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A Proof of Theorem 1

We repeat the statement of the theorem as follows:
Theorem. Under A1 and A2, we denote by (✓?, {w?

i }
N
i=1) the primal-dual optimal solution

to the optimization problem in (10). Set the step sizes as �2 = ��1 with � := 8(⇢ +

�max(Â>Ĉ�1Â))/�min(Ĉ). Define ✓(t) := 1
N

PN
i=1 ✓

t
i as the average of parameters. If the

primal step size �1 is sufficiently small, then there exists a constant 0 < � < 1 that

��✓(t)� ✓?
��2 + (1/�N)

PN
i=1

��wt
i �w?

i

��2 = O(�t), (1/N)
PN

i=1

��✓t
i � ✓(t)

�� = O(�t) .

If N,M � 1 and the graph is geometric with � = 1�c/N for c > 0, a sufficient condition for conver-

gence is to set � = O(1/max{N2,M2
}) and the resultant rate is � = 1�O(1/max{MN2,M3

}).

Notation We first define a set of notations pertaining to the proof. For any � > 0, observe that the
primal-dual optimal solution, (✓?, {w?

i }
N
i=1), to the optimization problem (10) can be written as
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N Â>

· · ·

q
�
N Â>
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where we denote the matrix on the left hand side as G. This equation can be obtained by checking
the first-order optimality condition. In addition, for any p 2 {1, . . . ,M}, we define the Gp as

Gp :=

0
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By definition, G is the sample average of {Gp}
M
p=1. Define ✓̄(t) := (1/N)

PN
i=1 ✓

t
i as the average

of the local parameters at iteration t. Furthermore, we define

h✓(t) := ⇢✓̄(t) +
1

N

NX

i=1

Â>wt
i , g✓(t) :=

1

NM

NX

i=1

MX

p=1

�
⇢✓

⌧t
p

i +A>
p w

⌧t
p

i

�
, (A.3)

hwi(t) := Â✓̄(t)� Ĉwt
i � b̂i, gwi(t) :=

1

M

MX

p=1

�
Ap✓

⌧t
p

i �Cpw
⌧t
p

i � bp,i
�
, (A.4)

where h✓(t) and hw(t) := [hw1(t), · · · ,hwN (t)] represent the gradients evaluated by a centralized

and batch algorithm. Note that g✓(t) defined in (A.3) coincides with that in (16). Using Lemma 1,
it can be checked that ✓̄(t + 1) = ✓̄(t) � �1g✓(t) and wt+1

i = wt
i � �2gwi(t) for all t � 1. That

is, ✓̄(t + 1) and wt+1
i can be viewed as primal-dual updates using g✓(t) and gwi(t), which are

decentralized counterparts of gradients h✓(t) and hwi(t) defined in (A.3) (A.4).

To simplify the notation, hereafter, we define vectors h(t), g(t), and v(t) by
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(A.5)
Using (A.1), it can be verified that (see the detailed derivation in Section A.2)

h(t) = Gv(t) . (A.6)

By adopting the analysis in [15] and under Assumption 2, it can be shown that with

� :=
8(⇢+ �max(Â>Ĉ�1Â))

�min(Ĉ)
,

then G is full rank with its eigenvalues satisfying

�max(G) 

�����
�max(Ĉ)

�min(Ĉ)

������max(⇢I + Â>Ĉ�1Â), �min(G) �
8

9
�min(Â

>Ĉ�1Â) > 0 . (A.7)

Moreover, let G := U⇤U�1 . be the eigen-decomposition of G, where ⇤ is a diagonal matrix
consists of the eigenvalues of G, and the columns of U are the eigenvectors. Then, U is full rank
with

kUk  8(⇢+ �max(Â
>Ĉ�1Â))

�����
�max(Ĉ)

�min(Ĉ)

����� , kU�1
k 

1

⇢+ �max(Â>Ĉ�1Â)
. (A.8)

Furthermore, we also define the following upper bounds on the spectral norms

G := kGk, G := max
p=1,...,M

kGpk, A := max
p=1,...,M

kApk, C := max
p=1,...,M

kCpk . (A.9)

Lastly, we define the following two Lyapunov functions

Ec(t) :=
1

N

vuut
NX

i=1

k✓t
i � ✓(t)k2, Eg(t) :=

1

N

vuut
NX

i=1

ksti � g✓(t)k2 . (A.10)

Note that we have the following inequalities:

Ec(t) 
1

N

NX

i=1

k✓t
i � ✓(t)k,

1

N

NX

i=1

k✓t
i � ✓(t)k 

p

NEc(t) , (A.11)

which follows from the norm equivalence kxk2  kxk1 
p
Nkxk2 for any x 2 RN .
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Convergence Analysis We denote that �1 = � and �2 = ��. To study the linear convergence of
the PD-DistIAG method, our first step is to establish a bound on the difference from the primal-dual
optimal solution, v(t). Observe with the choice of our step size ratio,

v(t+ 1) = (I � �G)v(t) + �
�
h(t)� g(t)

�
. (A.12)

Consider the difference vector h(t)� g(t). Its first block can be evaluated as

⇥
h(t)� g(t)

⇤
1
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(A.13)

Meanwhile, for any i 2 {1, . . . , N}, the (i+ 1)-th block is

⇥
h(t)� g(t)

⇤
i+1

=

r
�

N

1

M

MX

p=1

⇣
Ap

�
✓
⌧t
p

i � ✓̄(t)
�
+Cp

�
wt

i �w
⌧t
p

i

�⌘

=

r
�

N

1

M

MX

p=1

⇣
Ap

�
✓̄(⌧ tp)� ✓̄(t)

�
+Cp

�
wt

i �w
⌧t
p

i

�⌘
+

r
�

N

1

M

MX

p=1

Ap

�
✓
⌧t
p

i � ✓̄(⌧ tp)
�
.

(A.14)

For ease of presentation, we stack up and denote the residual terms (related to consensus er-
ror) in (A.13) and (A.14) as the vector Ec(t). That is, the first block of Ec(t) is ⇢/(NM) ·
PN

i=1

PM
p=1

�
✓̄(⌧ tp)� ✓

⌧t
p

i

�
, and the remaining blocks are given by

p
�/N · 1/M ·

PM
p=1 Ap

�
✓
⌧t
p

i �

✓̄(⌧ tp)
�
, 8i 2 {1, . . . , N}. Then by the definition of Gp in (A.2), we obtain the following simplifica-

tion:

h(t)� g(t)� Ec(t) =
1

M

MX

p=1

Gp

⇣Pt�1
j=⌧t

p
�v(j)

⌘
, (A.15)

where we have defined

�v(j) :=

0

BBBB@

✓̄(j + 1)� ✓̄(j)
1p
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�
wj+1

1 �wj
1

�

...
1p
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�
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N �wj
N
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. (A.16)

Clearly, we can express �v(j) as �v(j) = v(j + 1)� v(j) with v(t) defined in (A.5). Combining
(A.6) and (A.12), we can also write �v(j) in (A.16) as

�v(j) = �
⇥
h(j)� g(j)

⇤
� �h(j) . (A.17)

Denoting bv(t) := U�1v(t), multiplying U�1 on both sides of (A.12) yields

bv(t+ 1) = (I � �⇤)bv(t) + � U�1
�
h(t)� g(t)

�
. (A.18)

Combining (A.15), (A.17), and (A.18), by triangle inequality, we have

kbv(t+ 1)k  (A.19)

��I � �⇤
��kbv(t)k+ �kU�1

k

⇢
kEc(t)k+

�G

M

MX

p=1

t�1X

j=⌧t
p

⇥
kh(j)k+ kh(j)� g(j)k

⇤�
,
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where G appears in (A.9) and Ec(t) is the residue term of the consensus. Furthermore, simplifying
the right-hand side of (A.19) yields

kbv(t+ 1)k 
��I � �⇤

��kbv(t)k+ �kU�1
k

⇢
kEc(t)k+ �G

t�1X

j=(t�M)+

⇥
kh(j)k+ kh(j)� g(j)k

⇤�


��I � �⇤

��kbv(t)k+ �kU�1
k

 
kEc(t)k

+ �G
t�1X

j=(t�M)+

⇢
kEc(j)k+GkUkkbv(j)k+GkUk

j�1X

`=(j�M)+

⇥
kbv(`+ 1)k+ kbv(`)k

⇤�
!

.

(A.20)

Moreover, using the definition and (A.11), we can upper bound kEc(t)k by

kEc(t)k 
1

M

MX

p=1

�
⇢+A

p
�N
� 1
N

NX

i=1

k✓
⌧t
p

i � ✓̄(⌧ tp)k

�


p

N
�
⇢+A

p
�N
�

max
(t�M)+qt

Ec(q).

(A.21)
Thus, combining (A.20) and (A.21), we bound kbv(t+ 1)k by

kbv(t+ 1)k 
��I � �⇤

��kbv(t)k+ C1(�) max
(t�2M)+qt�1

kbv(q)k+ C2(�) max
(t�2M)+qt

Ec(q),

(A.22)
where constants C1(�) and C2(�) are given by

C1(�) := �2
kUkkU�1

kGM
�
G+ 2GM

�
, C2(�) := �kU�1

k
�
1 + �GM

�p
N
�
⇢+A

p
�N
�
.

Notice that since U�1 is full rank, the squared norm kbv(t)k2 is proportional to k✓(t) � ✓?
k
2 +

(1/�N)
PN

i=1 kw
?
i �wt

ik
2, i.e., the optimality gap at the t-th iteration.

We next upper bound Ec(t + 1) as defined in (A.10). Notice that NEc(t + 1) can be written as
Frobenius norm of the matrix ⇥t+1

� 1✓(t+ 1)>, where ⇥t+1 = ((✓t+1
1 )>; · · · ; (✓t+1

N )>). Also,
we denote St = ((st1)

>; · · · (stN )>). By the update in (15) and using the triangle inequality, we have

Ec(t+ 1) =
1

N
k⇥t+1

� 1✓(t+ 1)>kF =
1

N
kW (⇥t

� 1✓(t)>)� �(St
� 1g✓(t)

>)kF


1

N

�
k⇥t+1

� 1✓(t)>kF + �kSt
� 1g✓(t)

>
kF

�
.

(A.23)

Notice that we have � := �max(W � (1/N)11>) < 1 as the graph is connected. Using the fact that
NEg(t) = kSt

� 1g✓(t)>kF , the right-hand side of (A.23) can be bounded by

Ec(t+ 1)  � Ec(t) + � Eg(t), (A.24)

where the Lyapunov function Eg(t) is defined in (A.10).

To conclude the proof, we need to further upper bound Eg(t + 1). To simplify the notation, let us
define Gt

p = (r✓J1,p(✓t
1;w

t
1)

>; · · · ;r✓JN,p(✓t
N ;wt

N )>) and observe that

Eg(t+ 1) =
1

N

���St+1
� 1g✓(t+ 1)>

���
F
=

1

N

���WSt + 1
M

�
Gt+1

pt+1
�G

⌧t
pt+1

pt+1

�
� 1g✓(t+ 1)>

���
F

(A.25)
where we have used (13). Furthermore, we observe

Eg(t+ 1) =
1

N

���W (St
� 1g✓(t)

>) + 1
M

�
Gt+1

pt+1
�G

⌧t
pt+1

pt+1

�
� 1(g✓(t+ 1)� g✓(t))

>
���
F


1

N

⇣
kW (St

� 1g✓(t)
>)kF + k

1
M

�
Gt+1

pt+1
�G

⌧t
pt+1

pt+1

�
� 1(g✓(t+ 1)� g✓(t))

>
kF

⌘

 �Eg(t) +
1

N
k

1
M

�
Gt+1

pt+1
�G

⌧t
pt+1

pt+1

�
� 1(g✓(t+ 1)� g✓(t))

>
kF

(A.26)
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We observe Gt
p = ((wt

1)
>Ap; · · · ; (wt

N )>Ap) + ⇢⇥t and g✓(t + 1) � g✓(t) = M�1
�
⇢ ✓̄(t +

1) � ⇢ ✓̄(⌧ tpt+1
) + N�1A>

pt+1

PN
i=1

�
wt+1

i � w
⌧t
pt+1

i

��
. Adopting the notations ⌦t =

((wt
1)

>; · · · ; (wt
N )>) and wt = N�1

PN
i=1 w

t
i , we observe that

M�1(Gt+1
pt+1

�G
⌧t
pt+1

pt+1 )� 1(g✓(t+ 1)� g✓(t))
>

=
⇢

M

�
⇥t+1

� 1✓(t+ 1)> �⇥
⌧t
pt+1 � 1✓(⌧ tpt+1

)>
�

+
1

M

�
⌦t+1

� 1(wt+1)> �⌦
⌧t
pt+1 + 1(w

⌧t
pt+1 )>

�
Apt+1 .

(A.27)

Using the triangular inequality, the norm of the above can be bounded as
⇢

M

⇣
k⇥t+1

� 1✓(t+ 1)>kF + k⇥
⌧t
pt+1 � 1✓(⌧ tpt+1

)>kF
⌘

+
kApt+1k

M

⇣
k⌦t+1

� 1(wt+1)> �⌦
⌧t
pt+1 + 1(w

⌧t
pt+1 )>kF

⌘ (A.28)

From the norm equivalence kxk2  kxk1, we recognize that k⌦t+1
� 1(wt+1)> � ⌦

⌧t
pt+1 +

1(w
⌧t
pt+1 )>kF 

PN
i=1 kw

t+1
i �wt+1

�w
⌧t
pt+1

i +w
⌧t
pt+1 k. It holds for all t0  t that

wt+1
i �wt0

i = �
�

�M

tX

`=t0

MX

p=1

h
Ap(✓

⌧`
p

i � ✓?)�Cp(w
⌧`
p

i �w?
i )
i
.

We thus obtain
kApt+1k

M

⇣
k⌦t+1

� 1(wt+1)> �⌦
⌧t
pt+1 + 1(w

⌧t
pt+1 )>kF

⌘


kApt+1k

M

NX

i=1

����w
t+1
i �

1

N

NX

j=1

wt+1
j �w

⌧t
pt+1

i +
1

N

NX

j=1

w
⌧t
pt+1

j

����


2�A

�M2

NX

i=1

tX

`=(t�M)+

MX

p=1

⇣��Ap(✓
⌧`
p

i � ✓?)�Cp(w
⌧`
p

i �w?
i )
��
⌘


2�A

�M

NX

i=1

tX

`=(t�M)+


max

(`�M)+q`

⇣
Ak✓q

i � ✓?
k+ Ckwq

i �w?
i k

⌘�
. (A.29)

Thus, combining (A.24), (A.29), and the definition of Ec in (A.10), we have

1
N k

1
M

�
Gt+1

pt+1
�G

⌧t
pt+1

pt+1

�
� 1(g✓(t+ 1)� g✓(t))>kF (A.30)


⇢

M

⇥
Ec(⌧

t
pt+1

) + Ec(t+ 1)
⇤

+
2�A(M + 1)

�NM

NX

i=1

max
(t�2M)+qt

⇣
Ak✓q

i � ✓?
k+ Ckwq

i �w?
i k

⌘


⇢

M

⇥
Ec(⌧

t
pt+1

) + �Ec(t) + � Eg(t)
⇤

+
2�A(M + 1)

�M
max

(t�2M)+qt

⇣
A

p

NEc(q) +A k✓̄(q)� ✓?
k+

C

N

NX

i=1

kwq
i �w?

i k

⌘
.

Combining (A.26) and (A.30), we obtain that

Eg(t+ 1) 
⇣
�+

�⇢

M

⌘
Eg(t) +


2�A

2
(M + 1)

p
N

�M
+

2(1 + �)

M

�
max

(t�2M)+qt
Ec(q)

+
2�A(M + 1)

�M
max

(t�2M)+qt

✓
A k✓̄(q)� ✓?

k+
C

N

NX

i=1

kwq
i �w?

i k

◆
.

(A.31)
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To bound the last term on the right-hand side of (A.31), For all q, we observe that:
✓
A k✓̄(q)� ✓?

k+
C

N

NX

i=1

kwq
i �w?

i k

◆2

 (N + 1)(A)2

k✓̄(q)� ✓?

k
2 + �

⇣C
A

⌘2 1

�N

NX

i=1

kwq
i �w?

i k
2

�

 (N + 1) kUkmax
n
(A)2,�(C)2

o
kv(q)k2 ,

which further implies that

Eg(t+ 1) 
⇣
�+

�⇢

M

⌘
Eg(t) +

⇣2�A2
(M + 1)

p
N

�M
+

2(1 + �)

M

⌘
max

(t�2M)+qt
Ec(q)

+
2�A

p
N + 1(M + 1)

�M
kUkmax{A,

p
�C} max

(t�2M)+qt
kbv(q)k .

(A.32)

Finally, combining (A.22), (A.24), (A.32) shows:
0

@
kbv(t+ 1)k

Ec(t+ 1)

Eg(t+ 1)

1

A  Q

0

@
max(t�2M)+qt kbv(q)k
max(t�2M)+qt Ec(q)

max(t�2M)+qt Eg(q)

1

A , (A.33)

where the inequality sign is applied element-wisely, and Q is a non-negative 3⇥ 3 matrix, defined
by:
0

B@

✓(�) + �2
kUkkU�1

kGM(G+ 2GM) �
p
NkUk(1 + �GM)(⇢+A

p
�N) 0

0 � �

2�A
p
N+1(M+1)
�M kUkmax{A,

p
� C}

p
N 2�A

2
(M+1)

�M + 2(1+�)
M �+ �⇢

M

1

CA ,

(A.34)
where ✓(�) := kI��⇤k = kI��Gk. Note that the upper bounds for kUk and kU�1

k are provided
in (A.8). Furthermore, also note that the eigenvalues of G are bounded in (A.7). We could set the
stepsize � to be sufficiently small such that such that ✓(�) := kI � �Gk < 1.

Finally, we apply Lemmas 2 and 3 presented in Section A.1 to the recursive inequality in (A.32),
which shows that each of kv(t)k, Ec(t), Eg(t) converges linearly with t. Therefore, we conclude the
proof of Theorem 1.

A.1 Two Useful Lemmas

In this section, we present two auxiliary lemmas that are used in the proof of Theorem 1. Our first
lemma establish the linear convergence of vectors satisfying recursive relations similar to (A.32),
provided the spectral radius of Q is less than one. In addition, the second lemma verifies this condition
for Q defined in in (A.34).
Lemma 2. Consider a sequence of non-negative vectors {e(t)}t�1 ✓ Rn

whose evolution is

characterized by e(t + 1)  Qe([(t �M + 1)+, t]) for all t � 1 and some fixed integer M > 0,

where Q 2 Rn⇥n
is a matrix whose entries are nonnegative, and we define

e(S) :=

0

B@
maxq2S e1(q)

.

.

.

maxq2S en(q)

1

CA 2 Rn
for any subset S ✓ N .

Moreover, if Q irreducible in the sense that there exists an integer m such that the entries of Qm
are

all positive, and the spectral radius of Q, denoted by ⇢(Q), is strictly less than one, then for any

t � 1, we have

e(t)  ⇢(Q)d
t�1
M eC1u1 , (A.35)

where u1 2 Rn
++ is the top right eigenvector of Q and C1 is a constant that depends on the

initialization.
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Proof. We shall prove the lemma using induction. By the Perron-Frobenius theorem, the eigenvector
u1 associated with ⇢(Q) is unique and is an all-positive vector. Therefore, there exists C1 such that

e(1)  C1u1 . (A.36)

Let us first consider the base case with t = 2, ...,M + 1, i.e., d(t � 1)/Me = 1. When t = 2, by
(A.36) we have,

e(2)  Qe(1)  C1Qu1 = ⇢(Q)C1u1 , (A.37)
which is valid as Q, e(1), u1 are all non-negative. Furthermore, we observe that e(2)  C1u1. Next
when t = 3, we have

e(3)  Qe([1, 2])
(a)
 C1Qu1 = ⇢(Q)C1u1 ,

where (a) is due to the non-negativity of vectors/matrix and the fact e(1), e(2)  C1u1 as shown in
(A.37). Telescoping using similar steps, one can show e(t)  ⇢(Q)C1u1 for any t = 2, ...,M + 1.

For the induction step, let us assume that (A.35) holds true for any t up to t = pM + 1. That is, we
assume that the result holds for all t such that d(t� 1)/Me  p. We shall show that it also holds for
any t = pM + 2, ..., (p+ 1)M + 1, i.e., d(t� 1)/Me = p+ 1. Observe that

e(pM + 2)  Qe([(p� 1)M + 2, pM + 1])  C1⇢(Q)pQu1 = ⇢(Q)p+1C1u1 , (A.38)

where we have used the induction hypothesis. It is clear that (A.38) is equivalent to (A.35) with
t = pM + 2. Similar upper bound can be obtained for e(pM + 3) as well. Repeating the same steps,
we show that (A.35) is true for any t = pM +2, ..., (p+1)M +1. Therefore, we conclude the proof
of this lemma. Q.E.D.

The following Lemma shows that Q defined in (A.34) satisfies the conditions required in the previous
lemma. Combining these two lemmas yields the final step of the proof of Theorem 1.
Lemma 3. Consider the matrix Q defined in (A.34), it can be shown that (a) Q is an irreducible ma-

trix in R3⇥3
; (b) there exists a sufficiently small � such that ⇢(Q) < 1; and (c) as N,M � 1 and the

graph is geometric, we can set � = O(1/max{N2,M2
}) and ⇢(Q)  1�O(1/max{N2,M2

}).

Proof. Our proof is divided into three parts. The first part shows the straightforward irreducibility
of Q; the second part gives an upper bound to the spectral radius of Q; and the last part derives an
asymptotic bound on ⇢(Q) when N,M � 1.

Irreducibility of Q To see that Q is irreducible, notice that Q2 is a positive matrix, which could
be verified by direct computation.

Spectral Radius of Q In the sequel, we compute an upper bound to the spectral radius of Q, and
show that if � is sufficiently small, then its spectral radius will be strictly less than one. First we note
that ✓(�) = 1 � �↵ for some ↵ > 0 and the network connectivity satisfies � < 1. Also note that
⇢ > 0. For notational simplicity let us define the following

a1 = kUkkU�1
kGM(G+ 2GM), a2 = kUk

p

N(⇢+A
p
�N), a3 = GMkUk

p

N(⇢+A
p
�N)

a4 =
2A

p
N + 1(M + 1)

�M
kUkmax{A,

p
�C}, a5 =

2A
2
(M + 1)

p
N

�M
, a6 =

2(1 + �)

M
.

With the above shorthand definitions, the characteristic polynomial for Q, denoted by g : R ! R, is
given by

g(�) = det

0

B@

� � (1� �↵+ �2a1) ��a2 � �2a3 0

0 � � � ��

��a4 ��a5 � a6 � �

⇣
�+ �⇢

M

⌘

1

CA .

By direct computation, we have

g(�) = (� � (1� �↵+ �2a1))g0(�)� �3(a2 + �a3)a4 (A.39)
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where
g0(�) := (� � �)2 �

�⇢

M
(� � �)� �(�a5 + a6) . (A.40)

Notice that the two roots of the above polynomial can be upper bounded by:

�+
�⇢

2M
±

vuut
 
�⇢

p
N

2M

!2

+ �(�a5 + a6)  � := �+
�⇢

M
+
p
�(�a5 + a6) (A.41)

In particular, for all � � �, we have

g0(�) � (� � �)2 . (A.42)

Now, let us define

�? := max

(
�↵

4
+ 1� �↵+ �2a1,� + �

r
4(a2 + �a3)a4

↵

)
(A.43)

Observe that for all � � �?, it holds that

g(�) � (� � (1� �↵+ �2a1))(� � �)2 � �3(a2 + �a3)a4

�
�↵

4
�2 4(a2 + �a3)a4

↵
� �3(a2 + �a3)a4 = 0 .

(A.44)

Lastly, observe that g(�) is strictly increasing for all � � �?. Combining with the Perron Frobenius
theorem shows that ⇢(Q)  �?. Moreover, as � < 1 and ↵ > 0, there exists a sufficiently small �
such that �? < 1. We conclude that ⇢(Q) < 1 in the latter case.

Asymptotic Rate when M,N � 1 We evaluate a sufficient condition on � for the proposed
algorithm to converge, i.e., when �? < 1. Let us consider (A.43) and the first operand in the max{·}.
The first operand is guaranteed to be less than one if:

� 
↵

2a1
=)

�↵

4
+ 1� �↵+ �2a1  1�

�↵

4
. (A.45)

Moreover, from the definition of a1, we note that this requires � = O(1/M2) if M � 1.

Next, we notice that for geometric graphs, we have � = 1� c/N for some positive c. Substituting
this into the second operand in (A.43) gives

1�
c

N
+

�⇢

M
+
p
�(�a5 + a6) + �

r
4(a2 + �a3)a4

↵
< 1 . (A.46)

Therefore, (A.45) and (A.46) together give a sufficient condition for �? < 1.

To obtain an asymptotic rate when M,N � 1. Observe that a2 = ⇥(N), a3 = ⇥(NM), a4 =
⇥(

p
N), a5 = ⇥(

p
N), a6 = ⇥(1/M). Moreover, the condition (A.45) gives � = O(1/M2),

therefore the left hand side of Eq. (A.46) can be approximated by

1�
c

N
+ �⇥

⇣
N

3
4

⌘
+

p
�⇥(1/

p

M) (A.47)

Setting the above to 1� c/(2N) requires one to have � = O(1/N2).

Finally, the above discussions show that setting � = O(1/max{N2,M2
}) guarantees that �? < 1.

In particular, we have �?
 max{1� � ↵

4 , 1� c/(2N)} = 1�O(1/max{N2,M2
}) Q.E.D.

A.2 Derivation of Equation (A.6)

We we establish (A.6) with details. Recall that h(t) and v(t) are defined in (A.5). We verify this
equation for each block of h(t). To begin with, for the first block, for h✓(t) defined in (A.3), we
have

h✓(t) = ⇢✓̄(t) +
1

N

NX

i=1

Â>wt
i = ⇢

�
✓̄(t)� ✓? + ✓?

�
+

1

N

NX

i=1

Â>wt
i .
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Recall from (A.1) that ⇢✓? = �
1
N

PN
i=1 Â

>w?
i , which implies that

h✓(t) = ⇢
�
✓̄(t)� ✓?

�
+

NX

i=1

r
�

N
Â> 1

p
�N

�
wt

i �w?
i

�
= [Gv(t)]1 , (A.48)

where [Gv(t)]1 denotes the first block of Gv(t).

It remains to establish the equation for the remaining blocks. For any i 2 {1, . . . , N}, let us focus on
the i+ 1-th block. By the definition of hwi(t) in (A.4), we have

�

r
�

N
hwi(t) = �

r
�

N

�
Â✓̄(t)� Ĉwt

i � b̂i
�
= �

r
�

N

�
Â(✓̄(t)� ✓?) + Â✓?

� Ĉwt
i � b̂i

�
.

Again from (A.1), it holds that Â✓? = bi + Ĉw?
i . Therefore,

�

r
�

N

�
Â✓̄(t)� Ĉwt

i � b̂i
�
= �

r
�

N
Â(✓̄(t)� ✓?) + �Ĉ

wt
i �w?

i
p
�N

= [Gv(t)]i+1 , (A.49)

where [Gv(t)]i+1 denotes the i + 1-th block of Gv(t). Combining (A.48) and (A.49) gives the
desired equality.

B Additional Experiments

An interesting observation from Theorem 1 is that the convergence rate of PD-DistIAG depends on
M and the topology of the graph. The following experiments will demonstrate the effects of these on
the algorithm, along with the effects of regularization parameter ⇢.

Figure B.1: Illustrating the graph topologies in the additional experiments. (Left) ER graph with
connectivity probability of 1.01 logN/N . (Right) Ring graph.
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Figure B.2: Experiment with mountaincar dataset. For this problem, we only have d = 300,
M = 500 samples, but yet there are N = 500 agents. (Left) We set ⇢ = 0.01. (Right) We set
⇢ = 0.1.

To demonstrate the dependence of PD-DistIAG on the graph topology, we fix the number of agents
at N = 500 and compare the performances on the ring and the ER graph set with probability of
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connection of p = 1.01 logN/N , as illustrated in Fig. B.1. Notice that the ring graph is not a
geometric graph and its connectivity parameter, defined as � := �max(W � (1/N)11>) from the
previous section can be much closer to 1 than the ER graph. Therefore, we expect the PD-DistIAG
algorithm to converge slower on the ring graph. This is corroborated by Fig. B.2. Furthermore, from
the figure, we observe that with a larger regularization ⇢, the disadvantage for using the ring graph
has exacerbated. We suspect that this is due to the fact that the convergence speed is limited by the
graph connectivity, as seen in (A.34); while in the case of ER graph, the algorithm is able to exploit
the improved problem’s condition number.

Next, we consider the same set of experiment but increase the number of samples to M = 5000.
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Figure B.3: Experiment with mountaincar dataset. For this problem, we have d = 300, M = 5000
samples, but yet there are N = 500 agents. (Left) We set ⇢ = 0.01. (Right) We set ⇢ = 0.1.

Interestingly, for this example, the performances of the ring graph and the ER graph settings are
almost identical in this setting with large sample size M . This is possible as we recall from Theorem 1
that the algorithm converges at a rate of O(�t) where � = 1 � O(1/max{MN2,M3

}). As we
have M � N , the impact from the sample size M becomes dominant, and is thus insensitive to the
graph’s connectivity.

References
[1] G. Arslan and S. Yüksel. Decentralized Q-learning for stochastic teams and games. IEEE

Transactions on Automatic Control, 62(4):1545–1558, 2017.

[2] V. S. Borkar. Stochastic approximation: A dynamical systems viewpoint. Cambridge University
Press, 2008.

[3] D. S. Callaway and I. A. Hiskens. Achieving controllability of electric loads. Proceedings of

the IEEE, 99(1):184–199, 2011.

[4] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual
algorithm. Mathematical Programming, 159(1-2):253–287, 2016.

[5] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical risk mini-
mization. Journal of Machine Learning Research, 12(Mar):1069–1109, 2011.

[6] J. Chen and A. H. Sayed. Diffusion adaptation strategies for distributed optimization and
learning over networks. IEEE Transactions on Signal Processing, 60(8):4289–4305, 2012.

[7] Y. Chen and M. Wang. Stochastic primal-dual methods and sample complexity of reinforcement
learning. arXiv preprint arXiv:1612.02516, 2016.

[8] P. Corke, R. Peterson, and D. Rus. Networked robots: Flying robot navigation using a sensor
net. Robotics Research, pages 234–243, 2005.

[9] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing networks.
IEEE Transactions on Robotics and Automation, 20(2):243–255, 2004.

[10] B. Dai, N. He, Y. Pan, B. Boots, and L. Song. Learning from conditional distributions via dual
embeddings. arXiv preprint arXiv:1607.04579, 2016.

10



[11] B. Dai, A. Shaw, N. He, L. Li, and L. Song. Boosting the actor with dual critic. arXiv preprint

arXiv:1712.10282, 2017.

[12] B. Dai, A. Shaw, L. Li, L. Xiao, N. He, J. Chen, and L. Song. Smoothed dual embedding
control. arXiv preprint arXiv:1712.10285, 2017.

[13] E. Dall’Anese, H. Zhu, and G. B. Giannakis. Distributed optimal power flow for smart
microgrids. IEEE Transactions on Smart Grid, 4(3):1464–1475, 2013.

[14] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in neural information

processing systems, pages 1646–1654, 2014.

[15] S. S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou. Stochastic variance reduction methods for policy
evaluation. arXiv preprint arXiv:1702.07944, 2017.

[16] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson. A delayed proximal gradient method
with linear convergence rate. In Machine Learning for Signal Processing (MLSP), 2014 IEEE

International Workshop on, pages 1–6. IEEE, 2014.

[17] J. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson. Learning to communicate with deep
multi-agent reinforcement learning. In Advances in Neural Information Processing Systems,
pages 2137–2145, 2016.

[18] J. Foerster, N. Nardelli, G. Farquhar, P. Torr, P. Kohli, S. Whiteson, et al. Stabilising experience
replay for deep multi-agent reinforcement learning. arXiv preprint arXiv:1702.08887, 2017.

[19] J. K. Gupta, M. Egorov, and M. Kochenderfer. Cooperative multi-agent control using deep
reinforcement learning. In International Conference on Autonomous Agents and Multi-agent

Systems, pages 66–83, 2017.

[20] M. Gurbuzbalaban, A. Ozdaglar, and P. A. Parrilo. On the convergence rate of incremental
aggregated gradient algorithms. SIAM Journal on Optimization, 27(2):1035–1048, 2017.

[21] J. Hu and M. P. Wellman. Nash Q-learning for general-sum stochastic games. Journal of

Machine Learning Research, 4(Nov):1039–1069, 2003.

[22] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315–323, 2013.

[23] J. Kober and J. Peters. Reinforcement learning in robotics: A survey. In Reinforcement Learning,
pages 579–610. Springer, 2012.

[24] M. Lauer and M. Riedmiller. An algorithm for distributed reinforcement learning in cooperative
multi-agent systems. In International Conference on Machine Learning, 2000.

[25] D. Lee, H. Yoon, and N. Hovakimyan. Primal-dual algorithm for distributed reinforcement
learning: Distributed gtd2. arXiv preprint arXiv:1803.08031, 2018.

[26] X. Lian, M. Wang, and J. Liu. Finite-sum composition optimization via variance reduced
gradient descent. arXiv preprint arXiv:1610.04674, 2016.

[27] A. Lin and Q. Ling. Decentralized and privacy-preserving low-rank matrix completion. 2014.
Preprint.

[28] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
International Conference on Machine Learning, pages 157–163, 1994.

[29] M. L. Littman. Value-function reinforcement learning in Markov games. Cognitive Systems

Research, 2(1):55–66, 2001.

[30] B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik. Finite-sample analysis of
proximal gradient td algorithms. In UAI, pages 504–513, 2015.

11



[31] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. arXiv preprint arXiv:1706.02275, 2017.

[32] S. V. Macua, J. Chen, S. Zazo, and A. H. Sayed. Distributed policy evaluation under multiple
behavior strategies. IEEE Transactions on Automatic Control, 60(5):1260–1274, 2015.

[33] S. V. Macua, A. Tukiainen, D. G.-O. Hernández, D. Baldazo, E. M. de Cote, and S. Zazo.
Diff-dac: Distributed actor-critic for multitask deep reinforcement learning. arXiv preprint

arXiv:1710.10363, 2017.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.
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