Supplementary material for

Inexact trust-region algorithms on
Riemannian manifolds

Hiroyuki Kasai Bamdev Mishra
The University of Electro-Communications Microsoft
Japan India
kasai@is.uec.ac.jp bamdevm@microsoft.com
Abstract

This supplementary file presents the overview of the manifolds of interest, the
proof of the convergence analysis, and additional numerical experiments.

A Manifolds and problems of interest

A.1 Manifolds

Stiefel manifold St(r, d): The Stiefel manifold is the set of orthogonal r-frames in R? for some
r < d, and it is an embedded submanifold of R9*". The orthogonal group O(d) is a special case of
the Stiefel manifold, i.e., O(d) = St(d, d). Because St(r,d) is a submanifold embedded in R*",
we can endow the canonical inner product in R9*" as a Riemannian metric (£, 1)y = tr(¢ " n) for
&,n € TySt(r, d). With this Riemannian metric, the projection onto the tangent space TySt(r, d) is
defined as an orthogonal projection Py(W) = W — Usym(U' W) for U € St(r, d) and W € R4,
A popular retraction is Ry (&) = qf (U+¢) for U € St(r, d) and € € TySt(r, d), where gf(-) extracts
the orthonormal factor based on QR decomposition. Other details about optimization-related notions
on the Stiefel manifold are in [1].

Grassmann manifold Gr(r, d): A point on the Grassmann manifold is an equivalence class repre-
sented by a d x r orthogonal matrix U with orthonormal columns, i.e., U'U=1 Two orthogonal
matrices express the same element on the Grassmann manifold if they are related by right multiplica-
tion of an r x r orthogonal matrix O € O(r). Equivalently, an element of Gr(r, d) is identified with
a set of d x r orthogonal matrices [U] := {UO : O € O(r)}. That is, Gr(r,d) := St(r,d)/O(r),
where St(r,d) is the Stiefel manifold that is the set of matrices of size d X r with orthonormal
columns. The Grassmann manifold has the structure of a Riemannian quotient manifold [1]. A pop-
ular retraction on the Grassmann manifold is Ry (&) = qf (U + £). Other details about optimization-
related notions on the Grassmann manifold are in [1].

A.2 Problems and derivations of Riemannian gradient and Hessian

ICA problem [12, 13]: A particular variant to solve the independent components analysis (ICA)
problem is through joint diagonalization on the Stiefel manifold, i.e.,

. LN e T 5
Jmin fea(U) == = ; |diag(UT C;U)|[3,

where ||diag(A)||% defines the sum of the squared diagonal elements of A. C; can, for example,
be cumulant matrices or time-lagged covariance matrices of size d x d. The Riemannian gradient
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grad fica(U) of the cost function fic,(U) is

n
grad fica(U) = Py egrad fica(U) = Py (—:L Z4CiU ddiag(UTCiU)> ,

i=1
where egrad fic.(U) is the Euclidean gradient of fi.,(U), ddiag is the diagonal matrix, and Py
denotes the orthogonal projection onto the tangent space of U, i.e., TySt(r, d), which is defined
as Py(W) = W — Usym(U' W), where sym(A) represents the symmetric matrix (A + A")/2.
The Riemannian Hessian of fi.,(U) along a search direction £ € TySt(r,d) is Hessfica(U)[¢] =
Vegrad fica(U), where V¢ represents the Riemannian connection on M. For the case of interest,
V¢ = Py(DE(Y)[n]), where Y represents the roof of n € Ty M. Consequently, the Riemannian
Hessian is defined by

Hess fica(U)[¢] = Pu (Degradfica(U)[f] - fsym(UTegradfica(U))
— Usym(¢ Tegrad fica (U)) — Usym(UTDegradfica(U) [{])) .
Here, Degrad fi..(U)[¢] is given by

Degrad fica (U)[¢] = —% ) 4C;(¢ddiag(U' C;U) + Uddiag(¢ " C;U) + Uddiag(U' C;¢)).

=1

PCA problem: Given an orthonormal matrix projector U € St(r, d), which is the Stiefel manifold
that is the set of matrices of size d x r with orthonormal columns, the principal components analysis
(PCA) problem is to minimize the sum of squared residual errors between projected data points and
the original data as

1 & T

min — z; —UU' 2|3
UESt(r,d) 1 ; =i ill2:
where z; is a data vector of size d x 1. This problem is equivalent to

1 n
i A(U) = —= Tuu' z,.
ol Foa(U)i= =3 2] UUT 2

Here, the critical points in the space St(r, d) are not isolated because the cost function remains un-
changed under the group action U +— UQO for all orthogonal matrices O of size r x r. Subsequently,
the PCA problem is an optimization problem on the Grassmann manifold Gr(r, d).

Similar to the arguments in the ICA problem above, the expressions of the Riemannian gradient and
Hessian for the PCA problem on the Grassmann manifold are as follows:

1 n
gradfpea(U) = Py egradfyea(U) = Py <—n ; 2z,z; U)
Hess fpea(U)[€] = Py (-2 > ziz & (EUT U )22/ U—UUT 2,2 5) ,
n
i=1

where the orthogonal projector Py(W) = W — UU'W.

MC problem: The matrix completion (MC) problem amounts to completing an incomplete matrix
Z, say of size d x n, from a small number of entries by assuming a low-rank model for the matrix.
If Q is the set of the indices for which we know the entries in Z, the rank-r MC problem amounts to
solving the problem

minyegax- serrxn [Pa(UA) = Pa(Z)|%,

where the operator P (Zy,,) = Zyq if (p, ¢) € Q and Po(Z,,) = 0 otherwise is called the orthog-
onal sampling operator and is a mathematically convenient way to represent the subset of known
entries. Partitioning Z = [z1, 2o, . . ., 2z;], the problem is equivalent to the problem

. 1
min —
UeRI%T @, €R™ N

> IIPa,(Ua;) = Pa, (2|3,
i=1
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where z; € R? and the operator Pq, is the sampling operator for the i-th column. Given U, a;
admits the closed-form solution a; = UQ z;q,,» where { is the pseudo inverse and Ug, and z;q,
are respectively the rows of U and z; correspondmg to the row indices in 2;. Consequently, the
problem only depends on the column space of U and is on the Grassmann manifold [9], i.e.,

fie(U) := min *ZIIPQ (Ua;) — Pa, (2i)l5.

min
UesSt(r,d) a;erR" n

The expressions of the Riemannian gradient and Hessian for the MC problem on the Grassmann
manifold are as follows:

gradfmc (U) Py egradfmc = < Z PQ Uaz 'Pﬂl (Zz))a;r>

Hessfumc(U)[¢] = Py (i >_(Pa,(Uai) = Po,(2:)b] + (Po, (a; + Ubi))a/ ) :

where the orthogonal projector Py(W) = W—UU'W. Here a; = U}Lh Z;q, and b; is the directional
derivative of a; along £ and is the solution to the linear equation

U, U, b; = &o, ' zig, — (bo, U+ U &q,)a;

B Proofs of Theorems

B.1 Proof of Theorem 3.1

Lemma B.1. Under Assumptions 1, 2, and 3, we have

R 2 1 1
|mk(77k) - fk(nk)' < §LHA? + 69At + §5HA?

Proof. The absolute difference between riv (1) and fi, (1) is bounded as below;
v () = fie ()|

= | F) + (G + 5 (ks kbl — i)

= | film) = fl@r) = (Gry i)y — %WkaHk[ﬂszk

= fk(nk) - f(xk) - <gradf(xk)777k>rk - %<nka Vka(Oxk)[Uszk

s Hulmean

e, V2 Fie(00,) 78] 5

| —

+ (gradf(zr), M) ey, — (Ghs M)y, +
1

IA

Fe(nw) = flax) — (gradf (zr), M) o — 5 s V2 e (00,) 1006]) 0

N |

+|{grad f(zr) — Gry )i | + 1<77k7V Fe(0z,) 0], —%WkaHk[??k])zk

1

< SLalnelz, + Ogllmelle, + §6H\\nkllik
1 1

< LAl +0,A+ SonAY,

where the first inequality uses the Cauchy-Schwarz inequality and the second one uses Assumptions
2 and 4. This completes the proof. O

The proof of Theorem 3.1 follows that of [36, 37]. Therefore, this section gives its sketch.
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Proof. Given Assumptions 1, 2, 3, 4, 5, and 6, and suppose |G ||, > €4 and the bounds of

€g (1—pru)ey (1—pro)eg
1+ Kg ’ 12L g ’ 3 ’

A < min

then we first show that the iteration k is successful, i.e., Ag11 = 7Ay. For this proof, the bound of
| (k) — fr(nx)| in Lemma B.1 is used.
On the other hand, for the case ||G ||z, < €5 and Amin(Hy) < —ep, we have i (n) = f(xr) +

3 (e, Hi[1]) 2, from (2), and 10 (0x,) — k(1) > 10k (0w, ) — () = 3¢ Amin (Hi)| AR
from Assumption 5. Then, if we have

1 _
og < ﬂl/q{ and A < (1 — pTH)@a
2 Ly
the iteration k is successful, i.e., Ag11 = yAg.
Combining the two above, we have for all &
A, > Lmin €q 7 (1- ,OTH)»sg7 (1- PTH)Eg’ ver
1+ Ky 12Ly 3 Ly

under Assumption 6. Consequently, we obtain the upper bound of successful iterations |Ngycc| is

as | Nsuce| < Cf}g%% where C' is a constant depending on Ly, Ky, d4,0m, pra, and v.

Subsequently, we obtain the claim. O

B.2 Proof of Theorem 4.1

This section gives the proof of Theorem 4.1. For this purpose, we introduce the vector Bernstein
inequality for completeness before the actual proof. It should be noted that, since the retraction is a
second-order retraction, we have the Hessian agreement, i.e., Hessf(z) = V2 fk(Oxk ). In addition,
it should be also noted that we assume for simplicity (and without loss of any generality) that all
representations of points on the manifold, e.g., the Riemannian gradient, are vectors throughout the
analysis.

Lemma B.2 (Vector Bernstein inequality [54, 55, 38]). Let Ay, ..., A, be independent random
vector-valued variables with common dimension d and assume that each one is centered, uniformly
bounded and also that the variance is bounded above as E[A;] = 0, || A;||2 < pand |E[A?]|2 < o
for positive constants p and o. In addition, let Z be the sum of A; as Z = % Z?:l A;. Then, we
have for 0 < € < a%/

€? 1
PI‘(HZH2 > 5) < exp (—n . @ + 4) .

Now, we give the proof of Theorem 4.1.

Proof. The first part is for the bound of |S;|. We consider |S;| random matrices G ;(z) for j =
1,2,...,|Sy|, where we have

1
Pr(Gj(w) = gradf;(x)) = —.
We define X; as
X, £ G,(x)—gradf(z), J=1,2,...,[S,l

It should be noted that, since G ;(z) is a randomly selected matrix, the expectation of the matrix X
should be zero, i.e., E[X;] = 0. Then, we define X as

S| 1S

A 1 1
X & XK = ey 2 (G~ mdf o)
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Selecting as Gj(z) = grad fi () and addressing E[X;] = 0, we have

:4n71

IXFl2 < I1X513 = lgradfi(z) — gradf()|3
= lgradfi(x —fZgradfz )3
2
_ H - S
< 2<n > lgrad fi (z )||2+2( > Zgrad
n—- max 1 ? max (|2
< 2 (Y o (B o g

max )2 max\2
) G < g,

where the first inequality uses (a + b)? < 2a? + 2b°.

Now, we apply the vector Bernstein inequality in Lemma B.2 replacing Z with X, we obtain

1S, |
Pr ISIZG —gradf(z)|| >e| = Pr(|X|2>¢)

2
e p< —€|S,| +1>
X 7‘}( - .
32(Kpax)? 4
Here, we require the probability that the approximate deviation of the sub-sampled gradient from
the exact grad f (x) is higher than € to be lower than some ¢ € (0, 1], we have

€S| 1 max | log(1/6) +1/4
exp (32([(;1”)2 + 4) = 4 == € = 4\/§Kg S,] .

From Assumption 4, we finally obtain

1Gr — gradf(zx)lz < &
log(1/6) +1/4
:>4\/§K(r7nax Og( / )+ / < (59
’ |5
32(K™ax)2(log(1/8) + 1/4
L sy s RUSos1/0) 11
9
Next, we consider |Sy| random matrices H;(z) for j = 1,2,. .., |Sy|. For this purpose, we denote

the j-th element of V2f(0,) for the j-th sample as V2 fj(Om). Similarly to the case above, we

assume the uniform sampling strategy as Pr(H;(z) = V2fj(OI)) = 1. Now, forn € T, M, we
define Y; as

Y; & Hj(x)n] - V2f(0.)m), i=1,2....,ISu].

It should be noted that, since H, () is randomly selected and 7 is independent of H,(z), the expec-
tation of the matrix Y; should be zero, i.e., IE[Y]] = 0. Then, we define Y as

|SH]| |SH]|

2 = |Z = 5 |Z( — V2£(0.) )
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Then, for V2 (0,), we have
2

Y7l < Y5015 =

2

2
n—1 max max
< (M) EIE < A,

Now, we apply the vector Bernstein inequality in Lemma B.2. Similarly to the sub-sampled gradient,
we obtain

Pr( | %H (x)[n] — V2F(0)[n]]| > < e p< —e*|Sn| N 1)
1S ] - x -~ € < X I e B = )
|SH| = J n n . 32(K1r_r11ax)2||n”% 4

Then, we obtain € = 4v/2 K% ||n|24 / W. From Assumption 4, we finally obtain

I(Hy = V2F0u)) Il < Smlnlla

log(1/6) +1/4
S|

IA

= V2K 1l2 S|l

32(KB)210g(1/6) + 1/4
62 '

v

= S|

This completes the proof. O
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C Additional numerical comparisons

In this section, we show additional numerical comparisons which do not appear in the main paper.

C.1 PCA problem
Additional results of different runs for Cases P1, P2, P3, and P4 are shown in Figure A.1.

—RSD
—RCG
10° — RLBFGS
RSVRG
% a .9“- o |I—RTR
S ) > ) ~|—Sub-H-RTR
z 5 Sub-HG-RTR|| 2 Z Sub-HG-RTR|| 2 Sub-HG-RTR
510 H £ £
E E £ E
5 & 8 5
o0
0 2 4 6 8 10 12 0 50 100 150 200 250 0 2 4 6 8 10 12 0 50 100 150 200 250
Oracle calls %108 Time [sec] Oracle calls x10° Time [sec]
(i-1) Run 2: Oracle calls. (i-2) Run 2: Run time. (ii-1) Run 3: Oracle calls. (ii-2) Run 3: Run time.
(a) Case P1
——RSD ~——RSD
o —RCG 3 —RCG
10 — RLBFGS 10° 10 —RLBFGS
RSVRG RSVRG
e - —RTR a e h —RTR g
) " |—suHRTR | & § ___|—suoHRTR || &
z 10 »Sub—HG—HTH e z 10 LSub—HG—RTR z
] — 3 s — s
£ ~J £ £ —J £
3 13 2 13
o o =] o
107 10710 10710
0 2 4 6 8 10 12 0 50 100 150 200 0 2 4 6 8 10 12 0 50 100 150 200
Oracle calls x107 Time [sec] Oracle calls x107 Time [sec]
(i-1) Run 2: Oracle calls. (i-2) Run 2: Run time. (ii-1) Run 3: Oracle calls. (ii-2) Run 3: Run time.

(b) Case P2

10° 10°
o a .5 -3 R e 5
) g 10 —subHATR [| & —suw-HATR || & 10 — Sub-H-RTR
2 2 Sub-HG-RTR 2 Sub-HG-RTR|| 2 Sub-HG-RTR
= T T 5
E E E E
5 &1 &0 g0
15 15 15
05 1 15 2 107 5 10 15 2 %0 05 1 15 2 107 5 10 15 20
Oracle calls x107 Time [sec] Oracle calls %107 Time [sec]
(i-1) Run 2: Oracle calls. (i-2) Run 2: Run time. (ii-1) Run 3: Oracle calls. (ii-2) Run 3: Run time.
(c) Case P3
10°
—RSD —RSD
—RCG —RCG
— RLBFGS — RLBFGS
RSVRG RSVRG
e e —RTR e —RTR
o o — Sub-H-RTR o — Sub-H-RTR
2z 10 Sub-HG-RTR|{ 2 Sub-HG-RTR Sub-HG-RTR|{ 2 Sub-HG-RTR
H 3 3
£ £ £
s 8 8
10710
0 05 1 15 2 0 10 20 30 40 0 05 1 15 2 0 10 20 30 40
Oracle calls %108 Time [sec] Oracle calls %108 Time [sec]
(i-1) Run 2: Oracle calls. (i-2) Run 2: Run time. (ii-1) Run 3: Oracle calls. (ii-2) Run 3: Run time.

(d) Case P4

Figure A.1: Performance evaluations on PCA problem (Case P1, P2, P3, P4 ).
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Additional results of different runs for Case P6 are shown in Figure A.2.
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Figure A.2: Performance evaluations on the PCA problem (Case P6).

C.2 MC problem

Additional results of different runs for Cases M1, M2, M3, M4, and MS are shown in Figures A.3,
A4, A5, A.6,and A.7, respectively.
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Figure A.3: Performance evaluations on the MC problem (Case M1).
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Figure A.5: Performance evaluations on the MC problem (Case M3).
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Figure A.6: Performance evaluations on the MC problem (Case M4
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Figure A.7: Performance evaluations on the MC problem (Case MS).
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