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A Dynamics of the regularization coefficients at the limit of many training

iterations

We try to give some indications as to why the regularization coefficients λt,i tend to decrease at the
limit of many training iterations. In Theorem 1, we show that for every weight, there is a region of
values for which the regularization coefficients are continuously decreasing when training RLNs.

Theorem 1. Let W ∗ = argminL (Z,W ) be the optimal weights with respect to the empirical
loss. Let w∗

i ∈ W ∗ be one of the weights such that w∗
i 6= 0. Assume that the loss function L is

continuous. Assume, without loss of generality, that w∗
i > 0. Then there exist bi ∈ (0, w∗

i ) such that
if wt,i ∈ (bi, w

∗
i ), λt,i is decreasing, meaning that λt,i > λt+1,i.

Proof. For every wt,i ∈ (0, w∗
i ), the gradient of the regularization term is positive, rt,i = exp (λt,i)·

∂‖wt,i‖
∂wt,i

> 0. L is continuous, so there exist ai < w∗
i such that for sufficiently small learning rate

η, for every wt,i ∈ (ai, w
∗
i ), gt+1,i = ∂L(Zt+1,Wt+1)

∂wt+1,i
< 0. Define bi = max {0, ai}. For every

wt,i ∈ (bi, w
∗
i ) we have that wt,i > 0 therefore rt,i > 0 and ∂LCF

∂λt,i
= −η · gt+1,i · rt,i > 0, which

will decrease the regularization coefficient

λt+1,i = λt,i + ν · η · gt+1,i · rt,i < λt,i

At the limit of many training iterations, wt,i tends to reach the regions in which λt,i is continuously

decreasing. Denote W
†
t =

{

w
†
t,i

}n

i=1
= argminW∈W L

† (Z,W,Λt), the optimal weights of the

regularized loss, which change over time due to the changes in Λt. wt,i is updated to optimize L†,

therefore wt,i tends to be close to w
†
t,i at the limit of many training iterations for sufficiently small

learning rate η.

Denote Λ−∞ = {−∞}
n

i=1, we have that argminL† (Z,W,Λ−∞) = argminL (Z,W ) = W ∗.

From [1] we know that w
†
t,i is upper hemicontinuous in λt,i, so for sufficiently small regularization

coefficients, w
†
t,i is close to w∗

i . We notice that w
†
t,i tends to not only be close to w∗

i , but also smaller

w
†
t,i ≤ w∗

i . In Theorem 2 we give a bound on the norm of W
†
t and in Theorem 3 we show that w

†
t,i

is strictly decreasing in λt,i.

Theorem 2. For every Λt,
∑n

i=1 exp (λt,i) ·
∥

∥

∥
w

†
t,i

∥

∥

∥
≤

∑n
i=1 exp (λt,i) · ‖w

∗
i ‖.
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Proof. Assume to a contradiction that
∑n

i=1 exp (λt,i) ·
∥

∥

∥
w

†
t,i

∥

∥

∥
>

∑n
i=1 exp (λt,i) · ‖w

∗
i ‖, then

L† (Z,W ∗,Λt) = L (Z,W
∗) +

n
∑

i=1

exp (λt,i) · ‖w
∗
i ‖ ≤

≤ L
(

Z,W
†
t

)

+
n
∑

i=1

exp (λt,i) ·
∥

∥

∥
w

†
t,i

∥

∥

∥
= L†

(

Z,W
†
t ,Λt

)

Contradicting the definition of W
†
t .

Theorem 3. Let i be some edge, and let Λ1 = {λ1,j}
n

j=1 , and Λ2 = {λ2,j}
n

j=1, such that
{

λ1,j = λ2,j j 6= i

λ1,i < λ2,i j = i
. Let W

†
1 = argminW L

† (Z,W,Λ1) and W
†
2 = argminW L

† (Z,W,Λ2)

be the optimal weights when regulating with Λ1 and Λ2, respectively. Then

∥

∥

∥
w

†
2,i

∥

∥

∥
<

∥

∥

∥
w

†
1,i

∥

∥

∥
.

Proof. Assume to a contradiction that

∥

∥

∥
w

†
2,i

∥

∥

∥
≥

∥

∥

∥
w

†
1,i

∥

∥

∥
, then

L†
(

Z,W
†
1 ,Λ2

)

= L
(

Z,W
†
1

)

+

n
∑

i=1

exp (λ2,i) ·
∥

∥

∥
w

†
1,i

∥

∥

∥
<

< L
(

Z,W
†
1

)

+
n
∑

i=1

exp (λ1,i) ·
∥

∥

∥
w

†
1,i

∥

∥

∥
=

= L†
(

Z,W
†
1 ,Λ1

)

≤ L†
(

Z,W
†
2 ,Λ1

)

=

= L
(

Z,W
†
2

)

+

n
∑

i=1

exp (λ1,i) ·
∥

∥

∥
w

†
2,i

∥

∥

∥
<

< L
(

Z,W
†
2

)

+

n
∑

i=1

exp (λ2,i) ·
∥

∥

∥
w

†
2,i

∥

∥

∥
=

L†
(

Z,W
†
2 ,Λ2

)

Contradicting the definition of W
†
2 .

The increase in the other regularization coefficients λt,j for j 6= i could increase w
†
t,i. Theorem 4

shows that even if w
†
t,i > w∗

i , the Regularization Learning will tend to decrease w
†
t,i back.

Theorem 4. If L is continuous, for sufficiently small learning rate η and regularization coefficients

Λt and large enough t, if w
†
t,i > w∗

i , then w
†
t,i is decreasing in t, meaning that w

†
t,i > w

†
t+1,i.

Proof. L is continuous, then there’s a neighborhood (w∗
i , ci) such that for sufficiently small learning

rate η, for every t such that wt,i ∈ (w∗
i , ci), gt+1,i = ∂L(Zt+1,Wt+1)

∂wt+1,i
> 0. For sufficiently small

regularization coefficients, w
†
t,i is not too far w∗

i , and for large enough t and small enough learning

rate η, wt,i is not too far from w
†
t,i, such that wt,i ∈ (w∗

i , ci). rt,i > 0 since wt,i > 0, giving
∂LCF

∂λt,i
= −η · gt+1,i · rt,i < 0, which will increase the regularization coefficient λt,i < λt+1,i. w

†
t,i

strictly decreases with λt,i, giving w
†
t,i > w

†
t+1,i.

Theorem 4 show that at the limit of many training iterations, if w
†
t,i > w∗

i then w
†
t,i will tend to

decrease in training, and Theorem 1 shows that there is a region w
†
t,i ∈ (bi, w

∗
i ) in which λt,i is

continuously decreasing, which might give some indication as to why λt,i tends to decrease at the
limit of many training iterations.
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B Regularization Learning algorithm

Require: Z = {(x, y)m}
M

m=1, W = {wi}
n
i=1, Λ = {λi}

n
i=1, ν, η, θ

1: for i = 1 to n do
2: rprev,i ← null
3: end for
4: for t = 1 to T do
5: for i = 1 to n do
6: gi ←

∂L(Z,W )
∂wi

7: if rprev,i 6= null then
8: λi ← λi + ν · η · gi · rprev,i
9: end if

10: end for
11: for i = 1 to n do

12: λi ← λi +
(

θ −
∑

n
i=1

λi

n

)

13: ri ← exp (λi) ·
∂‖wi‖
∂wi

14: wi ← wi − η · (gi + ri)
15: rprev,i ← ri
16: end for
17: end for
18: return W

Algorithm 1: Regularization Learning

C Microbiome input features and predicted traits

Table 1: Predicted traits

Trait Description

Age

HbA1c Glycated hemoglobin, a marker for cardiovascular disease, used for
diabetes diagnosis

HDL Cholesterol High-density lipoprotein cholesterol, related to cardiovascular health
Median Glucose The median blood glucose level of the patient measured during a week

Max glucose The maximal blood glucose level of the patient measured during a week

CRP C-reactive protein, a marker of inflammation
Gender

BMI Body-Mass Index, used to estimate adiposity, a risk factor for numerous
disease

Cholesterol Risk factor for cardiovascular disease

The full list of the input features are as follows:

1. Covariates: age, gender, and BMI of the person.

2. Microbiome data:

(a) The log relative abundance of all bacterial species

(b) The 100 first components of the Principal Component Analysis (PCA) of the matrix
of log relative abundance of species

(c) The 100 first components of the Principal Component Analysis (PCA) of the matrix
of log relative abundance of genes

(d) Microbiome metadata:

i. The fraction of reads that were mapped to bacterial species, bacterial genes, and
human genes, out of all the reads

ii. The kit that was used to collect the sample
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iii. The entropy of relative abundances of the 10, 20, 50 and 100 most prevalent
species

iv. The number of different species with abundance greater than 10−3, 10−4, 10−5

(the alpha diversity)

For each of the traits we took the 5 − 95 percentiles of its values and trimmed the values of each
person to be within 3 standard deviations (STDs) of the mean of these 5 − 95 percentile values.
Before training the models, the features and the labels were standardized.

The basic covariates are also some of the traits used as the prediction labels. When training a model
to predict one of the covariates, the respective covariate was not used as an input features.

D Hyperparameters and training settings

The hyperparameters of the different models are as follows:

• DNN and RLN models have the following hyperparameters:

– Number of iterations

– Learning rate

– Activation function (ReLU, SoftPlus or tanh)

– Batch size

– The number of layers in the network

– The width of the last layer before the output layer in the network

– RLN models have the following additional hyperparameters:

∗ Regularization norm: (L1 or L2)

∗ The average regularization coefficient (θ in the paper)

∗ The learning rate for the regularization coefficients (ν in the paper)

– DNN models have the following additional hyperparameters:

∗ Type of regularization (dropout, L1, and L2) and its term

• GBT models have the following hyperparameters:

– Number of trees

– Learning rate

– Maximal depth of trees

– Minimum loss reduction required to make a further partition on a leaf node of the tree
(γ in XGBoost)

– Subsample ratio of columns when constructing each tree

– The minimum sum of instance weight (hessian) needed in a child

– Maximum delta step for the weight estimation of each tree

– Subsample ratio of the training instance when constructing each tree

– L1 regularization term

– L2 regularization term

• LM models have the following hyperparameters:

– L1 regularization term

– L2 regularization term

– Maximal number of iterations

– Optimization tolerance

For all instantiations of DNN and RLN models, the Glorot [3] normalized initializer and the rmsprop
[4] optimizer were used. The layers of the DNNs and RLNs are all fully connected. The width of the
last layer before the output layer in the network and the depth of the networks are hyperparameters.
The widths of the rest of the layers were calculated to form a geometric series, given that we know
the input dimension, the depth, and the width of the last layer before the output layer.

When training RLNs, we initialized the regularization coefficients to be equal, and have the same
value as the average regularization coefficient, i.e., Λ0 = {θ}

n

i=1.
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The loss function was the L2 loss, L(x, y) = (f(x)− y)2.

For some participants, the microbiome of was sampled several times, in which case we down-
weighted each of their samples such that the total weight of all samples of each participant was
equal to 1.

The hyperparameters for each instantiation were sampled from a hand-tuned distribution over the
values of the hyperparameters. From the optimized distributions over the hyperparameters, 50 sam-
ples were obtained for each model. We ran our experiments using 10-fold train-test splits of our
dataset, with 20% of the training samples being held out as a validation set. The variance of the
scores of the different hyperparameters samples are shown in the error bars.

When training ensembles, 30 model instantiations were randomly chosen based and their predictions
were averaged. When computing ensembles of several models, 30 random model instantiations for
all the types of models in the ensemble were averaged. The variance of the scores of the different
instantiations samples are shown in the error bars. The performance of the ensembles plateaued after
30 instantiations, therefore we only present results for ensembles with 30 instantiations per model
for consistency.

E RLN feature importance for the microbiome dataset

The 5 most important bacterial species for the predicted traits, based on the “feature importance”
proposed in [2], are shown in Table 2.

Table 2: The 5 most important microbiome features for different traits

Klebsiella
pneumoniae

Streptococcus
vestibularis

Bacteroide
pectinophilus

Dialister
succinatiphilus

Megamonas
rupellensis

Age 0.85% 0.77% 0.66% 0.43% 0.55%
HbA1c 1.04% 0.04% 0.37% 0.45% 0.35%
HDL
cholesterol

0.56% 0.61% 0.90% 0.05% 1.18%

Median
glucose

0.31% 0.53% 0.87% 0.03% 0.47%

Max
glucose

0.34% 0.37% 0.07% 0.55% 0.56%

CRP 0.20% 0.84% 0.16% 1.02% 0.30%
Gender 0.71% 0.30% 1.07% 0.28% 0.12%
BMI 0.95% 0.86% 0.26% 1.18% 0.87%
Cholesterol 0.54% 0.78% 0.55% 0.53% 0.00%
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