7 Appendix

7.1 Architectures and optimization

We implement our models in PyTorch [18]. We use the same architectures and hyperparameters in all our experiments.

We train our models for 2300 epochs using Adam optimizer with betas = (0.9, 0.999), $eps = 10^{-8}$ and initial $lr = 10^{-3}/2$. We use PyTorch's learning rate scheduler MultiStepLR with $milestones = \{3^i \mid i = 0, \dots, 6\}$ and $gamma = 0.1^{1/7}$. We use minibatches of size 64.

Our architectures consist of convolutional layers with ReLu activations which roughly follow that found in [14].

Our loss function is weighted as

$$-\beta_{1}\mathbb{E}_{q_{\phi}(\mathbf{z},\mathbf{w}|\mathbf{x},\mathbf{y})}\left[\log p_{\theta}\left(\mathbf{x} \mid \mathbf{w}, \mathbf{z}\right)\right] + \beta_{2}D_{KL}\left(q_{\phi}\left(\mathbf{w} \mid \mathbf{x}, \mathbf{y}\right) \parallel \log p\left(\mathbf{w} \mid \mathbf{y}\right)\right) \\ + \beta_{3}D_{KL}\left(q_{\phi}\left(\mathbf{z} \mid \mathbf{x}, \mathbf{y}\right) \parallel p\left(\mathbf{z}\right)\right) + \beta_{4}\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})\mathcal{D}(\mathbf{x})}\left[\int_{Y} q_{\delta}\left(\mathbf{y} \mid \mathbf{z}\right)\log q_{\delta}\left(\mathbf{y} \mid \mathbf{z}\right)d\mathbf{y}\right] \\ - \log p\left(\mathbf{y}\right)$$

$$\beta_5 \mathbb{E}_{q(\mathbf{z}|\mathbf{x})\mathcal{D}(\mathbf{x},\mathbf{y})} \left[\log q_\delta \left(\mathbf{y} \mid \mathbf{z} \right) \right]$$

We use the values $\{\beta_1 = 20, \beta_2 = 1, \beta_3 = 0.2, \beta_4 = 10, \beta_5 = 1\}.$

Our hyperparameters were determined by a grid search using both quantitative and qualitative analysis (see below) of models trained for 100,300, and 500 epochs on a validation set. Stopping time was determined similarly.

7.2 Additional results

	anger	disgust	fear	happy	sad	surprise	neutral	final
VAE	12.61%	7.72%	2.50%	30.24%	5.65%	6.25%	68.57%	19.08%
CondVAE	58.92%	66.98%	34.95%	91.19%	43.39%	53.36%	91.97%	62.97%
CondVAE-info	57.64%	64.79%	32.76%	92.68%	43.69%	52.36%	91.95%	62.27%
CSVAE	79.04 %	85.11%	53.50%	98.70%	47.09%	71.49%	98.70%	76.23%

Table 3: Accuracy of an expression classifier on images changed by each model. CSVAE shows best performance.

	Ce	elebA-Glasse	es	CelebA-FacialHair			
	Glasses	Neutral	Final	Facial Hair	Neutral	Final	
VAE	5.04%	65.01%	25.03%	38.46%	61.17%	49.81%	
CondVAE	100.00%	88.13%	96.04%	100.00%	77.86%	88.93%	
CondVAE-info	100.00%	85.49%	95.16%	99.97%	76.10%	88.03%	
CSVAE	99.38%	100.00%	99.59%	100.00%	95.50%	97.75%	

Table 4: Classifier accuracy on the CelebA-Glasses (left) and CelebA-FacialHair (right) datasets when performing attribute transfer.



Figure 7: Additional attribute transfer results with a CSVAE trained on CelebA-GlassesFacialHair. From left to right: input image, reconstruction, Cartesian product of three representative glasses styles and facial hair styles.

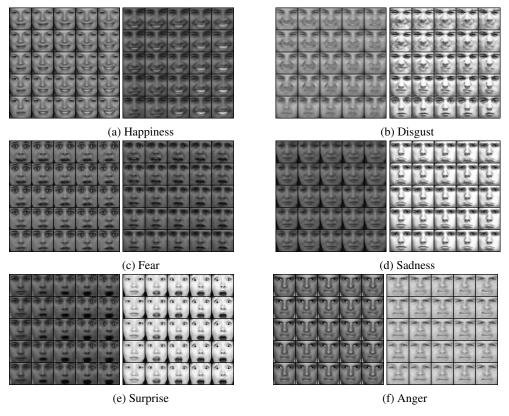


Figure 8: More results of the experiment presented in Figure 4 on TFD. We demonstrate manipulating each of the expressions in the dataset. The first three expressions display more 2-dimensional variation than the last three. This is likely due to the content of the dataset. A single model was used for all images.

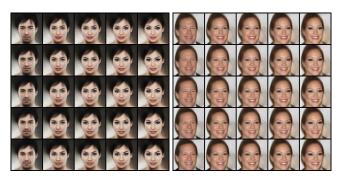


Figure 9: More results of the experiment presented in Figure 3 on a dataset with the heavy makeup attribute.

00	06		1	1	3 6	66	6	
-	-	0	-	-	1	ä	õ	ä
					8	6	9	
3	00	0	2	1	2	ĕ	ă	ĕ
	-	-		30		6		
8	-	1	2	2	1	ě	36	35
	96	8						
3	8	100	2	12	1	ĕ	ě	ě
		0			-	6		
3	2	2	2	-	3	õ	ě	E.
				8	8			
3	00	0	1	3	0	ě	www.	\Leftrightarrow
	9	9		9	8	6		
3	à.	1	2	1	0	ě	-	0.6
		9		9	9	6	6	9
8	2	-		1	12	ä	ä	-
							06	
100	22	10	14	4	5	40	-	4
and a		100	and and a second	and a	1	100	1	

Figure 10: Comparisons of different models changing the expression of a face. The columns are left to right: VAE, CondVAE, CSVAE. The first row is the original, the second is a reconstruction. Each subsequent row is a different expression generated by the model.

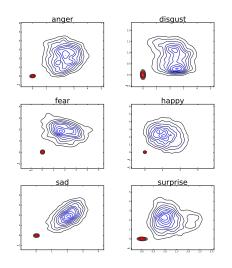


Figure 11: The distribution over W_i output by the model on the test set for each expression iin the order 0 = Anger, 1 = Disgust, 2 = Fear, 3 = Happy, 4 = Sad, 5 = Surprise.