
Supplementary Material: Neural Guided Constraint
Logic Programming for Program Synthesis

A Relational Interpreter

We include below the code for the relational interpreter, written in miniKanren. For readability by
machine learning audience, our main paper renames the inputs to the relational interpreter: expr or
expression is called P or program in the main paper, env or environment is called I or input, and
value is called O or output.

(define-relation (evalo expr env value)
(conde ;; conde creates a disjunction

((fresh (body) ;; fresh creates new variables and a conjunction
(== ‘(lambda ,body) expr) ;; expr is a lambda definition
(== ‘(closure ,body ,env) value)))

((== ‘(quote ,value) expr)) ;; expr is a literal constant
((fresh (a*)

(== ‘(list . ,a*) expr) ;; expr is a list construction
(eval-listo a* env value)))

((fresh (index)
(== ‘(var ,index) expr) ;; expr is a variable
(lookupo index env value)))

((fresh (rator rand arg env^ body)
(== ‘(app ,rator ,rand) expr) ;; expr is a function application
(evalo rator env ‘(closure ,body ,env^))
(evalo rand env arg)
(evalo body ‘(,arg . ,env^) value)))

((fresh (a d va vd)
(== ‘(cons ,a ,d) expr) ;; expr is a cons operation
(== ‘(,va . ,vd) value)
(evalo a env va)
(evalo d env vd)))

((fresh (c vd)
(== ‘(car ,c) expr) ;; expr is a car operation
(evalo c env ‘(,value . ,vd))))

((fresh (c va)
(== ‘(cdr ,c) expr) ;; expr is a cdr operation
(evalo c env ‘(,va . ,value))))))
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B Example Generated Problems

Some examples of automatically generated problems are shown in Table A1. Variables in a function
body are encoded using de Bruijn indices, so that (var ()) is looking up the 0th (and only) variable.
The symbol . denotes a pair.

Table A1: Sample auto-generated training problems

Program: (LAMBDA (CAR (CAR (VAR ()))))
Input Output
((b . #t)) b
((() . b) . a) ()
((a . s) . 1) a
(((y . 1)) . 1) (y . 1)
((b)) b

Program: (LAMBDA (CONS (CAR (VAR ())) (QUOTE X)))
Input Output
(a) (a . x)
(#t . s) (#t . x)
((1 . y) . y) ((1 . y) . x)
((y 1 . s) . 1) ((y 1 . s) . x)
(((x . x)) . y) (((x . x)) . x)

Program: (LAMBDA (QUOTE X))
Input Output
y x
() x
#t x
a x
b x

Program: (LAMBDA (CONS (CAR (VAR ())) (CAR (CAR (CDR (VAR ()))))))
Input Output
(y (y . b) . y) (y . y)
(x (1 . 1)) (x . 1)
(x ((y . a) . x) . a) (x y . a)
((#f . #t) (#f . a) . 1) ((#f . #t) . #f)
(a ((y #f . #f) . 1) . a) (a y #f . #f)

Program: (LAMBDA (CAR (CDR (CAR (CAR (CDR (CDR (CDR (VAR ())))))))))
Input Output
(#f a () ((#f b . 1) . y) . #t) b
(x #t y ((() (#t . a) . s))) (#t . a)
(x b s ((#f (s 1 . b) . y)) . s) (s 1 . b)
(b () #f ((b ((x . #t) . x))) . a) ((x . #t) . x)
(1 #t a ((s (1 #t s . a) . x) . #t) . #t) (1 #t s . a)
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C Problems where Neural Guided Synthesis Fails

Table A2 lists problems on which the methods failed. The single problem that RNN + Constraints
failed to solve is a fairly complex problem. The problems that the GNN + Constraints failed to
solve all include a complex list accessor portion. This actually makes sense: it is conceivable for
multi-layer RNNs to be better at this kind of problem compared to a single-layer GNN. The RNN
without constraints also fails at complex list accessor problems.

Table A2: Problems where Neural Guided Synthesis Fails

Method Problem
RNN + Constraints (lambda (cons (cons (var ()) (var ())) (cons (var ()) (car (cdr (var ()))))))
GNN + Constraints (lambda (car (car (car (car (cdr (cdr (car (var ())))))))))

(lambda (car (car (car (cdr (car (cdr (car (var ())))))))))
(lambda (car (car (car (cdr (cdr (cdr (car (var ())))))))))
(lambda (car (car (cdr (car (car (var ())))))))
(lambda (car (car (cdr (car (cdr (cdr (car (var ())))))))))
(lambda (car (car (cdr (cdr (cdr (cdr (car (var ())))))))))
(lambda (car (cdr (car (car (cdr (var ())))))))
(lambda (car (cdr (car (cdr (cdr (car (var ()))))))))
(lambda (car (cdr (cdr (car (car (cdr (var ()))))))))
(lambda (car (cdr (cdr (cdr (cdr (car (car (var ())))))))))
(lambda (car (cdr (cdr (cdr (cdr (car (cdr (var ())))))))))
(lambda (cdr (cdr (car (car (var ()))))))

RNN (No Constraints) (lambda (cons (car (var ())) (cons (var ()) (cdr (car (var ()))))))
(lambda (cdr (car (car (cdr (car (cdr (var ()))))))))
(lambda (cdr (car (cdr (car (car (car (var ()))))))))
(lambda (cdr (car (car (car (car (car (var ()))))))))
(lambda (cdr (car (car (cdr (car (cdr (var ()))))))))
(lambda (cdr (car (cdr (car (car (car (var ()))))))))
(lambda (cdr (car (car (car (car (car (var ()))))))))
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D RobustFill Results for Various Beam Sizes

To compare against RobustFill, we use a flattened representation of the problems shown in Section B,
and use the Attention-C model with various beam sizes. For a beam size k, if any of the top-k
generated programs are correct, we consider the synthesis a success. We report several figures in
Table A3: column (a) shows the percent of test problems held out from training that were successfully
solved (Table 2 in our paper), and column (b) shows the largest N for a family of synthesis problems
for which synthesis succeeds (Table 3 in our paper).

Table A3: RobustFill Results

Model (a) Test (b) Generalization
% Solved Repeat(N) DropLast(N) BringToFront(N)

RobustFill, Beam Size 1 56% 0 0 0
RobustFill, Beam Size 10 94% 0 0 0
RobustFill, Beam Size 100 99% 1 0 0
RobustFill, Beam Size 1000 100% 1 1 0
RobustFill, Beam Size 5000 100% 3 1 0
RNN-Guided + Constraints (Ours) 99% 20+ 6 5
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