
A Proof of Theorem 1

Let us define h(✓, w⇤
1

)

:

= H(✓; ✓⇤, w⇤
1

). First, it is straightforward to show that

h(0, 0.5) = 0,

and

• h(✓, 0.5) is concave for ✓ � 0 and h(✓⇤, 0.5) = ✓⇤.
• h(✓, 0.5) is convex for ✓  0 and h(�✓⇤, 0.5) = �✓⇤.

Hence, we have

h(✓, 0.5)� ✓ =

8

>

>

>

<

>

>

>

:

> 0, ✓ 2 (�1,�✓⇤)
[

(0, ✓⇤)

= 0, ✓ = �✓⇤, 0, ✓⇤

< 0, ✓ 2 (�✓⇤, 0)
[

(✓⇤,1)

(12)

Therefore, if we can show that the curve of h(✓, w⇤
1

) is strictly above the curve h(✓, 0.5) for all
w⇤

1

> 0.5 and ✓ < ✓⇤, i.e.,

h(✓, w⇤
1

) > h(✓, 0.5), 8w⇤
1

> 0.5, ✓ < ✓⇤, (13)

then by (12), we have

h(✓, w⇤
1

)� ✓ > h(✓, 0.5)� ✓ � 0, 8w⇤
1

> 0.5, ✓  �✓⇤. (14)

Further, since h is continuous, we know there exists � > 0 and ✓
�

, such that

h(✓
�

, w⇤
1

) < ✓
�

, 8w⇤
1

2 [0.5, 0.5 + �].

Hence, with (14) and continuity of function h(✓, w⇤
1

) � ✓, we know for each w⇤
1

2 (0.5, 0.5 + �],
there exists ✓

w

2 (�✓⇤, 0) (the smallest fixed point) such that

h(✓
w

, w⇤
1

) = ✓
w

and h(✓, w⇤
1

) > ✓, 8✓ 2 (�1, ✓
w

).

Therefore, if we initialize ✓h0i  �✓⇤, the EM estimate will converge to ✓
w

. Hence, our final step is
to show (14) which is proved in the following lemma:
Lemma 4 (Proved in Appendix E.1). For all w⇤

1

6= 0.5, we have

h(✓, w⇤
1

) > h(✓, 0.5), 8✓ < ✓⇤, (15)

and for all w⇤
1

2 [0, 1], we have

0  @h(✓, w⇤
1

)

@✓
 e�

(✓⇤)2

2 < 1, 8✓ � ✓⇤. (16)

In fact, by Lemma 4, (12) and the fact h(✓⇤, w) ⌘ ✓⇤, it is straightforward to show the following
corollary
Corollary 1. For all w⇤

1

2 [0, 1], h(✓, w⇤
1

) has only one fixed point (a stable fixed point) in (0,1),
which is ✓ = ✓⇤.

B Proof of Theorem 2

From the discussion in Section 2.2, we just need to prove Theorem 2 for w⇤
1

> 0.5. We use the
following the strategy to prove Theorem 2.

1. Prove Lemma 1 (see Section 2.3) and therefore WLOG, we can safely assume h✓hti,✓⇤i > 0

and whti > 0.5 for all t > 0.
2. Prove Theorem 2 when the mean parameters ✓⇤

i

is in one dimension.
3. Show that we can reduce the multi-dimensional problem into the one dimensional one.
4. Show geometric convergence by proving an attraction basin around (✓⇤, w⇤

1

).

Each one of the steps is proved in the following subsections in order.
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B.1 Proof of Lemma 1

First it is clear that whti
1

2 (0, 1). Hence, due to our initialization setting wh0i
1

= wh0i
2

= 0.5, we just
need to show

• For all h✓,✓⇤i > 0, w
1

2 [0.5, 1), we have

hG
✓

(✓, w
1

;✓⇤, w⇤
1

),✓⇤i > 0 and G
w

(✓, w
1

;✓⇤, w⇤
1

) > 0.5. (17)

• For all h✓,✓⇤i < 0, w
1

2 (0, 0.5], we have

hG
✓

(✓, w
1

;✓⇤, w⇤
1

),✓⇤i < 0 and G
w

(✓, w
1

;✓⇤, w⇤
1

) < 0.5. (18)

and then by a simple induction argument, it is straightforward to show Lemma 1 holds. Moreover, let
w

2

= 1� w
1

and note that the symmetric property of G
✓

and G
w

, i.e.,

G
✓

(✓, w
1

;✓⇤, w⇤
1

) + G
✓

(�✓, w
2

;✓⇤, w⇤
1

) = 0

G
w

(✓, w
1

;✓⇤, w⇤
1

) + G
w

(�✓, w
2

;✓⇤, w⇤
1

) = 1.

Hence, we just need to show (17) holds. Since for any orthogonal matrices V , we have

hG
✓

(✓, w
1

;✓⇤, w⇤
1

),✓⇤i = hG
✓

(V ✓, w
1

;V ✓⇤, w⇤
1

),V ✓⇤i
G

w

(✓, w
1

;✓⇤, w⇤
1

) = G
w

(V ✓, w
1

;V ✓⇤, w⇤
1

)

Hence, the claim made in (17) and (18) is invariant to rotation of the coordinates. Hence, WLOG,
we assume that ✓ = (k✓k, 0, 0, . . . , 0) and ✓⇤

= (✓⇤k, ✓
⇤
?, 0, . . . , 0) with ✓⇤k > 0. Let us first show

G
w

(✓, w;✓⇤, w⇤
1

) > 0.5. It is straightforward to show that

G
w

(✓, w
1

;✓⇤, w⇤
1

) =

Z

w
1

eyk✓k

w
1

eyk✓k + w
2

e�yk✓k

⇣

w⇤
1

�(y � ✓⇤k) + w⇤
2

�(y + ✓⇤k)
⌘

dy

=

: g
w

(k✓k, w
1

; ✓⇤k, w
⇤
1

),

where �(x) denotes the pdf for d0�dimensional standard Gaussian if x 2 Rd

0
. Hence, we just need

to show that

g
w

(✓, w
1

; ✓⇤, w⇤
1

) > 0.5, 8w
1

2 [0.5, 1), w⇤
1

2 (0.5, 1), ✓ > 0, ✓⇤ > 0. (19)

Note that

@g
w

(✓, w
1

; ✓⇤, w⇤
1

)

@w
1

=

Z

1

�

w
1

ey✓ + w
2

e�y✓

�

2

�

w⇤
1

�(y � ✓⇤) + w⇤
2

�(y + ✓⇤)
�

dy > 0.

Hence, we just need to show g
w

(✓, 0.5; ✓⇤, w⇤
1

) > 0.5. Note that

g
w

(✓, 0.5; ✓⇤, w⇤
1

)� 0.5 =

Z

ey✓

ey✓ + e�y✓

�

w⇤
1

�(y � ✓⇤) + w⇤
2

�(y + ✓⇤)
�

dy � 0.5

=

Z

ey✓ � e�y✓

2(ey✓ + e�y✓

)

�

w⇤
1

�(y � ✓⇤) + w⇤
2

�(y + ✓⇤)
�

dy

=

Z

y�0

�(y)e�
(✓⇤)2

2 ·
 

(2w⇤
1

� 1)

�

cosh

y

(✓⇤ + ✓)� cosh

y

(✓⇤ � ✓)
�

2 cosh

y

(✓)

!

dy

> 0,

where cosh

y

(x) =

1

2

(eyx + e�yx

). Hence, (19) holds. Now we just need to show
hG

✓

(✓, w
1

;✓⇤, w⇤
1

),✓⇤i > 0. It is straightforward to show that all components of G
✓

(✓, w
1

;✓⇤, w⇤
1

)

are 0 except for the first two components denoted as ˜✓
1

and ˜✓
2

. For the second component ˜✓
2

, we
have

˜✓
2

= ✓⇤?

Z

w
1

eyk✓k � w
2

e�yk✓k

w
1

eyk✓k + w
2

e�yk✓k

⇣

w⇤
1

�(y � ✓⇤k)� w⇤
2

�(y + ✓⇤k)
⌘

dy

=

: ✓⇤? · s(k✓k, w
1

; ✓⇤k, w
⇤
1

), (20)
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and for the first component ˜✓
1

, we have

˜✓
1

= ✓⇤k

Z

w
1

eyk✓k � w
2

e�yk✓k

w
1

eyk✓k + w
2

e�yk✓k

⇣

w⇤
1

�(y � ✓⇤k)� w⇤
2

�(y + ✓⇤k)
⌘

dy

+

Z

w
1

eyk✓k � w
2

e�yk✓k

w
1

eyk✓k + w
2

e�yk✓k

⇣

w⇤
1

(y � ✓⇤k)�(y � ✓⇤k) + w⇤
2

(y + ✓⇤k)�(y + ✓⇤k)
⌘

dy

(a)

= ✓⇤k · s(k✓k, w1

; ✓⇤k, w
⇤
1

) + k✓k
Z

4w
1

w
2

�

w
1

eyk✓k + w
2

e�yk✓k�2
⇣

w⇤
1

�(y � ✓⇤k) + w⇤
2

�(y + ✓⇤k)
⌘

dy

> ✓⇤k · s(k✓k, w1

; ✓⇤k, w
⇤
1

), (21)

where equation (a) holds due to partial integration. Hence, by (20) and (21) and ✓⇤k > 0, we have

hG
✓

(✓, w
1

;✓⇤, w⇤
1

),✓⇤i > k✓⇤k2 · s(k✓k, w
1

; ✓⇤k, w
⇤
1

).

Hence, we just need to show

s(✓, w
1

; ✓⇤, w⇤
1

) > 0, 8✓ > 0, w
1

2 [0.5, 1], ✓⇤ > 0, w⇤
1

2 (0.5, 1). (22)

For w
1

= 0.5, by (20), we have

s(✓, 0.5; ✓⇤, w⇤
1

) =

Z

ey✓ � e�y✓

ey✓ + e�y✓

�

w⇤
1

�(y � ✓⇤)� w⇤
2

�(y + ✓⇤)
�

dy

=

Z

y�0

ey✓ � e�y✓

ey✓ + e�y✓

�(y)e�
(✓⇤)2

2

⇣

ey✓
⇤ � e�y✓

⇤
⌘

dy > 0. (23)

For w
1

2 (0.5, 1], by (20) and taking derivative with respect to w⇤
1

, we have

@s(✓, w
1

; ✓⇤, w⇤
1

)

@w⇤
1

=

Z

w
1

ey✓ � w
2

e�y✓

w
1

ey✓ + w
2

e�y✓

�

�(y � ✓⇤) + �(y + ✓⇤)
�

dy

=

Z

y�0

2(w2

1

� w2

2

)

�

w
1

ey✓ + w
2

e�y✓

� �

w
1

e�y✓

+ w
2

ey✓
�

�

�(y � ✓⇤) + �(y + ✓⇤)
�

dy

> 0.

Hence, we just need to show

s(✓, w
1

; ✓⇤, 0.5) � 0, 8✓ > 0, w
1

2 (0.5, 1], ✓⇤ > 0. (24)

Note that

2s(✓, w
1

; ✓⇤, 0.5) =

Z

w
1

ey✓ � w
2

e�y✓

w
1

ey✓ + w
2

e�y✓

�

�(y � ✓⇤)� �(y + ✓⇤)
�

dy

=

Z

y�0

w
1

w
2

(e2y✓ � e�2y✓

)

�

w
1

ey✓ + w
2

e�y✓

� �

w
1

e�y✓

+ w
2

ey✓
�

�

�(y � ✓⇤)� �(y + ✓⇤)
�

dy

� 0.

Hence, we have (24) holds. Combine with (23), we have (22) holds which completes the proof of
this lemma.

B.2 Proof of Theorem 2 in one dimension

We filled out the proofs that have left out in Section 2.3, namely Lemma 2, Lemma 3 and C.2c.

B.2.1 Proof of Lemma 2

Based on (✓
?

, w
?

), we divide the region of S � {(✓
?

, w
?

)} into 8 pieces:

• R
1

= {(✓, w) 2 S : ✓ 2 [✓
?

,min{r(a
w

), b
✓

}), w 2 (a
w

, w
?

]}� {(✓
?

, w
?

)}.
• R

2

= {(✓, w) 2 S : ✓ 2 [✓
?

,min{r(a
w

), b
✓

}), w 2 [w
?

, b
w

)}� {(✓
?

, w
?

)}.
• R

3

= {(✓, w) 2 S : ✓ 2 (max{r(b
w

), a
✓

}, ✓
?

], w 2 (a
w

, w
?

]}� {(✓
?

, w
?

)}.
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• R
4

= {(✓, w) 2 S : ✓ 2 (max{r(b
w

), a
✓

}, ✓
?

], w 2 [w
?

, b
w

)}� {(✓
?

, w
?

)}.
• R

5

= {(✓, w) 2 S : ✓  r(b
w

), w 2 (a
w

, w
?

]}.
• R

6

= {(✓, w) 2 S : ✓  r(b
w

), w 2 [w
?

, b
w

)}.
• R

7

= {(✓, w) 2 S : ✓ � r(a
w

), w 2 (a
w

, w
?

]}.
• R

8

= {(✓, w) 2 S : ✓ � r(a
w

), w 2 [w
?

, b
w

)}.

Note that region R
5

to R
8

may not exists depending on the range of r(w). Next, due to C.2a, we
know the reference curve only crosses region R

1

and R
4

. Note that r�1

(✓) exists on the regions
R

1

, R
2

, R
3

and R
4

. Hence, based on the points are above or below the reference curve r, we can
further divide the region R

1

and R
4

into 4 pieces:

• R
11

= {(✓, w) 2 R
1

: r�1

(✓)  w}.
• R

12

= {(✓, w) 2 R
1

: r�1

(✓) � w}.
• R

41

= {(✓, w) 2 R
4

: w  r�1

(✓)}.
• R

42

= {(✓, w) 2 R
4

: w � r�1

(✓)}.

Now let’s define m : S ! [0,1) based on the following 10 regions

{R
11

, R
12

, R
2

, R
3

, R
41

, R
42

, R
5

, R
6

, R
7

, R
8

} :

• If (✓, w) 2 R
11

, m(✓, w) = (w
?

� w)(r(w)� ✓
?

), which is the area of the rectangle D(✓, w)

given by (✓
?

, w
?

), (r(w), w).
• If (✓, w) 2 R

12

, m(✓, w) = (w
?

� r�1

(✓))(✓ � ✓
?

), which is the area of the rectangle D(✓, w)

given by (✓
?

, w
?

), (✓, r�1

(✓)).
• If (✓, w) 2 R

2

, m(✓, w) = (w � r�1

(✓))(✓� r(w)), which is the area of the rectangle D(✓, w)

given by (r(w), r�1

(✓)), (✓, w).
• If (✓, w) 2 R

3

, m(✓, w) = (r�1

(✓)�w)(r(w)� ✓), which is the area of the rectangle D(✓, w)

given by (r(w), r�1

(✓)), (✓, w).
• If (✓, w) 2 R

41

, m(✓, w) = (r�1

(✓)� w
?

)(✓
?

� ✓), which is the area of the rectangle D(✓, w)

given by (✓
?

, w
?

), (✓, r�1

(✓)).
• If (✓, w) 2 R

42

, m(✓, w) = (w � w
?

)(✓
?

� r(w)), which is the area of the rectangle D(✓, w)

given by (✓
?

, w
?

), (r(w), w).
• If (✓, w) 2 R

5

, m(✓, w) = (b
w

� w)(r(w) � ✓), which is the area of the rectangle D(✓, w)

given by (r(w), b
w

), (✓, w).
• If (✓, w) 2 R

6

, m(✓, w) = (b
w

�w
?

)(✓
?

� ✓), which is the area of the rectangle D(✓, w) given
by (✓, b

w

), (✓
?

, w
?

).
• If (✓, w) 2 R

7

, m(✓, w) = (w
?

� a
w

)(✓� ✓
?

), which is the area of the rectangle D(✓, w) given
by (✓

?

, w
?

), (✓, a
w

).
• If (✓, w) 2 R

8

, m(✓, w) = (w � a
w

)(✓ � r(w)), which is the area of the rectangle D(✓, w)

given by (r(w), a
w

), (✓, w).

It is straightforward to show that function m is a continuous function by checking the boundary and
continuity of the reference function r. Further, (✓

?

, w
?

) is indeed the only solution for m(✓, w) = 0.
Moreover, our construction of the rectangle D makes sure that

If (˜✓, w̃) is strictly inside D(✓, w), then D(

˜✓, w̃) ( D(✓, w). (25)

Next, we shall discuss the movement of the iterates from point (✓hti, whti
) to point (✓ht+1i, wht+1i

).
For a given whti 2 [a

w

, b
w

], consider all the fixed points V in [a
✓

, b
✓

] for g
✓

(✓, w) with respect
to ✓. Then, for any ✓hti 2 (a

✓

, b
✓

), it should be inside an interval defined by [q
1

, q
2

] where
q
1

, q
2

2 VS{a
✓

, b
✓

} and at least one of q
1

or q
2

is either a stable fixed point or one of a
✓

, b
✓

.
Further, since g

✓

(✓, w) is a non-decreasing function of ✓ and (✓ht+1i, wht+1i
) 2 S, we know

✓ht+1i
= g

✓

(✓hti, whti
) 2 [q

1

, q
2

] as well. Hence, comparing to the previous iteration ✓hti,
✓ht+1i

= g
✓

(✓hti, whti
) should (i) stay at a fixed point, i.e., q

1

or q
2

or (ii) move towards a sta-
ble fixed point q

i

or a
✓

, b
✓

. Further, if ✓ht+1i moves towards a
✓

or b
✓

, then a
✓

or b
✓

has to be a
stable fixed point as well. In other words, suppose ✓ht+1i move towards a

✓

and a
✓

is not a sta-
ble fixed point. Then a

✓

is not a fixed point as well and there exists a constant c > 0 such that
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lim

✓!a✓ g
✓

(✓, whti
)  a

✓

� c. Hence by choosing ✓ close enough to a
✓

, we know g
✓

(✓, w) < a
✓

which contradicts C.1. Now, by C.2b, C.2c and discussing which region (✓, w) belongs to, we can
prove

Point (✓ht+1i, wht+1i
) is strictly inside D(✓hti, whti

) and m(✓ht+1i, wht+1i
) < m(✓hti, whti

).

(26)

and

If (✓hti, whti
) 2 R

1

[

R
2

[

R
3

[

R
4

, then (✓ht+1i, wht+1i
) 2 R

1

[

R
2

[

R
3

[

R
4

. (27)

Note that depending on the regions, there are total 10 cases. But for simplicity, we show the proof for
two cases: R

11

and R
6

and leave the rest of the cases to the readers. For the first example, if point
(✓hti, whti

) 2 R
11

, then we know there exists a fixed point ✓
s

2 [✓
?

, b
✓

] for g
✓

and w
s

2 [a
w

, w
?

] for
g
w

such that ✓ht+1i
= g

✓

(✓hti, whti
) lies in between ✓hti and ✓

s

, and wht+1i
= g

w

(✓hti, whti
) lies

in between whti and w
s

. Hence (✓ht+1i, wht+1i
) can only stay in R

1

which proves (27) for the case
(✓hti, whti

) 2 R
11

. Further, we have

|g
✓

(✓hti, whti
)� ✓

s

|  |✓hti � ✓
s

|, (28)

|g
w

(✓hti, whti
)� w

s

|  |whti � w
s

|, (29)

where equality (28)/(29) holds if and only if ✓hti = ✓
s

/whti
= w

s

. Hence, by C.2, we have

• If ✓hti = ✓
?

, then whti < w
?

. Hence we have ✓
s

2 (✓
?

, r(whti
)) and w

s

= w
?

. and therefore,
(29) is strict inequality. Hence, whti < wht+1i.

• If ✓hti > ✓
?

, then max(✓
s

, ✓hti)  r(whti
) and w

s

> r�1

(✓hti) � whti, therefore,

✓ht+1i
= g

✓

(✓hti, whti
)  r(whti

), and whti < g
w

(✓hti, whti
) = wht+1i. (30)

Therefore point (✓ht+1i, wht+1i
) lies in the rectangle D(✓hti, whti

) no matter what. Further, due to
monotonic property of function r, we have

r(whti
) > r(g

w

(✓hti, whti
)). (31)

Hence, by (30) and (31), no matter what region R
11

or R
12

contains the point (✓ht+1i, wht+1i
), the

rectangle D(✓ht+1i, wht+1i
) is strictly smaller than the rectangle D(✓hti, whti

). Hence, we have
(26) holds for the case (✓hti, whti

) 2 R
11

. For the second example that if (✓, w) 2 R
6

, then by
C.2, we know there exists a fixed point ✓

s

2 (r(b
w

), ✓
?

] for g
✓

and w
s

2 [w
?

, b
w

] for g
w

such that
✓ht+1i

= g
✓

(✓hti, whti
) lies in between ✓hti and ✓

s

; and wht+1i
= g

w

(✓hti, whti
) lies in between whti

and w
s

. Hence, point (✓ht+1i, wht+1i
) can only stay in the region R

6

or R
4

. Further, we have

|g
✓

(✓hti, whti
)� ✓

s

|  |✓hti � ✓
s

|,
where equality holds if and only if ✓hti = ✓

s

. Therefore, we have

✓ht+1i
= g

✓

(✓hti, whti
) > ✓hti,

and hence, no matter what region R
6

or R
4

contains the point (✓ht+1i, wht+1i
), the rectangle

D(✓ht+1i, wht+1i
) is strictly smaller than the rectangle D(✓hti, whti

). Similarly, we can show (26)
holds for all other cases. Next, we claim that if point (✓h0i, wh0i

) 2 R
5

S

R
6

S

R
7

S

R
8

, then within
finite steps t

0

, the estimate (✓ht0i, wht0i
) should lie in the region R

1

S

R
2

S

R
3

S

R
4

. Suppose point
(✓h0i, wh0i

) 2 R
6

, g
✓

(✓, w)/✓ is continuous on [✓h0i, r(b
w

)]⇥ [w
?

, b
w

]. Further, due to (26), we have

g
✓

(✓, w)/✓ > 1, 8(✓, w) 2 [✓h0i, r(b
w

)]⇥ [w
?

, b
w

].
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Therefore, there exists a constant ⇢ > 1 such that g
✓

(✓, w) � ⇢✓ on [✓h0i, r(b
w

)] ⇥ [w
?

, b
w

].
Hence, within finite steps, we have (✓ht0i, wht0i

) 2 R
1

S

R
2

S

R
3

S

R
4

. Similarly we can show
for (✓h0i, wh0i

) 2 R
5

, R
7

, R
8

as well. Hence, by (27), we just need to focus on (✓h0i, wh0i
) 2

R
1

S

R
2

S

R
3

S

R
4

. Now we use contradiction to prove that m(✓hti, whti
) converges to 0. Suppose

m(✓hti, whti
) does not converge to 0, then by definition of m, we know there exists some constant

c
✓

> 0 and c
w

> 0, such that

|✓
?

� ✓hti| � c
✓

and |w
?

� whti| � c
w

, 8t � 0. (32)

Further, since S � D(✓h0i, wh0i
) � D(✓h1i, wh1i

) � · · · , we know all points (✓hti, whti
) are

bounded on a compact set D(✓h0i, wh0i
). Now consider function

U(✓hti, whti
)

:

=

m(✓ht+1i, wht+1i
)

m(✓hti, whti
)

we know U is continuous on (✓hti, whti
) 2 Q = {(✓, w

1

) 2 D(✓h0i, wh0i
)

: |✓
?

�✓| � c
✓

, |w
?

�w| �
c
w

}. Further, since Q is a compact set and U < 1 on Q, we know there exists constant ⇢ < 1 such that
sup

Q

U(✓, w)  ⇢. Hence, we have m(✓hti, whti
) converges to 0. Therefore, (✓hti, whti

) converges
to (✓

?

, w
?

) since it is the only solution for m = 0 and m is continuous.

B.2.2 Proof of Lemma 3

We study the shape of g
w

by its first, second and third derivatives. Note that (with w
2

= 1� w
1

)

@g
w

(✓, w
1

)

@w
1

= E
y⇠f

⇤

2

4

1

�

w
1

ey✓ + w
2

e�y✓

�

2

3

5 > 0 (33)

@2g
w

(✓, w
1

)

@w2

1

= E
y⇠f

⇤

2

4

e�y✓ � ey✓
�

w
1

ey✓ + w
2

e�y✓

�

3

3

5 (34)

@3g
w

(✓, w
1

)

@w3

1

= E
y⇠f

⇤

2

4

�

ey✓ � e�y✓

�

2

�

w
1

ey✓ + w
2

e�y✓

�

4

3

5 > 0 (35)

Hence, by (35), we know the second derivative @

2
gw(✓,w1)

@w

2
1

is a strictly increasing function of w
1

if
✓ 6= 0. Hence, the second derivative can only change the sign at most once, the shape of g

w

can
only be one of the following three cases: (i) concave (the second derivative is always negative),
(ii) concave-convex (the second derivative is negative, then positive) and (iii) convex (the second
derivative is always positive). Note that by Lemma 1, we know g

w

(✓, 0.5) > 0.5 if ✓ > 0. Moreover,
it is easy to check that g(✓, 0) = 0 and g(✓, 1) = 1. Hence, we know for ✓ > 0, the shape of g

w

can
only be either case (i) or case (ii). For case (i), it is clear that we have 1 is the only stable fixed point
and

g
w

(✓, w
1

) > w
1

is equivalent to w
1

2 (0, 1). (36)

For case (ii), then depends on the value of the derivative at w
1

= 1 i.e., @g
w

(✓, w
1

)/@w
1

|
w1=1

, we
have

• If @g
w

(✓, w
1

)/@w
1

|
w1=1

 1, w
1

= 1 is the stable fixed point and (36) holds.
• If @g

w

(✓, w
1

)/@w
1

|
w1=1

< 1, then w
1

= 1 is only a fixed point and there exists a stable fixed
point in (0, 1) such that (10) holds.

B.3 Proof of C.2b

According to (9), function r is a one to one mapping between w 2 (0.5, 1] and ✓ 2 [(w⇤
1

�w⇤
2

)✓⇤,1).
Hence, we can simplify C.2b as
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• If w
1

2 (w⇤
1

, 1], then w
1

> w
s

> w⇤
1

,
• If w

1

= w⇤
1

, then w
1

= w
s

= w
?

,
• If w

1

2 (0.5, w⇤
1

), then w
1

< w
s

< w⇤
1

,

where w
s

is any stable fixed point in [a
w

, b
w

] or fixed point in (a
w

, b
w

) for ✓ = r(w
1

). By (10) in
Lemma 3, we can complete the proof for C.2b by showing the following technical lemma proved in
Appendix E.2:

Lemma 5. Let � =

2w

⇤
1�1

2w1�1

, we have

g
w

(�✓⇤, w
1

) < w
1

and g
w

(�✓⇤, w⇤
1

) > w⇤
1

8w
1

2 (w⇤
1

, 1]

g
w

(�✓⇤, w
1

) > w
1

and g
w

(�✓⇤, w⇤
1

) < w⇤
1

8w
1

2 (0.5, w⇤
1

)

B.3.1 Proof of C.2c

Recall our construction of the adjusted reference curve r
adj

in Section 2.3, we have

r
adj

(w) = r(w)� ✏ ·max(0, w � 1 + �) =

2w⇤
1

� 1

2w � 1

✓⇤ � ✏ ·max(0, w � 1 + �),

for some positive ✏, � > 0. Also, note that g
✓

(✓, 1) ⌘ (2w⇤
1

� 1)✓⇤. Hence, we just need to show the
following

C.2c’ Given w
1

2 (a
w

, b
w

), any stable fixed point ✓
s

of g
✓

(✓, w) in [a
✓

, b
✓

] or fixed point ✓
s

in (a
✓

, b
✓

)

satisfies that
– If w

1

< w
?

, then r(w) > ✓
s

> ✓
?

.
– If w

1

= w
?

, then r(w) = ✓
s

= ✓
?

.
– If w

1

> w
?

, then r(w) < ✓
s

< ✓
?

.

Like the proof for C.2b shown in Section 2.3, we first show that there exists stable fixed point for
g
✓

(✓, w
1

) with respect to ✓, i.e.,

Claim 1 If w
1

2 (0.5, w⇤
1

], then there exists an unique non-negative fixed point for g
✓

(✓, w
1

) denoted as
F
✓

(w
1

). Further, F
✓

(w
1

) � ✓⇤.
Claim 2 If w

1

2 (w⇤
1

, 1], then there exists positive stable fixed point for g
✓

(✓, w
1

) and all non-negative
fixed points are in (0, ✓⇤).

First, it is clear that ✓ = 0 is not a fixed point for w
1

> 0.5 and w⇤
1

> 0.5, therefore, we just
need to consider ✓ > 0. Then, to prove Claim 1 and Claim 2, we should find out the shape
of g

✓

(✓, w
1

) for different true values (✓⇤, w⇤
1

). Notice that, by Lemma 4, we know the shape of
H(✓, w

1

; ✓⇤) = G
✓

(✓, w
1

; ✓⇤, w
1

), i.e., for ✓ > 0, w
1

2 [0.5, 1]

H(✓, w
1

; ✓⇤) R ✓ is equivalent to ✓ Q ✓⇤. (37)

Hence, our next step to compare G
✓

(✓, w
1

; ✓⇤, w⇤
1

) with H(✓, w
1

; ✓⇤) = G
✓

(✓, w
1

; ✓⇤, w
1

). Note
that, we have

@G
✓

(✓, w
1

; ✓⇤, w⇤
1

)

@w⇤
1

=

Z

y
w

1

ey✓ � w
2

e�y✓

w
1

ey✓ + w
2

e�y✓

�

�(y � ✓⇤)� �(y + ✓⇤)
�

dy

=

Z

y�0

 

w
1

ey✓ � w
2

e�y✓

w
1

ey✓ + w
2

e�y✓

+

w
1

e�y✓ � w
2

ey✓

w
1

e�y✓

+ w
2

ey✓

!

y
�

�(y � ✓⇤)� �(y + ✓⇤)
�

dy

= 2

Z

y�0

w
1

� w
2

�

w
1

ey✓ + w
2

e�y✓

� �

w
1

e�y✓

+ w
2

ey✓
�y

�

�(y � ✓⇤)� �(y + ✓⇤)
�

dy > 0.

(38)
Hence, if w

1

2 (w⇤
1

, 1], we know G
✓

will be strictly below H . Therefore
G

✓

(✓, w
1

; ✓⇤, w⇤
1

) < ✓, 8✓ � ✓⇤.

Hence, with G
✓

(0, w
1

; ✓⇤, w⇤
1

) = (w
1

� w
2

)(w⇤
1

� w⇤
2

)✓⇤ > 0 and continuity of the function, we
know Claim 2 holds. Similarly, if w

1

2 (0.5, w⇤
1

], we know G
✓

will be strictly above H . Therefore
G

✓

(✓, w
1

; ✓⇤, w⇤
1

) > ✓, 80 < ✓  ✓⇤.
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Hence, to prove Claim 1, we just need to show that G
✓

(✓, w
1

; ✓⇤, w⇤
1

) is bounded by some constant
C and

@G
✓

(✓, w
1

; ✓⇤, w⇤
1

)

@✓
< 1, 8✓ � ✓⇤, 0.5 < w

1

 w⇤
1

. (39)

To prove boundedness, we have the following more general lemma:
Lemma 6 (Proved in Appendix E.3). Given any (✓, w

1

,✓⇤, w⇤
1

), we have

kG
✓

(✓, w
1

;✓⇤, w⇤
1

)k2  1 + k✓⇤k2.

Hence, for all t � 1, k✓htik2  k✓⇤k2

+ 1.

To prove (39), we have for ✓ � ✓⇤,

@G
✓

(✓, w
1

; ✓⇤, w⇤
1

)

@✓
=

Z

4w
1

w
2

�

w
1

ey✓ + w
2

e�y✓

�

2

y2

�

w⇤
1

�(y � ✓⇤) + w⇤
2

�(y + ✓⇤)
�

dy

=

@H(✓, w
1

; ✓⇤)
@✓

+ (w⇤
1

� w
1

)

Z

4w
1

w
2

�

w
1

ey✓ + w
2

e�y✓

�

2

y2

�

�(y � ✓⇤)� �(y + ✓⇤)
�

dy

(i)

 @H(✓, w
1

; ✓⇤)
@✓

(ii)

 e�
(✓⇤)2

2 < 1,

where inequality (ii) holds due to Lemma 4 and inequality (i) holds due to

w
1

ey✓ + w
2

e�y✓ � w
1

e�y✓

+ w
2

ey✓, 8✓ > 0.

This completes the proof for Claim 1 and Claim 2. Finally, it is straightforward to show the rest of
C.2c by Claim 1 and Claim 2 and the following lemma:
Lemma 7 (Proved in Appendix E.4).

g
✓

(�✓⇤, w
1

) < �✓⇤, 8w
1

2 (

1

2

, w
1

) (40)

g
✓

(b✓⇤, w
1

) > b✓⇤, 8b 2 (0, �], w
1

2 (w
1

, 1). (41)

B.4 Reduction to one dimension

In this section, we show how to reduce multi-dimensional problem into one-dimensional problem by
proving the angle between the two vectors ✓⇤ and ✓hti is decreasing to 0. Define

�hti
:

= arccos

h✓hti,✓⇤i
k✓htikk✓⇤k ,

then given h✓h0i,✓⇤i > 0, we have

• If �h0i
= 0, then for t � 1, we have �hti

= 0, i.e., it is an one-dimensional problem.
• If �h0i 2 (0, ⇡

2

), then for t � 1, we have �hti 2 (0,�ht�1i
).

We use similar strategy shown in [Xu et al., 2016] to prove this. First let us define ↵hti
:

=

arccos

h✓hti
,✓ht+1ii

k✓htikk✓ht+1ik , i.e., the angle between the two vectors ✓hti and ✓ht+1i. Then since h✓h0i,✓⇤i >

0, we have �h0i 2 [0, ⇡

2

). Further, it is straightforward to verify that if �h0i
= 0, we have

�hti
= 0, 8t � 0. Hence, with Lemma 1, from now on, we assume �hti 2 (0, ⇡

2

) and whti
1

2 [0.5, 1)

for all t � 0. Therefore, we just need to show �hti < �ht�1i, 8t > 0. To prove this, we just need to
to prove the following three statements hold for 8t � 0:

(i) �hti 2 (0, ⇡

2

).
(ii) ↵hti 2 (0,�hti

).
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(iii) �ht+1i
= �hti � ↵hti 2 (0,�hti

).

We use induction to show (i)-(iii) by proving the following chain of arguments:

Claim 1 If (i) holds for t, then (ii) holds for t.
Claim 2 If (i) and (ii) hold for t, then (iii) holds for t.
Claim 3 If (i), (ii), and (iii) hold for t, then (i) holds for t + 1.

Since (i) holds for t = 0 and Claim 1 holds, it suffices to prove Claims 2-3. For simplicity, we drop
hti in the notation and use ˜· to indicate the values for the next iteration t + 1, i.e., ˜✓ = ✓ht+1i and
˜� = �ht+1i. Since for any orthogonal matrix V , we have

V G
✓

(✓, w
1

;✓⇤, w⇤
1

),✓⇤
= G

✓

(V ✓, w
1

;V ✓⇤, w⇤
1

)

G
w

(✓, w
1

;✓⇤, w⇤
1

) = G
w

(V ✓, w
1

;V ✓⇤, w⇤
1

) (42)
Hence, it is straightforward to check that the Claims are invariant under any rotation of the coordinates.
Hence, WLOG, we assume that ✓ = (k✓k, 0, 0, . . . , 0) and ✓⇤

= (✓⇤k, ✓
⇤
?, 0, . . . , 0) with ✓⇤k > 0

and |✓⇤?| > 0. Then, it is straightforward to show that all components of ˜✓ are 0 except for the first
two components denoted as ˜✓

1

and ˜✓
2

. Hence, we just need to focus on the two-dimensional space
spanned by the first two components. From (20), (21) and (22), we have tan↵ < tan� = |✓?|/✓k
which implies Claim 2, and ˜✓

2

/✓⇤? > 0 which implies Claim 3. Next, we want to prove the
angle �hti is decreasing to 0. Define ✓htik =

|h✓hti
,✓⇤i|

k✓htik and ✓hti? = k✓⇤ � ✓htik k. Hence, to show

�hti decreases to 0, it is equivalent to show that ✓htik converges to k✓⇤k. WLOG, we assume that

✓h0i
= (k✓h0ik, 0, 0, . . . , 0) and ✓⇤

= (✓h0ik , ✓h0i? , 0, . . . , 0) with ✓h0ik > 0 and |✓h0i? | > 0. It is

straightforward to show that the only non-zero components of ✓hti are the first two components.
Hence, we just need to analyze a two dimensional problem. Then, since �hti is decreasing, we have
✓htik = k✓⇤k · �hti is increasing. Hence

✓htik 2 [✓h1ik , k✓⇤k], 8t � 1. (43)

To prove the increasing sequence ✓ht+1i
k converges to k✓⇤k, we just need to show that for any

ˆ✓ < k✓⇤k, we can find ✓ht+1i
k /✓htik � ⇢

ˆ

✓

for some constant ⇢
ˆ

✓

> 1, then with a straightforward

contradiction argument, within finite iterations, we should have ✓ht
0i

k > ˆ✓ for a certain t0, which

implies ✓ht+1i
k converges to k✓⇤k. To find such ⇢, note that, since ✓htik is a value invariant to coordinate

rotations, by (20),(21) and (22), we have U :

= ✓ht+1i
k /✓htik is a continuous function of k✓htik, whti

1

and ✓htik and

✓ht+1i
k /✓htik > 1, 8k✓htik > 0, whti

1

2 (0.5, 1], ✓htik 2 [✓h1ik , k✓⇤k).

Hence, we just need to find some constants 0 < c
1

< c
2

and 0.5 < c
3

< 1 such that k✓htik 2 [c
1

, c
2

]

and whti
1

2 [c
3

, 1] for t � 1, then we can find ⇢ by the uniform continuity argument. From Lemma
6, we have c

2

= 1 + k✓⇤k. Since both k✓htik and whti
1

is invariant to the coordinate rotations due
to (42). WLOG, we assume that ✓hti

= (k✓htik, 0) and ✓⇤
= (✓htik , ✓hti? ). Let us define the first

coordinates of ✓ht+1i as ˜✓ht+1i
1

, note that, we have

˜✓ht+1i
1

=

Z

y
whti

1

eyk✓
htik � whti

2

e�yk✓htik

whti
1

eyk✓htik
+ whti

2

e�yk✓htik

⇣

w⇤
1

�(y � ✓htik ) + w⇤
2

�(y + ✓htik )

⌘

dy

= G
✓

(k✓htik, whti
1

; ✓htik , w⇤
1

)

wht+1i
1

=

Z

whti
1

eyk✓
htik � whti

2

e�yk✓htik

whti
1

eyk✓htik
+ whti

2

e�yk✓htik

⇣

w⇤
1

�(y � ✓htik ) + w⇤
2

�(y + ✓htik )

⌘

dy

= G
w

(k✓htik, whti
1

; ✓htik , w⇤
1

) (44)
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Hence, (˜✓ht+1i
1

, wht+1i
1

) is the next iteration of (k✓htik, whti
1

) of the population-EM
2

under the true
value (✓htik , w⇤

1

). Indeed, we can consider this two dimensional problem as a series of one dimensional
problems that follows this procedure:

Step 1 Start with point (k✓h1ik, wh1i
1

) 2 S, where S = (0,1)⇥ (0.5, 1).

Step 2 For iteration t, let point (k✓htik, whti
1

) move towards the point (˜✓ht+1i
1

, wht+1i
1

) following the
one dimensional update rule for the true value ✓

?

= ✓htik .

Step 3 Shift the true value ✓
?

= ✓htik and the point (˜✓ht+1i
1

, wht+1i
1

) to the right to their new values: true

value ✓
?

= ✓ht+1i
k and new point (k✓ht+1ik, wht+1i

1

).
Step 4 End iteration t and go back to Step 2 for iteration t + 1.

To analyze this, recall our analysis for the one dimension case in Section 2.3. Due to Lemma 3 holds
for any non-zero true value ✓⇤, by typical uniform continuity argument, we can find �, ✏ > 0 such
that the adjusted reference curve r

adj

(w
1

; ✓
?

) defined by

r
adj

(w
1

; ✓
?

) =

2w⇤
1

� 1

2w
1

� 1

✓
?

� ✏ ·max(0, w
1

+ � � 1) > 0,

satisfies C.1,C.2 with (a
✓

, b
✓

) = (0,1), (a
w

, b
w

) = (0.5, 1) for any true value ✓
?

2 [✓h1ik , k✓⇤k]
and w

?

= w⇤
1

. Hence, on S = (0,1)⇥ (0.5, 1), as ✓
?

increases, the reference curve shifted to the
right. Further, for any point (✓, w) in S, recall its corresponding area function m(✓, w) and rectangle
D(✓, w) in the proof for Lemma 2 in Appendix B.2.1. We use m(✓, w; ✓

?

) and D(✓, w; ✓
?

) to denote
their values under the true value ✓

?

. By their definitions, we note that the left side and down side
of the rectangle D(✓, w; ✓

?

) is non-decreasing as ✓
?

increases. Hence, by (26), we know as ✓htik
increases, whti

1

is always lower bounded by the down side of the rectangle D(k✓h1ik, wh1i
1

; ✓h1ik ) due
to the following chain of arguments:

wht+1i
1

(i)

� lower side of D(k✓htik, whti
1

; ✓htik )

(ii)

� lower side of D(k✓htik, whti
1

; ✓ht�1i
k )

(iii)

� lower side of D(

˜✓hti
1

, wht�1i
1

; ✓ht�1i
k )

(iv)

� lower side of D(k✓ht�1ik, wht�1i
1

; ✓ht�1i
k )

� · · · � lower side of D(k✓h1ik, wh1i
1

; ✓h1ik ) = c
3

,

where inequality (i) holds due to (26), inequality (ii) and (iii) hold due to the shift of reference curve
and definition of the rectangle D, and inequality (iv) holds due to (25). Also, we can show

k✓htik � min{k✓h1ik, (w⇤
1

� w⇤
2

)✓h1ik � ✏�} :

= c
1

.

This is because,

• If k✓htik  ✓htik � ✏�, i.e., point (k✓htik, whti
1

) is inside the region R
5

or R
6

defined by the true

value ✓
?

= ✓htik , then we know k✓ht+1ik � ˜✓ht+1i
1

� k✓htik.

• If k✓htik  ✓htik � ✏�, i.e., point (k✓htik, whti
1

) is inside the regions R
1

-R
4

(note that regions

R
7

and R
8

doesn’t exists here), we have (

˜✓hti, wht+1i
1

) stay at R
1

-R
4

and hence k✓ht+1ik �
˜✓ht+1i
1

� ✓htik � ✏�.

Hence, this completes the proof of our claim that the angle �hti is decreasing to 0. Finally, we want
to show that (k✓htik, whti

1

) converges to (k✓⇤k, w⇤
1

) which implies (✓hti, whti
1

) converges to (✓⇤, w⇤
1

)

due to �hti ! 0. To prove this final step, we just need to bound whti
1

away from 1, i.e., there exists
c
4

2 (0, 1) such that

whti
1

 c
4

< 1, 8t � 1. (45)

Note that if (45) holds. Consider the following functions
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U
1

= m(

˜✓ht+1i
1

, wht+1i
1

; ✓htik )/m(k✓htik, whti
1

; ✓htik )

U
2

= m(k✓ht+1ik, wht+1i
1

; k✓⇤k)/m(

˜✓ht+1i
1

, whti
1

; ✓htik )

U
3

= m(k✓htik, whti
1

; k✓htik k)/m(k✓htik, whti
1

; k✓⇤k).

For any �
0

> 0, we have after finite iterations t
1

, ✓ht1ik will stay in the �
0

-neighborhood around k✓⇤k.
Hence, consider t > t

1

, note that on the following compact set S0:

S0
:

=

n

whti 2 [c
3

, c
4

], k✓htik 2 [c
1

, c
2

], ✓htik 2 [k✓⇤k � �
0

, k✓⇤k]
o

�
n

(k✓htik � k✓⇤k)2 + (whti � w⇤
1

)

2 < 4�2
0

o

.

(46)

we have U
1

< 1, therefore, we can find constant ⇢
1

< 1 such that U
1

 ⇢
1

on S0. Further, we
know there exists a constant c0 such that max(U

2

, U
3

)  (1 + c · �hti
) on this compact set S0 since

✓htik = cos�hti · k✓⇤k and ˜✓hti = cos�hti · k✓htik. Hence for large enough t
2

, there exists ⇢
2

< 1

such that for any t > t
2

and point (k✓htik, whti
1

) in S0, we have

m(k✓ht+1ik, wht+1i
1

; k✓⇤k)
m(k✓htik, whti

1

; k✓⇤k)
= U

1

· U
2

· U
3

 ⇢
2

< 1.

Hence, we have either m(k✓ht+1ik, wht+1i
1

; k✓⇤k) is strictly decreasing at rate ⇢
2

or (k✓htik, whti
1

)

was in the 2�
0

-neighborhood around (k✓k⇤, w⇤
1

) and therefore by the analysis in Lemma 2, there
exists constant c00 > 0 and c000 > 0 such that

m(k✓ht+1ik, wht+1i
1

; k✓⇤k) < (1 + c00 · �hti
) · c000�2

0

.

Either way, by arbitrary choice of �
0

, we know m(k✓ht+1ik, wht+1i
1

; k✓⇤k) converges to 0 which
implies ✓hti converges to ✓⇤. Hence, finally, we just need to bound whti

1

. Note that in the proof of
Lemma 2, we used the following strategy to show that whti

1

is bounded away from 1:

• If (✓h0i, wh0i
1

) 2 R
5

S

R
6

, within finite iterations t
0

, (✓ht0i, wht0i
1

) will reach the region
R

1

S

R
2

S

R
3

S

R
4

.

• When (✓ht0i, wht0i
1

) 2 R
1

S

R
2

S

R
3

S

R
4

, by (25) and (26), we have for all t � t
0

,

(✓ht+1i, wht+1i
1

) 2 D(✓ht+1i, wht+1i
1

)

(a)

✓ D(✓hti, whti
1

) ✓ · · · ✓ D(✓ht0i, wht0i
1

). (47)

Hence, whti  max(wht0i
1

, r�1

(✓ht0i)).

However, in multi-dimsnional case, since we changed the true values ✓
?

from ✓htik to ✓ht+1i
k after each

iteration, definition of R
5

and R
6

changes and relation (a) in (47) does not hold anymore, namely,

D(

˜✓ht+1i
1

, wht+1i
1

; ✓ht+1i
k ) 6⇢ D(k✓htik, whti

1

; ✓htik ).

Yet, we can have a quick remedy for this strategy. Note that since ✓htik ! k✓⇤k, our adjusted reference

curve r
adj

(w
1

; ✓htik ) also converges to r
adj

(w
1

; k✓⇤k) uniformly for w
1

2 [w⇤
1

, 1]. Hence, we can

find �0 > 0, t0 > 0 such that we can perturb every r
adj

(w
1

; ✓htik ) for t > t0 such that we have

r̃
adj

(w
1

; ✓htik ) satisfies C.1 and C.2 for true value ✓
?

= ✓htik for all t > t0 with

r̃
adj

(w
1

; ✓
?

) = r
adj

(w
1

; ✓ht
0i

k ), 8w
1

2 [1� �0, 1], ✓
?

2 [✓ht
0i

k , k✓⇤k],
and

r̃
adj

(w
1

; ✓
?

) = r(w
1

; ✓
?

), 8w
1

 w⇤
1

, ✓
?

2 [✓ht
0i

k , k✓⇤k].
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Hence, the region R
5

and R
6

are invariant for ✓
?

2 [✓ht
0i

k , k✓⇤k], and therefore with the same
arguments made in the proof of Lemma 2, within finite iterations t00, we have

k✓ht00ik > ✓ht
0i

k (w⇤
1

� w⇤
2

),

in other words, (k✓ht00ik, wht00i
1

) lies in R
1

S

R
2

S

R
3

S

R
4

for any true value ✓
?

2 [✓ht
0i

k , k✓k⇤].
Once the point (k✓ht00ik, wht00i

1

) lies in the region R
1

S

R
2

S

R
3

S

R
4

, we can bound every
(k✓ht+1ik, wht+1i

1

) for all t � t00 by

D

✓

min

⇣

r̃
adj

(1� �0), k✓htik
⌘

,min

⇣

c
3

, r�1

(c
2

; ✓htik )

⌘

; k✓⇤k
◆

[

D
⇣

c
2

,max(whti
1

, 1� �0); ✓htik
⌘

, (48)

due to the fact that (˜✓ht+1i
1

, wht+1i
1

) 2 D(k✓htik, whti
1

; ✓htik ) and k✓ht+1ik  c
2

. Denote the set

defined in (48) as Q(k✓htik, whti
1

). Then, we can check that for any (✓, w
1

) 2 Q(k✓htik, whti
1

),
we have Q(✓, w

1

) ✓ Q(k✓htik, whti
1

). Therefore, we have Q(k✓ht+1ik, wht+1i
1

) ✓ Q(k✓htik, whti
).

Hence, by a chain of arguments starting from t00, we have

(k✓ht+1ik, wht+1i
1

) 2 Q((k✓ht00ik, wht00i
1

)).

Hence, we have

whti
1

 max

⇣

r̃�1

adj

(k✓ht00ik; k✓⇤k), 1� �0, wht00i
1

⌘

< 1, 8t � t00.

B.5 Geometric convergence

Since we have shown that (✓hti, whti
) converges to (✓⇤, w⇤

1

), we just need to show an attraction basin
around (✓⇤, w⇤

1

), and therefore, combining both, we know after a finite iteration T , we have geometric
convergence. To show an attraction basin, let us consider the following two terms k✓ht+1i � ✓⇤k and
|wht+1i

1

�w⇤
1

|. Note that, at iteration t, let us choose the coordinate such that ✓hti
= (k✓htik, 0, . . . , 0)

and ✓⇤
= (✓htik , ✓hti? , 0, . . . , 0), then by (44) and (20), we have

k✓ht+1i � ✓⇤k2

= |˜✓ht+1i
1

� ✓htik |2 + |˜✓ht+1i
2

� ✓hti? |2

= |G
✓

(k✓htik, whti
1

; ✓htik , w⇤
1

)� ✓htik |2 + |✓hti? |2(1� s(k✓htik, whti
1

; ✓htik , w⇤
1

))

2,

|wht+1i
1

� w⇤
1

| = |G
w

(k✓htik, whti
1

; ✓htik , w⇤
1

)� w⇤
1

|. (49)

Hence, we just need to show that for all ✓⇤k > 0 and w⇤
1

2 (0, 1), the eigenvalues of the Jacobian
matrix of the following mapping:

(✓, w
1

) 7! (G
✓

(✓, w
1

; ✓⇤k, w
⇤
1

), G
w

(✓, w
1

; ✓⇤k, w
⇤
1

)) (50)

are in [0, 1) at (✓, w
1

) = (✓⇤k, w
⇤
1

). Then, note that

G
✓

(✓⇤k, w
⇤
1

; ✓⇤k, w
⇤
1

) = ✓⇤k and G
w

(✓⇤k, w
⇤
1

; ✓⇤k, w
⇤
1

) = w⇤
1

.

Hence, by continuity of the Jacobian of the functions, there exists ✏ > 0 and ⇢ < 1 such that as long
as ✓, ✓⇤k 2 [k✓⇤k � ✏, k✓⇤k+ ✏] and w

1

2 [w⇤
1

� ✏, w⇤
1

+ ✏], we have

(G
✓

(✓, w
1

; ✓⇤k, w
⇤
1

)� ✓⇤k)
2

+ (G
w

(✓, w
1

; ✓⇤k, w
⇤
1

)� w⇤
1

)

2  ⇢
⇣

(✓ � ✓⇤k)
2

+ (w
1

� w⇤
1

)

2

⌘

.

Further, by (22), we know function s(✓, w
1

; ✓⇤k, w
⇤
1

) is positive on ✓, ✓⇤k 2 [k✓⇤k � ✏, k✓⇤k+ ✏] and
w

1

2 [w⇤
1

� ✏, w⇤
1

+ ✏]. Hence, there exists constant ⇢0 such that

(1� s(✓, w
1

; ✓⇤k, w
⇤
1

))

2  ⇢0, 8✓, ✓⇤k 2 [k✓⇤k � ✏, k✓⇤k+ ✏], w
1

2 [w⇤
1

� ✏, w⇤
1

+ ✏].

Hence, plug in (49), we have if k✓htik, ✓htik 2 [k✓⇤k� ✏, k✓⇤k+ ✏] and whti
1

2 [w⇤
1

� ✏, w⇤
1

+ ✏], then

k✓ht+1i � ✓⇤k2

+ |wht+1i
1

� w⇤
1

|2  ⇢
⇣

(k✓htik � ✓htik )

2

+ (whti
1

� w⇤
1

)

2

⌘

+ ⇢0|✓hti? |2

 max(⇢, ⇢0)
⇣

k✓hti � ✓⇤k2

+ (whti
1

� w⇤
1

)

2

⌘

.
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Hence, by triangle inequality, we know once k✓hti�✓⇤k  ✏ and |whti
1

�w⇤
1

|  ✏, we have (✓hti, whti
1

)

geometrically converges towards (✓⇤, w⇤
1

). Further, the first iteration to reach the attraction basin is
guaranteed by the geometric convergence of the angle �hti and geometric convergence of the area
function m(✓, w) on S0 defined in (46) for �

0

= ✏/4.

Next, we will show that for all ✓⇤k > 0 and w⇤
1

2 (0, 1), the eigenvalues of the Jacobian matrix of
the mapping defined in (50) at (✓, w

1

) = (✓⇤k, w
⇤
1

) are in [0, 1). Note that this Jacobian matrix at
(✓, w

1

) = (✓⇤k, w
⇤
1

) is the following:

J =

2

6

6

6

6

6

6

6

6

6

4

Z

4w⇤
1

w⇤
2

y2

w⇤
1

ey✓
⇤
k
+ w⇤

2

e�y✓

⇤
k
�(y)e�

(✓⇤k)2

2
dy

| {z }

J11

Z

2y

w⇤
1

ey✓
⇤
k
+ w⇤

2

e�y✓

⇤
k
�(y)e�

(✓⇤k)2

2
dy

| {z }

J12

Z

2w⇤
1

w⇤
2

y

w⇤
1

ey✓
⇤
k
+ w⇤

2

e�y✓

⇤
k
�(y)e�

(✓⇤k)2

2
dy

| {z }

J21

Z

1

w⇤
1

ey✓
⇤
k
+ w⇤

2

e�y✓

⇤
k
�(y)e�

(✓⇤k)2

2
dy

| {z }

J22

3

7

7

7

7

7

7

7

7

7

5

.

Then the two eigenvalues of J should be the two solutions of the following equation:

q(�) = �2 � �(J
11

+ J
22

) + J
11

J
22

� J
12

J
21

= 0.

Note that, by Cauchy inequality, we know det(J) = J
11

J
22

� J
12

J
21

� 0 and therefore q(0) � 0.
Also note that

q(J
22

) = �J2

22

� J
12

J
21

 0,

and

0 < J
22

=

Z

y�0

ey✓
⇤
k
+ e�y✓

⇤
k

w⇤
1

w⇤
2

(ey✓
⇤
k � e�y✓

⇤
k
)

2

+ 1

�(y)e�
(✓⇤k)2

2
dy

=

Z

y�0

(ey✓
⇤
k
+ e�y✓

⇤
k
)�(y)e�

(✓⇤k)2

2
dy

�
Z

y�0

w⇤
1

w⇤
2

(ey✓
⇤
k
+ e�y✓

⇤
k
)(ey✓

⇤
k � e�y✓

⇤
k
)

2

w⇤
1

w⇤
2

(ey✓
⇤
k � e�y✓

⇤
k
)

2

+ 1

�(y)e�
(✓⇤k)2

2
dy

= 1�
Z

y�0

w⇤
1

w⇤
2

(ey✓
⇤
k
+ e�y✓

⇤
k
)(ey✓

⇤
k � e�y✓

⇤
k
)

2

w⇤
1

w⇤
2

(ey✓
⇤
k � e�y✓

⇤
k
)

2

+ 1

�(y)e�
(✓⇤k)2

2
dy

 1. (51)

Hence, we just need to show q(1) > 0, then the two solutions of q(�) = 0 should stay in [0, 1). Note
that

J
11

=

Z

y�0

4w⇤
1

w⇤
2

(ey✓
⇤
k
+ e�y✓

⇤
k
)y2

w⇤
1

w⇤
2

(ey✓
⇤
k � e�y✓

⇤
k
)

2

+ 1

�(y)e�
(✓⇤k)2

2
dy

=

Z

y�0

4y2

ey✓
⇤
k
+ e�y✓

⇤
k
�(y)e�

(✓⇤k)2

2
dy

�
Z

y�0

4(w⇤
1

� w⇤
2

)

2y2

(ey✓
⇤
k
+ e�y✓

⇤
k
)(w⇤

1

w⇤
2

(ey✓
⇤
k � e�y✓

⇤
k
)

2

+ 1)

�(y)e�
(✓⇤k)2

2
dy

< 1�
Z

y�0

4(w⇤
1

� w⇤
2

)

2y2

(ey✓
⇤
k
+ e�y✓

⇤
k
)(w⇤

1

w⇤
2

(ey✓
⇤
k � e�y✓

⇤
k
)

2

+ 1)

�(y)e�
(✓⇤k)2

2
dy, (52)

where the last inequality holds due to the fact that
Z

y�0

4y2

ey✓
⇤
k
+ e�y✓

⇤
k
�(y)e�

(✓⇤k)2

2
dy 

Z

y�0

2y2�(y)e�
(✓⇤k)2

2
dy = e�

(✓⇤k)2

2 .
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Combine (51) and (52), we have

q(1) = (1� J
11

)(1� J
22

)� J
12

J
21

>

Z

y�0

4(w⇤
1

� w⇤
2

)

2y2

(ey✓
⇤
k
+ e�y✓

⇤
k
)(w⇤

1

w⇤
2

(ey✓
⇤
k � e�y✓

⇤
k
)

2

+ 1)

�(y)e�
(✓⇤k)2

2
dy

⇥
Z

y�0

w⇤
1

w⇤
2

(ey✓
⇤
k
+ e�y✓

⇤
k
)(ey✓

⇤
k � e�y✓

⇤
k
)

2

w⇤
1

w⇤
2

(ey✓
⇤
k � e�y✓

⇤
k
)

2

+ 1

�(y)e�
(✓⇤k)2

2
dy

�4w⇤
1

w⇤
2

(w⇤
1

� w⇤
2

)

2

Z

y�0

 

(ey✓
⇤
k � e�y✓

⇤
k
)y

w⇤
1

w⇤
2

(ey✓
⇤
k � e�y✓

⇤
k
)

2

+ 1

�(y)e�
(✓⇤k)2

2
dy

!

2

� 0,

where the last inequality holds due to Cauchy inequality. Hence, we have q(1) > 0 and this completes
our proof for geometric convergence of the EM estimates.

C Proof of Theorem 3

The maximum log-likelihood objective for population-EM
2

is the following optimization problem:

max

✓2Rd
,w12[0,1]

Ey⇠f

⇤
log

✓

w
1

e�
ky�✓k2

2
+ w

2

e�
ky+✓k2

2

◆

. (53)

Due to the symmetric property of the landscape, without loss of generality, we assume w⇤
1

> 0.5.
Note that the first order stationary points of above optimization problem should satisfy the following
equation.

Ey⇠f

⇤

"

w
1

ehy,✓i � w
2

e�hy,✓i

w
1

ehy,✓i + w
2

e�hy,✓iy

#

� ✓ = 0, (54)

Ey⇠f

⇤

"

ehy,✓i � e�hy,✓i

w
1

ehy,✓i + w
2

e�hy,✓i

#

= 0. (55)

We first consider the two trivial cases when w
1

= 1 and w
1

= 0. Suppose w
1

= 1, then from (54),
we have ✓ = (w⇤

1

� w⇤
2

)✓⇤. Hence, plug it in (55), we have the following equation holds
Z

⇣

1� e�2(w

⇤
1�w

⇤
2 )yk✓⇤k

⌘

�

w⇤
1

�(y � k✓⇤k) + w⇤
2

�(y + k✓⇤k)� dy = 0,

which is equivalent to

1� w⇤
1

e�4w

⇤
2 (w

⇤
1�w

⇤
2 )k✓⇤k2 � w⇤

2

e4w

⇤
1 (w

⇤
1�w

⇤
2 )k✓⇤k2

= 0.

Taking the derivative with respect to k✓⇤k, it is straightforward to show that when w⇤
1

> 0.5, the
LHS is a strictly decreasing function of k✓⇤k and achieves its maximum 0 at k✓⇤k = 0. Hence, it
contradicts the RHS of the equation and therefore (54) and (55) can not hold simultaneously for
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= 0.
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Since the derivative with respect to k✓k of the LHS is in (0, 1) for k✓k > 0, it is clear that k✓k = 0

is the only solution for the equation and therefore, (✓, w
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) = (0, 1

2

) is the only fixed point in the
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It is clear that it has a positive eigenvalue, a negative eigenvalue and therefore (0, 1
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) is a saddle point.
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Due to the symmetric property, we will just prove the result for Area
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where ✓k = h✓⇤,✓i/k✓k. Hence, there is no solution for (55) in Area
3

. This completes the proof of
this theorem.

D Proof of Theorem 4

Let (ˆ✓
hti

, ŵhti
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) denote the finite sample estimate. To show the convergence of the finite sample
estimate, we want to argue that its behavior is close to the corresponding convergence behavior of the
population estimate. Hence, let us first prove the following uniform concentration bounds that for any
fixed constant c > 0, with probability at least 1� �, we have

�

w

:

= sup

k✓k2[0,c],w12[0,1]

�

�

�

�

�

�

1

n

n

X

i=1

"

w
1

ehyi,✓i

w
1

ehyi,✓i
+ w

2

e�hyi,✓i

#

� Ey⇠f

⇤

"

w
1

ehy,✓i

w
1

ehy,✓i + w
2

e�hy,✓i

#

�

�

�

�

�

�

 O

 

(k✓⇤k+ 1)

r

d + ln(2/�)

n

!

(58)

�

✓

:

= sup

k✓k2[0,c],w12[0,1]

�

�

�

�

�

�

1

n

n

X

i=1

"

w
1

ehyi,✓i � w
2

e�hyi,✓i

w
1

ehyi,✓i
+ w

2

e�hyi,✓iyi

#

� Ey⇠f

⇤

"

w
1

ehy,✓i � w
2

e�hy,✓i

w
1

ehy,✓i + w
2

e�hy,✓iy

#

�

�

�

�

�

�

 O

 

(k✓⇤k+ 1)

r

d + ln(2/�)

n

!

. (59)

To show (58), by Jensen’s inequality, we have
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Then, we introduce i.i.d. Rademacher variables ⇠
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and obtain that

Ee��w  E
y,⇠

exp

0

B

@

2� sup

k✓k2[0,c],w12[0,1]

�

�

�

�

�

�

1

n

n

X

i=1

⇠
i

 

w
1

ehyi,✓i

w
1

ehyi,✓i
+ w

2

e�hyi,✓i � w
1

!

�

�

�

�

�

�

1

C

A

.

Now apply the following lemma from Koltchinskii [2011]
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are i.i.d. Rademacher random variables.
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where ˜y
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are i.i.d. random variables following this symmetric distribution: 1
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Then apply a typical argument of 1/2-covering net over the d-dimensional unit sphere, it is straight
forward to show that we have
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Apply Markov inequality and choose � properly, we have (58) holds. To prove (59), we follow the
proof of corollary 2 in B.2 in Balakrishnan et al. [2017]. Let
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are i.i.d. Rademacher
random variables and the last inequality holds for standard symmetrization result for empirical
process. Apply Lemma 8 again, we have
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where k · kop is the `
2

-operator norm of a matrix (the maximum singular value). Follow the result in
B.2 in Balakrishnan et al. [2017], we have
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where ⇠0
i

are independent copies of Rademacher random variables. Hence, from Balakrishnan et al.
[2017], we have
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Hence, combine all, we have
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Apply Markov inequality and choose � properly, we have (59) holds.

Next, by choosing c = max(kˆ✓h0ik, 2(1 + k✓⇤k)), it is straight forward to apply induction with
Lemma 6 to show that for sufficiently large n, with probability at least 1� �,
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Then, since the update functions are Lipchitz with constant at most O(1+k✓⇤k), it is straight forward
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+ |ŵhT i
1

� w⇤
1

|2  �2
0

.

Once the finite sample estimate lies in the attraction basin, we follow the proof in Balakrishnan et al.
[2017] and it is straight forward to show that for all t � T , we have
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This completes our analysis for the convergence of the finite sample estimate.
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E Proof of Auxiliary Lemmas

E.1 Proof of Lemma 4
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Combine (61) and (62), we have (60) holds for case (i). To prove case (ii), we use a different strategy.
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Therefore, to prove (60) for case (ii), we just need to show
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Combine (65) and (66), we have (64) holds and therefore (60) holds for case (ii). This completes the
proof for (15). To prove (16), note that
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where last two inequalities hold due to AM-GM inequality. For part 6, we have if ✓ � ✓⇤,
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where inequality (a) holds due to AM-GM inequality, and inequality (b) holds due to the monotonic
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where the last two inequalities holds due to AM-GM inequality and Holder inequality respectively.
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which holds due to AM-GM inequality. Hence, we have (69) holds.
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E.2 Proof of Lemma 5

We first analyze the condition that can determine the sign of g(✓, w
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For (76), we have
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where last two inequalities hold due to b  � < 1 and last inequality is strict when k � 2. Hence, to
show (79), we just need to show
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) b � 0

, b  �,

which holds clearly. Hence, this completes the proof for this lemma.

F Additional numerical results

Sample size Separation w⇤
1

= 0.52 w⇤
1

= 0.7 w⇤
1

= 0.9

n = 1000

✓⇤
2

= 1 0.999 / 0.999 0.499 / 0.699 0.450 / 0.338
✓⇤
2

= 2 0.799 / 0.500 0.497 / 0.800 0.499 / 0.899
✓⇤
2

= 4 1.000 / 1.000 0.447 / 0.900 0.501 / 0.999

n = 1
✓⇤
2

= 1 0.497 / 1.000 0.493 / 1.000 0.501 / 0.000
✓⇤
2

= 2 0.504 / 1.000 0.514 / 1.000 0.506 / 1.000
✓⇤
2

= 4 0.495 / 1.000 0.490 / 1.000 0.514 / 1.000

Table 2: In this table, we consider mixture of two Gaussian in one dimension with ✓⇤
1

= 0. We present
the probability of success P

1

and P
2

for EM to find the MLE for Model 1 and Model 2, respectively,
reported as P

1

/ P
2

. We only keep the first 3 digits after the decimal for each probability.

Sample size Separation w⇤
1

= 0.52 w⇤
1

= 0.7 w⇤
1

= 0.9

n = 1000

✓⇤
2

= 1 0.999 0.999 0.800
✓⇤
2

= 2 1.000 1.000 1.000
✓⇤
2

= 4 1.000 1.000 1.000

n = 1
✓⇤
2

= 1 1.000 1.000 1.000
✓⇤
2

= 2 1.000 1.000 1.000
✓⇤
2

= 4 1.000 1.000 1.000

Case 1 Case 2 Case 3 Case 4
0.980 0.998 1.000 1.000

Table 3: We present the probabilities of success P
3

for EM to find the MLE for Model 1 under the new
procedure described in Section 3.3. The first table is for mixture of two Gaussians in one dimension
discussed in Section 3.2. The second table is for mixture of three or four Gaussians discussed in
Section 3.3. We only keep the first 3 digits after the decimal for each probability.
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