+1)

≤ (k+t0)(k+t0+1)DΨ(w∗, wk)+
2(k + t0 + 1)ξk

σφ
+

2ηk(k + t0 + 1)
(
Af(wk, zk) +Ar(wk) + 2B

)
σΨσφ

.

Taking a summation of the above inequality from k = 1 to k = t and using the inequality (k + t0 +
1)ηk ≤ 4σ−1

φ , we derive

2σ−1
φ

t∑
k=1

(k+t0+1)
(
φ(wk)−φ(w∗)

)
+(t+t0+1)(t+t0+2)DΨ(w∗, wt+1) ≤ (t0+1)(t0+2)DΨ(w∗, w1)

+ 2σ−1
φ

t∑
k=1

(k + t0 + 1)ξk + 8σ−1
Ψ σ−2

φ

t∑
k=1

(
Af(wk, zk) +Ar(wk) + 2B

)
. (D.5)

According to (3.7), (D.1) and η−1
t ≤ 2−1σφ(t+ t0 + 2), we know

t∑
k=1

(
Af(wk, zk) +Ar(wk) + 2B

)
≤ t(2AC1 + 2B) + 2AC1

( t∑
k=1

ηk
)
η−1
t

≤ 2t(AC1 +B) + 2AC1

(
2σ−1

φ log(et)
)(

2−1σφ(t+ t0 + 2)
)

= 2t(AC1 +B) + 2AC1(t+ t0 + 2) log(et)

≤ 2 log(eT )
(
AC1(2t+ t0 + 2) +Bt

)
.
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Plugging the above inequality into (D.5) gives the stated inequality. The proof is complete.

In the following lemma, we establish bounds on magnitudes and conditional variances on {ξk}k
defined in Lemma D.2.
Lemma D.3. Let the assumptions of Lemma D.2 hold with t0 ≥ 4A

σΨσφ
and ξk be defined in Lemma

D.2. Then for all k ≤ T we have

|ξk| ≤ C8 log(eT ) and Ezk
[(
ξk − Ezk [ξk]

)2] ≤ ‖w∗ − wk‖2(Aφ(wk) +B
)
,

where
C8 := (16A2 + 4)C1σ

−1
Ψ σ−1

φ + ‖w∗‖2 + 4AC1.

Proof. Since t0 ≥ 4A
σΨσφ

, we know ηt ≤ (2A)−1σΨ and therefore (3.5) holds. According to
Schwarz’s inequality, we have∣∣〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉

∣∣ ≤ ‖w∗ − wk‖(‖f ′(wk, zk)‖∗ + ‖F ′(wk)‖∗
)

≤ 1

2
‖w∗ − wk‖2 +

1

2

(
‖f ′(wk, zk)‖∗ + ‖F ′(wk)‖∗

)2
≤ ‖w∗‖2 + ‖wk‖2 + ‖f ′(wk, zk)‖2∗ + ‖F ′(wk)‖2∗.

Combining the above inequality and (C.8) together shows∣∣〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉
∣∣ ≤ (4A2 + 1)‖wk‖2 + ‖w∗‖2 + 4AC1

≤ (8A2 + 2)C1σ
−1
Ψ

k∑
j=1

ηj + ‖w∗‖2 + 4AC1 ≤ C8 log(ek),

where we have used (3.5) and Lemma D.1 to control
∑k
j=1 ηj . This shows a bound on |ξk|.

It is clear that Ezk [ξk] = 0 and therefore it follows from E[(ξ − E[ξ])2] ≤ E[ξ2] for all real-valued
random variable ξ that

Ezk
[(
ξk − Ezk [ξk]

)2]
= Ezk [ξ2

k] ≤ Ezk
[
〈w∗ − wk, f ′(wk, zk)〉2

]
≤ ‖w∗ − wk‖2Ezk [‖f ′(wk, zk)‖2∗] ≤ ‖w∗ − wk‖2

(
AF (wk) +B

)
≤ ‖w∗ − wk‖2

(
Aφ(wk) +B

)
,

where we have used

Ezk [‖f ′(wk, zk)‖2∗] ≤ Ezk [Af(wk, zk) +B] = AF (wk) +B

due to (3.1). The proof is complete.

Then, we apply a Bernstein inequality to show
∑t
k=1(k+ t0 +1)ξk ≤ 1

2

∑t
k=1(k+ t0 +1)

(
φ(wk)−

φ(w∗)
)

+ Ct with high probability, where Ct is the summation of the last two terms in (D.10). An
interesting observation is that 1

2

∑t
k=1(k + t0 + 1)

(
φ(wk)− φ(w∗)

)
can be offset by the first term

in (D.2), from which one can derive (3.10). To apply the Bernstein inequality, we use Lemma D.3
to control the conditional variance as Ezk

[(
ξk − Ezk [ξk]

)2] ≤ ‖w∗ − wk‖2(Aφ(wk) + B
)
, and

introduce the decomposition Aφ(wk) + B = Aφ(wk) − Aφ(w∗) + Aφ(w∗) + B to get variance
partially offset by the first term in (D.2). This is a key trick for us to proceed with the discussion
without boundedness assumption on subgradients.

Proof of Theorem 8. Let ξk be defined in Lemma D.2. Since t0 ≥
16A log T

δ

σφσΨ
and δ ≤ e− 1

4 , we know

t0 ≥ 4A
σΨσφ

and therefore Lemma D.2 and Lemma D.3 hold. Define

CT = max
{4(t0 + 1)DΨ(w∗, w1)

σΨ
+

3t0
(
φ(w∗) +A−1B

)
σφσΨ

+

64 log(eT )(B + 2AC1)

σ2
Ψσ

2
φ

,
C8t0 log(eT )

2A

}
. (D.6)
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Let ρ2 = C8t0 log(eT )
2ACT

. It is clear from the definition of CT that ρ2 ∈ (0, 1]. According to Lemma
D.3, we derive the following inequalities for all k = 1, . . . , t(t ≤ T )

|(k + t0 + 1)ξk| ≤ C8(t+ t0 + 1) log(eT )

Ezk
[(

(k + t0 + 1)ξk − Ezk [(k + t0 + 1)ξk]
)2] ≤ (k + t0 + 1)2‖w∗ − wk‖2(Aφ(wk) +B).

Plugging the above two inequalities back into Part (b) of Lemma A.1, we derive the following
inequality with probability at least 1− δ

T

t∑
k=1

(k + t0 + 1)ξk ≤
ρ2

∑t
k=1

(
(k + t0 + 1)2‖w∗ − wk‖2

(
Aφ(wk) +B

))
C8(t+ t0 + 1) log(eT )

+
C8(t+ t0 + 1) log(eT ) log T

δ

ρ2
. (D.7)

Taking union bounds on probabilities of events, it is clear that (D.7) holds with probability at least
1− δ simultaneously for all t = 1, . . . , T . In the remainder of the proof, we always assume that (D.7)
holds for all t = 1, . . . , T , which happens with probability at least 1− δ.

Applying the σΨ-strong convexity of Ψ to (D.2) and dividing both sides by 2−1σΨ(t+ t0 + 1)(t+
t0 + 2), we derive the following inequality with probability 1− δ for all t = 1, . . . , T

4
∑t
k=1(k + t0 + 1)

(
φ(wk)− φ(w∗)

)
σφσΨ(t+ t0 + 1)(t+ t0 + 2)

+ ‖w∗ − wt+1‖2 ≤
2(t0 + 1)(t0 + 2)DΨ(w∗, w1)

σΨ(t+ t0 + 1)(t+ t0 + 2)
+

4
∑t
k=1(k + t0 + 1)ξk

(t+ t0 + 1)(t+ t0 + 2)σφσΨ
+

32 log(eT )
(
AC1(2t+ t0 + 2) +Bt

)
(t+ t0 + 1)(t+ t0 + 2)σ2

Ψσ
2
φ

. (D.8)

We now show by induction that ‖w∗ − wt̃‖2 ≤ CT
t̃+t0+1

for all t̃ = 1, . . . , T . It is clear from the
definition of CT that

‖w∗ − w1‖2 ≤
2DΨ(w∗, w1)(t0 + 2)

σΨ(t0 + 2)
≤ 4(t0 + 1)DΨ(w∗, w1)

σΨ(t0 + 2)
≤ CT
t0 + 2

.

Therefore, the induction assumption holds for the case with t̃ = 1. Suppose that ‖w∗−wt̃‖2 ≤ CT
t̃+t0+1

for all t̃ ≤ t. We now need to show that it also holds for t̃ = t + 1, i.e., ‖w∗ − wt+1‖2 ≤ CT
t+t0+2 .

According to (D.8) multiplied by t+ t0 + 2, it suffices to show

−
4
∑t
k=1(k + t0 + 1)

(
φ(wk)− φ(w∗)

)
σφσΨ(t+ t0 + 1)

+
2(t0 + 1)(t0 + 2)DΨ(w∗, w1)

σΨ(t+ t0 + 1)
+

4
∑t
k=1(k + t0 + 1)ξk

σφσΨ(t+ t0 + 1)
+

32 log(eT )
(
AC1(2t+ t0 + 2) +Bt

)
σ2

Ψσ
2
φ(t+ t0 + 1)

≤ CT . (D.9)

Plugging the induction assumption ‖w∗ − wt̃‖2 ≤ CT /(t̃+ t0 + 1) for all t̃ ≤ t back into (D.7), we
derive
t∑

k=1

(k + t0 + 1)ξk

≤
ρ2CT

∑t
k=1

(
(k + t0 + 1)

(
Aφ(wk) +B

))
C8(t+ t0 + 1) log(eT )

+
C8(t+ t0 + 1) log(eT ) log T

δ

ρ2

=
t0A
−1

2(t+ t0 + 1)

t∑
k=1

(k + t0 + 1)
(
Aφ(wk)−Aφ(w∗) +Aφ(w∗) +B

)
+

2(t+ t0 + 1)ACT log T
δ

t0

≤ 1

2

t∑
k=1

(k + t0 + 1)
(
φ(wk)− φ(w∗)

)
+
t0(Aφ(w∗) +B)

∑t
k=1(k + t0 + 1)

2A(t+ t0 + 1)
+

(t+ t0 + 1)CTσφσΨ

8
,

(D.10)
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where we have used the definition of ρ2 in the first identity and the assumption t0 ≥
16A log T

δ

σφσΨ
in the

last inequality. Plugging the above inequality into (D.9), it suffices to show

2(t0 + 1)(t0 + 2)DΨ(w∗, w1)

σΨ(t+ t0 + 1)
+

2t0(φ(w∗) +A−1B)
∑t
k=1(k + t0 + 1)

σΨσφ(t+ t0 + 1)2
+
CT
2

+
32(B + 2AC1) log(eT )

σ2
Ψσ

2
φ

≤ CT .

Since
t∑

k=1

(k + t0 + 1) =
t(t+ 2t0 + 3)

2
≤ 3(t+ t0 + 1)2

4
, (D.11)

it suffices to show

2(t0 + 1)DΨ(w∗, w1)

σΨ
+

3t0(φ(w∗) +A−1B)

2σΨσφ
+
CT
2

+
32(B + 2AC1) log(eT )

σ2
Ψσ

2
φ

≤ CT .

which is clear from the definition of CT in (D.6). Therefore, ‖w∗ − wt+1‖2 ≤ CT
t+t0+2 . This proves

the first inequality in (3.10).

We now prove the second inequality in (3.10). According to (D.2), we know

t∑
k=1

(k + t0 + 1)
(
φ(wk)− φ(w∗)

)
≤ σφ(t0 + 1)(t0 + 2)DΨ(w∗, w1)

2
+

t∑
k=1

(k + t0 + 1)ξk +
8 log(eT )

(
AC1(2t+ t0 + 2) +Bt

)
σφσΨ

.

Plugging (D.10) into the above inequality and using (D.11), we derive the following inequality with
probability at least 1− δ for all t = 1, . . . , T∑t

k=1(k + t0 + 1)
(
φ(wk)− φ(w∗)

)
2

≤ σφ(t0 + 1)(t0 + 2)DΨ(w∗, w1)

2
+

3t0(Aφ(w∗) +B)(t+ t0 + 1)

8A
+

(t+ t0 + 1)CTσφσΨ

8
+

8 log(eT )
(
AC1(2t+ t0 + 2) +Bt

)
σφσΨ

.

With probability at least 1− δ, it then follows from the convexity of φ and the identity in (D.11) that

φ(w̄
(2)
t )− φ(w∗) ≤

( t∑
k=1

(k + t0 + 1)
)−1( t∑

k=1

(k + t0 + 1)
(
φ(wk)− φ(w∗)

))
≤ 1

t(t+ 2t0 + 3)

(
2σφ(t0 + 1)(t0 + 2)DΨ(w∗, w1) +

3t0(Aφ(w∗) +B)(t+ t0 + 1)

2A

+
(t+ t0 + 1)CTσφσΨ

2
+

32 log(eT )
(
AC1(2t+ t0 + 2) +Bt

)
σφσΨ

)
, for all t = 1, . . . , T.

This establishes the second inequality in (3.10) with C̃T defined by

C̃T = σφ(t0 + 1)DΨ(w∗, w1) +
3t0(Aφ(w∗) +B)

2A
+
CTσφσΨ

2
+

32 log(eT )(2AC1 +B)

σφσΨ
.

The proof is complete.

Remark 1. According to the definition of CT and C̃T , it is clear that both CT and C̃T only involves
logarithmic functions of T/δ. It is also clear that CT is a quadratic function of σ−1

φ and C̃T is a linear
function of σ−1

φ .

13



E Proofs for Almost Sure Convergence

In this section, we present a proposition on almost sure convergence which covers both the general
convex case (Theorem 6) and the strongly convex case (Theorem 9). To this aim, we need to introduce
two lemmas. Lemma E.1 is the Doob’s martingale convergence theorem [see, e.g., 2, page 195]
which is a powerful tool to study almost sure convergence. We will use Lemma E.2 [9] to show that
the random variable to which DΨ(w∗, wt) converges is zero almost surely in the strongly convex
case.
Lemma E.1. Let {X̃t}t∈N be a sequence of non-negative random variables with E[X̃1] <∞ and
let {Ft}t∈N be a nested sequence of sets of random variables with Ft ⊂ Ft+1 for all t ∈ N. If
E[X̃t+1|Ft] ≤ X̃t for every t ∈ N, then X̃t converges to a nonnegative random variable X̃ almost
surely. Furthermore, X̃ <∞ almost surely.
Lemma E.2. Let {ηt}t∈N be a sequence of non-negative numbers such that limt→∞ ηt = 0 and∑∞
t=1 ηt = ∞. Let a > 0 and t1 ∈ N such that ηt < a−1 for any t ≥ t1. Then we have

limT→∞
∑T
t=t1

η2
t

∏T
k=t+1(1− aηk) = 0.

The basic idea in proving Proposition E.3 is to construct non-negative supermartingales based on the
one-step progress inequality (3.4), whose almost sure convergence based on Lemma E.1 will imply
the almost sure convergence of the random variables we are interested in. We will construct different
supermartingales in the general convex case and the strongly convex case.
Proposition E.3. Let {wt}t∈N be the sequence produced by (2.2). If ‖w∗‖ < ∞ and∑∞
t=1 η

2
t <∞, then {DΨ(w∗, wt)}t converges almost surely to a non-negative random variable and

limt→∞DΨ(w∗, wt) <∞ almost surely. Furthermore,

(a) if ηt ≤ (2A)−1σΨ and ηt+1 ≤ ηt, then
∑∞
t=1 ηt

(
φ(wt)− φ(w∗)

)
<∞ almost surely;

(b) if σφ > 0 and
∑∞
t=1 ηt =∞, then limt→∞DΨ(w∗, wt) = 0 almost surely.

Proof. Since
∑∞
t=1 η

2
t <∞, there exists a t2 ∈ N such that ηt ≤ min{(2A)−1σΨ, 2σ

−1
φ , σ−1

r } for
all t ≥ t2. Taking conditional expectations w.r.t. zt on both sides of (D.3), we derive the following
inequality for all t ≥ t2

Ezt [DΨ(w∗, wt+1)] ≤ 1− σF ηt
1 + σrηt

DΨ(w∗, wt) +
ηt

1 + σrηt

(
φ(w∗)− φ(wt)

)
+ σ−1

Ψ η2
t

(
Aφ(wt)−Aφ(w∗) +Aφ(w∗) + 2B

)
,

where we have used 1 + σF ηt ≥ 1 and Ezt [ξt] = 0 for ξt defined in Lemma D.2. According to
φ(w∗) ≤ φ(wt) and ηt ≤ min{(2A)−1σΨ, σ

−1
r }, we know

ηt(1 + σrηt)
−1
(
φ(w∗)− φ(wt)

)
+ σ−1

Ψ η2
t

(
Aφ(wt)−Aφ(w∗)

)
≤ 2−1ηt

(
φ(w∗)− φ(wt)

)
+ 2−1ηt

(
φ(wt)− φ(w∗)

)
= 0.

Combining the above two inequalities together, we derive

Ezt [DΨ(w∗, wt+1)] ≤ (1− σF ηt)(1 + σrηt)
−1DΨ(w∗, wt) + σ−1

Ψ η2
t

(
Aφ(w∗) + 2B

)
. (E.1)

Introduce a sequence of non-negative random variables X̃t as

X̃t = DΨ(w∗, wt) + σ−1
Ψ

(
Aφ(w∗) + 2B

) ∞∑
k=t

η2
k,

which is well defined since
∑∞
t=1 η

2
t <∞. By (E.1), it is clear that Ezt [X̃t+1] ≤ X̃t for all t ≥ t2.

Taking w = w∗ and expectations on both sides of (B.2), we derive

E[DΨ(w∗, wt+1)] ≤ E[DΨ(w∗, wt)] + σ−1
Ψ η2

tAE[φ(wt)] + 2σ−1
Ψ Bη2

t , for all t ∈ N,

where we have used φ(w∗) ≤ φ(wt). According to Lemma A.3, the term E[φ(wt)] can be controlled
by E[DΨ(w∗, wt)] and ‖w∗‖. Therefore, we derive an upper bound on E[DΨ(w∗, wt+1)] in terms
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of E[DΨ(w∗, wt)], ‖w∗‖ and step sizes, from which we know E[X̃t2 ] <∞ (t2 is a fixed constant).
Therefore, one can apply Lemma E.1 to show that X̃t converges almost surely to a non-negative
random variable, which, together with

∑∞
t=1 η

2
t < ∞, further implies limt→∞DΨ(w∗, wt) = X̃

almost surely for a non-negative random variable X̃ . It is clear that X̃ <∞ almost surely by Lemma
E.1.

We now turn to part (a). Under the assumption ηt ≤ (2A)−1σΨ and ηt+1 ≤ ηt, (C.7) holds.
According to (C.7) with w = w∗, we know

t∑
k=1

ηk
(
φ(wk)− φ(w∗)

)
≤

t∑
k=1

ξk +DΨ(w∗, 0) + 2σ−1
Ψ (AC1 +B)

t∑
k=1

η2
k, (E.2)

where
ξk = ηk〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)].〉

Introduce a sequence of random variables

X̃ ′t+1 =

t∑
k=1

ξk +DΨ(w∗, 0) + 2σ−1
Ψ (AC1 +B)

∞∑
k=1

η2
k, t = 0, 1, . . . ,

which is well defined since
∑∞
t=1 η

2
t <∞. It is clear from Ezt [ξt] = 0 that

Ezt [X̃ ′t+1] =

t−1∑
k=1

ξk + Ezt [ξt] +DΨ(w∗, 0) + 2σ−1
Ψ (AC1 +B)

∞∑
k=1

η2
k = X̃ ′t.

Furthermore, according to the definition of w∗ and (E.2), we know X̃ ′t ≥ 0 for all t ∈ N. Therefore,
one can apply Lemma E.1 to show that {X̃ ′t}t∈N converges to a non-negative variable X̃ ′ almost
surely and X̃ ′ < ∞ almost surely. This, together with (E.2) and the definition of X̃ ′t, implies that∑∞
k=1 ηk

(
φ(wk)− φ(w∗)

)
<∞ almost surely. This finishes the proof of part (a).

We now turn to part (b). We have shown limt→∞DΨ(w∗, wt) = X̃ almost surely. It suffices to show
X̃ = 0 almost surely under the condition σφ > 0 and

∑∞
t=1 ηt =∞. Since ηt ≤ σ−1

r for all t ≥ t2,
we know

1− σF ηt
1 + σrηt

=
1 + σrηt − σφηt

1 + σrηt
≤ 1− 2−1σφηt, ∀t ≥ t2.

Plugging the above inequality back into (E.1) and taking expectations over both sides, we derive

E[DΨ(w∗, wt+1)] ≤
(
1− 2−1σφηt

)
E[DΨ(w∗, wt)] + σ−1

Ψ (Aφ(w∗) + 2B)η2
t , ∀t ≥ t2.

Applying this inequality iteratively for t = T, T − 1, . . . , t2 yields

E[DΨ(w∗, wT+1)] ≤
T∏
t=t2

(1− 2−1σφηt)E[DΨ(w∗, wt2)]

+ σ−1
Ψ (Aφ(w∗) + 2B)

T∑
t=t2

η2
t

T∏
k=t+1

(1− 2−1σφηk), (E.3)

where we denote
∏T
k=t+1(1− 2−1σφηk) = 1 for t = T . The first term of the above inequality can

be controlled by the standard inequality 1− a ≤ exp(−a), a > 0 together with
∑∞
t=1 ηt =∞

lim
T→∞

T∏
t=t2

(1− 2−1σφηt)E[DΨ(w∗, wt2)] ≤ lim
T→∞

T∏
t=t2

exp
(
− 2−1σφηt

)
E[DΨ(w∗, wt2)]

= lim
T→∞

exp
(
− 2−1σφ

T∑
t=t2

ηt

)
E[DΨ(w∗, wt2)] = 0.
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Applying Lemma E.2 with a = 2−1σφ, we get limT→∞
∑T
t=t2

η2
t

∏T
k=t+1(1 − 2−1σφηk) = 0.

Plugging the above two expressions into (E.3) implies limT→∞ E[DΨ(w∗, wT )] = 0. This together
with Fatou’s lemma shows

0 ≤ E[X̃] = E
[

lim
T→∞

DΨ(w∗, wT )
]
≤ lim inf

T→∞
E[DΨ(w∗, wT )] = 0,

from which and X̃ ≥ 0 we know X̃ = 0 almost surely. This finishes the proof of part (b). The proof
is complete.

F Proofs for Generalization Bounds

In this section, we prove generalization error bounds presented in Section 4. The following lemma is
a standard probabilistic bound on the uniform deviation between empirical errors and generalization
errors over a RKHS ball. In our case, we need to control the Lipschitz constants and the magnitudes
for functions satisfying Assumption 1. According to (3.2) and Lemma A.4 we know ‖f ′(w, z)‖22 ≤
Af(w, z) + B with A = Ãκ2 and B = B̃κ2, where κ = supx∈X ‖Kx‖2. Recall that f(w, z) =
`(hw(x), y).
Lemma F.1. Let R > 0 and define BR =

{
w ∈ W : ‖w‖2 ≤ R

}
. Then, for any δ ∈ (0, 1), with

probability at least 1− δ we have

sup
w∈BR

[
E(w)− Ez(w)

]
≤
(
C9R

2 + C10

)
n−

1
2 log

1
2

1

δ
, (F.1)

where

C9 = κ2 + 2Ã2κ2 +
(A2

√
2

+
1

2
√

2

)
and C10 =

(
2Ã+

A+ 1√
2

)
sup
z
f(0, z) + 2B̃ +

B√
2
.

Proof. We prove this lemma by McDiarmid’s inequality (Lemma A.2). To this aim, we first show
that the function z 7→ supw∈BR

[
E(w)− Ez(w)

]
satisfies a bounded difference property. Indeed, for

any z = {z1, . . . , zi−1, zi, zi+1, . . . , zn} and z̄ = {z1, . . . , zi−1, z̄i, zi+1, . . . , zn}, we have∣∣∣ sup
w∈BR

[
E(w)− Ez(w)

]
− sup
w∈BR

[
E(w)− Ez̄(w)

]∣∣∣ ≤ sup
w∈BR

∣∣Ez(w)− Ez̄(w)
∣∣

≤ 1

n
sup
w∈BR

∣∣f(w, zi)− f(w, z̄i)
∣∣ ≤ 1

n
sup
w∈BR

sup
z∈Z

f(w, z)

≤ 1

n

((
A2 +

1

2

)
R2 + (A+ 1) sup

z
f(0, z) +B

)
,

where the third inequality is due to the non-negativity of f and the last inequality is due to (A.5)
applied to the function w 7→ f(w, z). Applying McDiarmid’s inequality with increments bounded
above, we derive the following inequality with probability at least 1− δ

sup
w∈BR

[
E(w)− Ez(w)

]
≤ Ez

[
sup
w∈BR

[
E(w)− Ez(w)

]]
+

√
log 1/δ

2n

((
A2 +

1

2

)
R2 + (A+ 1) sup

z
f(0, z) +B

)
. (F.2)

We now control the term Ez

[
supw∈BR

[
E(w)−Ez(w)

]]
. Let z̃ = {z̃1, . . . , z̃n} be training examples

independently drawn from ρ and independent of z. Let σ1, . . . , σn be a sequence of independent
Rademacher variables with Pr{σi = 1} = Pr{σi = −1} = 1

2 . By Jensen’s inequality and the
standard symmetrization technique, we get

Ez

[
sup
w∈BR

[
E(w)− Ez(w)

]]
= Ez

[
sup
w∈BR

[
Ez̃[Ez̃(w)]− Ez(w)

]]
≤ Ez,z̃

[
sup
w∈BR

[
Ez̃(w)− Ez(w)

]]
=

1

n
Ez,z̃

[
sup
w∈BR

n∑
i=1

(
f(w, z̃i)− f(w, zi)

)]
=

1

n
Ez,z̃,σ

[
sup
w∈BR

n∑
i=1

σi

(
f(w, z̃i)− f(w, zi)

)]
≤ 2

n
Ez,σ

[
sup
w∈BR

n∑
i=1

σif(w, zi)
]
. (F.3)
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For any w ∈ BR, it follows from Lemma A.3 that∣∣`′(〈w,Kx〉, y)
∣∣2 ≤ 2Ã2|〈w,Kx〉|2 + 2Ã`(0, y) + 2B̃ ≤ 2Ã2‖w‖22‖Kx‖22 + 2Ã`(0, y) + 2B̃

≤ 2Ã2R2κ2 + 2Ã sup
y
`(0, y) + 2B̃,

from which we know∣∣`′(〈w,Kx〉, y)
∣∣ ≤√2Ã2R2κ2 + 2Ã sup

y
`(0, y) + 2B̃, ∀w ∈ BR.

Applying Talagrand’s contraction lemma [5] to the last term of (F.3) together with f(w, z) =
`(〈w,Kx〉, y) and the above bound on derivative of `, we derive

Ez

[
sup
w∈BR

[
E(w)−Ez(w)

]]
≤

2
√

2Ã2R2κ2 + 2Ã supy `(0, y) + 2B̃

n
Ez,σ

[
sup
w∈BR

n∑
i=1

σi〈w,Kxi〉
]
.

(F.4)
According to the Schwarz’s inequality and Jensen’s inequality, we get

Eσ
[

sup
w∈BR

n∑
i=1

σi〈w,Kxi〉
]

= Eσ
[

sup
w∈BR

〈
w,

n∑
i=1

σiKxi

〉]
≤ Eσ

[
sup
w∈BR

‖w‖2

√√√√∥∥∥ n∑
i=1

σiKxi

∥∥∥2

2

]

≤ R

√√√√Eσ
〈 n∑
i=1

σiKxi ,

n∑
i=1

σiKxi

〉
= R

√√√√ n∑
i=1

‖Kxi‖22 ≤ Rκ
√
n.

Plugging the above inequality back into (F.4), we derive

Ez

[
sup
w∈BR

[
E(w)− Ez(w)

]]
≤

2Rκ
√

2Ã2R2κ2 + 2Ã supy `(0, y) + 2B̃
√
n

.

Plugging the above inequality back into (F.2) and using 2ab ≤ a2 + b2 for a, b ∈ R, we derive the
following inequality with probability at least 1− δ

sup
w∈BR

[
E(w)− Ez(w)

]
≤ 1√

n

(
R2κ2 + 2Ã2R2κ2 + 2Ã sup

y
`(0, y) + 2B̃

)
+

√
log 1/δ

2n

((
A2 +

1

2

)
R2 + (A+ 1) sup

z
f(0, z) +B

)
,

which can be written as (F.1) with the stated C9 and C10. The proof is complete.

The following lemma aims to bound Ez(wλ)− E(wλ) with wλ defined in (F.5). Since wλ is a fixed
element inW , we do not need to resort to uniform deviation arguments. Instead, we can apply a
Bernstein inequality to study Ez(wλ)− E(wλ), based on the observation that Assumption 3 allows
us to control the variance of f(wλ, z) by a linear function of supz f(wλ, z).
Lemma F.2. Let λ ∈ (0, 1] and define

wλ = arg min
w∈W

E(w) + λ‖w‖22. (F.5)

Let ρ ∈ (0, 1] and δ ∈ (0, 1). Then, with probability at least 1− δ we have

Ez(wλ)− E(wλ) ≤ ρ
(
cα + E(hρ)

)
+ (ρn)−1 sup

z
f(wλ, z) log δ−1.

Proof. Let ξi = f(wλ, zi), i = 1, . . . , n. According to the definition of wλ and Assumption 3, we
know

E(wλ)− E(hρ) + λ‖wλ‖22 ≤ cαλα,
from which and λ ≤ 1 we derive

E(wλ) ≤ E(hρ) + cα.
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It then follows that ξi − E[ξi] ≤ supz f(wλ, z) (non-negativity of ξi) and

E
[(
ξi − E[ξi]

)2] ≤ E[f2(wλ, zi)] ≤ sup
z
f(wλ, z)E[f(wλ, z)] ≤ sup

z
f(wλ, z)

(
cα + E(hρ)

)
.

Applying Part (b) of Lemma A.1 with ξi = f(wλ, zi) and the above bounds on variances and
magnitudes, we derive the following inequality with probability at least 1− δ

Ez(wλ)− E(wλ) =
1

n

n∑
i=1

ξi − E[ξ] ≤
ρn supz f(wλ, z)

(
cα + E(hρ)

)
n supz f(wλ, z)

+
supz f(wλ, z) log 1

δ

ρn
.

The stated inequality then follows directly. The proof is complete.

We are now in a position to prove Theorem 10. Our basic idea is to use the decomposition (F.6)
with wλ and λ proportional to n−

α
1+α . The term Ez(w̄

(1)
T ) − Ez(wλ) is the computational error

related to the optimization process. Both E(w̄
(1)
T )− Ez(w̄

(1)
T ) and Ez(wλ)− E(wλ) are estimation

errors related to the sampling process. The term E(wλ) − E(hρ) is the approximation error. In
the following, we apply Lemma F.1 and Lemma F.2 to control estimation errors, Theorem 4 to
control the computational error and Assumption 3 to control the approximation error. Here we use
three tricks to get almost optimal generalization error bounds. First, we show that ‖w̄(1)

T ‖22 grows
as a logarithmic function of T , which allows us to get E(w̄

(1)
T ) − Ez(w̄

(1)
T ) = O(n−

1
2 log T ) (we

omit the dependency on 1/δ for brevity). Second, in the analysis of Ez(wλ)− E(wλ), we show the
variance of f(wλ, z) grows as a linear function of supz f(wλ, z) instead of a quadratic function of
supz f(wλ, z) by exploiting Assumption 3, which allows us to get a bound with a mild dependency
on ‖wλ‖22. As a comparison, if we use ‖wλ‖22 = O(λα−1) due to Assumption 3 and the Azuma-
Hoeffding inequality we will get Ez(wλ)− E(wλ) = O(λα−1n−

1
2 ), which is suboptimal since λ is

chosen to be very small to trade the estimation, computational and approximation errors. Indeed, if
one plug Ez(wλ) − E(wλ) = O(λα−1n−

1
2 ) into (F.6), one can only derive the suboptimal bound

E(w̄
(1)
T )− E(hρ) = O(n−

α
2 log

3
2 T ) worse than O(n−

α
1+α log

3
2 T ) in Theorem 10. The third trick

is to choose wλ with an appropriate λ in (F.6) to fully exploit Assumption 3.

Proof of Theorem 10. Let λ, ρ ∈ (0, 1] be real numbers to be fixed later and w = wλ defined by
(F.5). We use the following error decomposition w.r.t. wλ to study the excess generalization error
E(w̄

(1)
T )− E(hρ)

E(w̄
(1)
T )− E(hρ) =

(
E(w̄

(1)
T )− Ez(w̄

(1)
T )
)

+
(
Ez(w̄

(1)
T )− Ez(wλ)

)
+
(
Ez(wλ)− E(wλ)

)
+
(
E(wλ)− E(hρ)

)
. (F.6)

It is clear that (4.1) is a specific instantiation of (2.2) with f(w, z) = `
(
〈w,Kx〉, y

)
,Ψ(w) =

1
2‖w‖

2
2, r(w) = 0 and ρ̃ being the uniform distribution over {z1, . . . , zn}. During the iteration

of (4.1), the training sample z = {z1, . . . , zn} is fixed and the randomness comes from the index
sequence {jt}t∈N. Since jt is drawn from a uniform distribution over {1, . . . , n}, the objective
function minimized by the SGD scheme (4.1) is the empirical error φ(w) = Ejt [f(w, zjt)] = Ez(w).
An application of Theorem 4 to the SGD scheme (4.1) with w = wλ then gives the following
inequality with probability 1− δ/4

Ez(w̄
(1)
T )− Ez(wλ) ≤

( T∑
t=1

ηt

)−1(
C3‖wλ‖22 + C4

)
log

3
2

8T

δ
. (F.7)

We can apply Lemma F.2 to derive the following inequality with probability at least 1− δ/4

Ez(wλ)− E(wλ) ≤ ρ
(
cα + E(hρ)

)
+ (ρn)−1 sup

z
f(wλ, z) log

4

δ

≤ ρ
(
cα + E(hρ)

)
+ (ρn)−1

((
A2 +

1

2

)
‖wλ‖22 + (A+ 1) sup

z
f(0, z) +B

)
log

4

δ
,

(F.8)
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where the last inequality is due to Lemma A.3.

According to Theorem 3, with probability at least 1− δ/4 we have max1≤t≤T ‖wt‖2 ≤
√
C2 log 4T

δ ,
from which and the convexity of norm we derive the following inequality with probability 1− δ/4

‖w̄(1)
T ‖2 ≤

√
C2 log

4T

δ
. (F.9)

Furthermore, an application of Lemma F.1 with R̃ =
√
C2 log 4T

δ shows the following inequality
with probability 1− δ/4

sup
w∈BR̃

[
E(w)− Ez(w)

]
≤
(
C9C2 log

4T

δ
+ C10

)
n−

1
2 log

1
2

4

δ
.

Combining the above inequality and (F.9) together, we derive the following inequality with probability
1− δ/2 [

E(w̄
(1)
T )− Ez(w̄

(1)
T )
]
≤
(
C9C2 + C10

)
n−

1
2 log

3
2

4T

δ
. (F.10)

Plugging (F.7), (F.8) and (F.10) into (F.6), we derive the following inequality with probability at
least 1− δ

E(w̄
(1)
T )− E(hρ) ≤ E(wλ)− E(hρ) + ‖wλ‖22

(
C3

( T∑
t=1

ηt
)−1

+ (ρn)−1
(
A2 + 2−1

))
log

3
2

8T

δ

+ C4

( T∑
t=1

ηt
)−1

log
3
2

8T

δ
+
(
C9C2 + C10

)
n−

1
2 log

3
2

4T

δ

+ ρ
(
cα + E(hρ)

)
+ (ρn)−1

(
(A+ 1) sup

z
f(0, z) +B

)
log

4

δ
.

We choose λ = max
{(∑T

t=1 ηt
)−1

, (ρn)−1
}

in the above inequality and derive the following
inequality with probability 1− δ

E(w̄
(1)
T )−E(hρ) ≤

(
C3+A2+2−1

)
D

(
max

{( T∑
t=1

ηt
)−1

, (ρn)−1
})

log
3
2

8T

δ
+

(
C4

( T∑
t=1

ηt
)−1

+

(
C9C2 + C10

)
n−

1
2

)
log

3
2

8T

δ
+ ρ
(
cα + E(hρ)

)
+ (ρn)−1

(
(A+ 1) sup

z
f(0, z) +B

)
log

4

δ
,

where in the first inequality we have used C3 +A2 + 2−1 ≥ 1 and

E(wλ)− E(hρ) + ‖wλ‖22
(
C3

( T∑
t=1

ηt
)−1

+ (ρn)−1
(
A2 + 2−1

))
log

3
2

8T

δ

≤
(
C3 +A2 + 2−1

)(
E(wλ)−E(hρ) + λ‖wλ‖22

)
log

3
2

8T

δ
=
(
C3 +A2 + 2−1

)
D(λ) log

3
2

8T

δ
.

Since the above inequality holds for any ρ ∈ (0, 1], we can take ρ = n−
α

1+α to derive the following
inequality with probability at least 1− δ

E(w̄
(1)
T )−E(hρ) ≤ cα

(
C3+A2+2−1

)
max

{( T∑
t=1

ηt
)−α

, n−
α

1+α

}
log

3
2

8T

δ
+

(
C4

( T∑
t=1

ηt
)−1

+

(
C9C2 + C10

)
n−

1
2

)
log

3
2

8T

δ
+ n−

α
1+α
(
cα + E(hρ) + (A+ 1) sup

z
f(0, z) +B

)
log

4

δ
,

from which it follows directly the stated inequality (4.2) with C5 defined by

C5 = cα(C3 +A2 + 2−1) + C4 + C9C2 + C10 + cα + E(hρ) + (A+ 1) sup
z
f(0, z) +B.

It is clear both ρ and λ defined above satisfy ρ, λ ∈ (0, 1]. The proof is complete.
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Dataset No. of Training Examples No. of Test Examples No. of Attributes Source
ADULT 32, 561 16, 281 123 [7]

GISETTE 6, 000 1, 000 5, 000 [3]
IJCNN1 49, 990 91, 701 22 [8]

MUSHROOMS 4,062 4,062 112 [1]
PHISHING 5, 527 5, 528 68 [1]

SPLICE 1, 000 2, 175 60 [1]

Table G.1: Description of datasets used in the experiments.

G Additional Information on Simulation

We present a detailed description of datasets, used in Section 6, in Table G.1.
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