
A Appendix

A.1 Well behaved probabilistic networks

An under-appreciated detail of probabilistic networks is how the variance output is implemented with
automatic differentiation. Often the real-valued output is treated as a log variance (or similar), and
transformed through an exponential function (or similar) to produce a nonnegative-valued output,
necessary to be interpreted as a variance. However, whilst this variance output is well behaved at
points within the training distribution, its value is undefined outside the trained distribution. In fact,
during the training, there is no explicit loss term that regulate the behavior of the variance outside of
the training points. Thus, when this model is then evaluated at previously unseen states, as is often
the case during the MBRL learning process, the outputted variance can assume any arbitrary value,
and in practice we noticed how it occasionally collapse to zero, or explode toward infinity.

This behavior is in contrast with other models, such as GPs, where the variance is more well behaving,
being bounded and Lipschitz-smooth. As a remedy, we found that in our model lower bounding
and upper bounding the output variance such that they could not be lower or higher than the lowest
and highest values in the training data significantly helped. To bound the variance output for a
probabilistic network to be between the upper and lower bounds found during training the network
on the training data, we used the following code with automatic differentiation:

logvar = max_logvar - tf.nn.softplus(max_logvar - logvar)
logvar = min_logvar + tf.nn.softplus(logvar - min_logvar)
var = tf.exp(logvar)

with a small regularization penalty on term on max_logvar so that it does not grow beyond the
training distribution’s maximum output variance, and on the negative of min_logvar so that it does
not drop below the training distribution’s minimum output variance.

A.2 Fitting PE model to toy function

As an initial test, we evaluated all previously described models by fitting to a dataset {(xi, yi)} of
2000 points from a sine function, where the xi’s are sampled uniformly from [−2π,−π] ∪ [π, 2π].
Before fitting, we introduced heteroscedastic noise by performing the transformation

(x, y) 7→
(
x, y +N

(
0, 0.0225

∣∣∣∣sin(3

2
x+

π

8

)∣∣∣∣)) . (2)

The model fit to (2) was shown in Figure 1, but reproduced here for convenience as Figure A.5.

Ground Truth
Bootstrap 1
Bootstrap 2
Training Data

Figure A.5: Our probabilistic ensemble (PE) dynamics model: an ensemble of two bootstraps (for
visual clarity, we normally use five bootstraps), each a probabilistic neural network that captures
aleatoric uncertainty (in this case: observation noise). Note the bootstraps agree near data, but tend to
disagree far from data. Such bootstrap disagreement represents our model’s epistemic uncertainty.

13

A.3 One-step predictions of learned models

To visualize and verify the accuracy of our PE model, we took all training data from the experiments
and visualized the one-step predictions of the model. Since the states are high-dimensional, we
resorted to plotting the output dimensions individually, sorting by the ground truth value in each
dimension, seen in Figure A.6.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10

5

0

5

10

15
Sorted Predictions - Dimension 3 (Training Aleatoric)

Predictions
Ground Truth

(a) Cartpole dim3 training data aleatoric.
0 250 500 750 1000 1250 1500 1750 2000

10

5

0

5

10

Sorted Predictions - Dimension 3 (Holdout Aleatoric)
Predictions
Ground Truth

(b) Cartpole dim3 holdout data aleatoric.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10

5

0

5

10

15
Sorted Predictions - Dimension 3 (Training Epistemic)

Predictions
Ground Truth

(c) Cartpole dim3 training data epistemic.
0 250 500 750 1000 1250 1500 1750 2000

10

5

0

5

10

Sorted Predictions - Dimension 3 (Holdout Epistemic)
Predictions
Ground Truth

(d) Cartpole dim3 holdout data epistemic.

Figure A.6: One step predictions of the cartpole angular velocity (velocities are typically harder to
predict) after 100 trails of training data. Shown are the prediction indexes, monotonically increase in
ground truth output value, with two standard deviations at each output prediction. We see the model
is certain (w.r.t. both uncertainty types) where most of the data lies, but less certain in extreme values
of data where there are fewer training data.

A.4 Uncertainty propagation methods

0 25 50 75 100 125 150 175 200
1

0

1

2

3

4

5

6

7 Ground Truth

(a) Trajectory sampling (TS1).
0 25 50 75 100 125 150 175 200

1

0

1

2

3

4

5

6

7 Ground Truth

(b) Trajectory sampling (TS∞).

0 25 50 75 100 125 150 175 200
1

0

1

2

3

4

5

6

7 Ground Truth

(c) Distribution sampling (DS).
0 25 50 75 100 125 150 175 200

1

0

1

2

3

4

5

6

7 Ground Truth

(d) Moment matching (MM).

Figure A.7: Different uncertainty propagation methods discussed in Section 5. We show a PE model
trained after 100 trials on the cartpole system propagating particles given an action sequence from an
intermediate state (pole swinging up) that solves the task.

A.5 Forward Dynamics Model

Following the suggestion presented in [Deisenroth et al., 2014], instead of learning a forward
dynamics in the form st+1 = f (st,at), we learn a model that predicts the difference to the current
state ∆st+1 = f (st,at) such that st+1 = st + ∆st+1. Moreover, for states si that represent angles,
we transform the states fed as inputs to the dynamics model to be [sin(si), cos(si)] to capture the
rotational nature of the joint.

A.6 Experimental setting

For our experiments, we used four continuous-control benchmark tasks simulated via Mu-
JoCo [Todorov et al., 2012] that vary in complexity, dimensionality, and the presence of contact forces
(pictured Figure 2). The simplest is the classical cartpole swing-up benchmark (ds = 4, da = 1). To

14

evaluate our model with higher dimensional dynamics and frictional contacts, we use a simulated
PR2 robot in a reaching and pushing task (ds = 14, da = 7), as well as the half-cheetah (ds = 17,
da = 6). Each experiment is repeated with different random seeds, and the mean and standard
deviation of the cost is reported for each condition. Each neural network dynamics model consist of
three fully connected layers, 500 neurons per layer (except 250 for halfcheetah), and swish activation
functions [Ramachandran et al., 2017]. The weights of the networks were initially sampled from a
truncated Gaussian with variance equal to the reciprocal of the number of fan-in neurons.

A.7 Additional considerations

MPC horizon length: choosing the MPC horizon T is nontrivial: ‘too short’ and MPC suffer from
bias, ‘too long’ then variance. Probabilistic propagation methods are robust to horizons set ‘too long’.
This effect is due to particle separation over time (e.g. Figure A.7), which reduces the dependence of
actions on expected-cost further in time. The action selection procedure then effectively ignores the
unpredictable with our method. Deterministic methods have no such mechanism to avoid model bias
[Deisenroth et al., 2014], which compounds over longer time horizons, resulting in poor performance
if the horizon is set ‘too high’ as seen in Figure A.8.

10 20 30 40 50 60 70 80 90 100
Horizon

2000

1500

1000

500

0

500

Re
wa

rd

PE-TS
D-E

(a) Halfcheetah trial 1.

10 20 30 40 50 60 70 80 90 100
Horizon

2000

1000

0

1000

2000

3000

Re
wa

rd

PE-TS
D-E

(b) Halfcheetah trial 10.

10 20 30 40 50 60 70 80 90 100
Horizon

0

1000

2000

3000

4000

5000

6000

Re
wa

rd

PE-TS
D-E

(c) Halfcheetah trial 40.

10 20 30 40 50 60 70 80 90 100
Horizon

0

1000

2000

3000

4000

5000

6000

7000

Re
wa

rd

PE-TS
D-E

(d) Halfcheetah trial 80.

Figure A.8: Effect of MPC horizon on halfcheetah after different amounts of trials. Showing median,
and percentile bound 5 and 95, from 5 repeats of experiment.

MPC action sampling: We hypothesized the higher the state or action dimensionality, the more
important that MPC action selection is guided (opposed to the uniform random shooting method,
used by Nagabandi et al. [2017]). Thus we tested cross-entropy method (CEM) and random shooting
for various tasks confirming this hypothesis (details Appendix A.8).

0% 5% 10% 15% 20%
Action

0

2000

4000

6000

8000

Re
wa

rd

PE-TS
D-E
P-DS

Figure A.9: Modeling aleatoric uncertainty makes
MBRL more robust to stochasticity.

Stochastic systems: Finally we evaluate how
successful probabilistic networks mitigate the
detrimental effects of system stochasticity whilst
learning to control. We introduced probabilistic
networks as a means of capturing aleatoric un-
certainty (inherent and persistent system stochas-
ticities). Here we test how well probabilistic net-
works perform against deterministic networks
under stochasticities in the action space. We add
Gaussian noise onto the robot’s selected action,
of standard deviations ranging 0-20% of action
ranges permitted by MuJoCo. Figure A.9 shows
that probabilistic PE models perform better and
more consistently under system noise. Further visualizations are provided in Appendix A.9.

15

Model accuracy over time: Figure A.10 shows the evolution of a PE model’s accuracy on the
halfcheetah as it collects model trails of data (see legend).

0 20 40 60 80 100
Trajectory Number

0

10

20

30

40

50

60

M
ea

n
Sq

ua
re

d
Er

ro
r o

ve
r T

ra
je

ct
or

y
10
20

30
40

50
60

70
80

90
100

(a) Mean squared error.

0 20 40 60 80 100
Trajectory Number

50

40

30

20

10

0

M
ea

n
Ne

ga
tiv

e
Lo

g-
Pr

ob
 o

ve
r T

ra
je

ct
or

y

10
20

30
40

50
60

70
80

90
100

(b) Negative log likelihood.

Figure A.10: Model accuracy: our PETS dynamics model at trials 10-100 (see legend) make
predictions on trajectory seen at each trial (x-axis) and are scored (y-axis) according to mean squared
error (left figure) and negative log likelihood (right figure).

A.8 MPC action selection

CEM Random0

10000

20000

30000

40000

50000

Re
wa

rd

Figure A.11: Average reward achieved on ground truth
dynamics of the half-cheetah (using the MuJoCo simu-
lator itself as ground truth dynamics). The cross entropy
method (CEM) optimizer performs significantly better
than random shooting sampling. For fair comparison,
both use 2500 samples: CEM has five iterations of sam-
pling 500 candidate actions before choosing the elite
candidates, whereas random shooting simply sampled
2500 times. Shown is the median performance, with
error bars showing the 5 and 95 percentile performance
across random seeds.

We study the impact of the particular
choice of action optimization technique.
An important criterion when selecting the
optimizer is not only the optimality of the
selected actions, but also the speed with
which the actions can be obtained, which
is especially critical for real-world con-
trol tasks that must proceed in real time2.
Simple random search techniques have
been proposed in prior work due to their
simplicity and ease of parallelism [Naga-
bandi et al., 2017]. However, uniform ran-
dom search [Brooks, 1958] suffers in high-
dimensional spaces. In addition to random
search, we compare to the cross-entropy
method (CEM) [Botev et al., 2013], which
iteratively samples solutions from a candi-
date distribution that is adjusted based on
the best sampled solutions. To isolate the
comparison of optimizers from our dynam-
ics model, we instead use the ground truth
dynamics function (the MuJoCo simulator
itself) to evaluate candidate action sequences. The results (Figure A.11) show that using CEM signif-
icantly outperforms random search on the half-cheetah task. We use CEM in all of the remaining
experiments.

2Such as robotics, where control frequencies below 20Hz are undesirable, meaning that a decision need to be
taken in under 50ms.

16

A.9 Stochastic systems:

In Figure A.12f we compare and contrast the effect stochastic action noise has w.r.t. variable MBRL
modeling decisions. Notice methods that PE method that propagate uncertainty are generally required
for consistent performance.

20 40 60 80 100
Training Iterations

50
0

50
100
150
200
250

To
ta

l R
ol

lo
ut

 R
ew

ar
d

D-E-noisy D-E

(a) D-E

20 40 60 80 100
Training Iterations

50
0

50
100
150
200
250

To
ta

l R
ol

lo
ut

 R
ew

ar
d

P-E-noisy P-E

(b) P-E

20 40 60 80 100
Training Iterations

50
0

50
100
150
200
250

To
ta

l R
ol

lo
ut

 R
ew

ar
d

PE-DS-noisy PE-DS

(c) PE-DS

20 40 60 80 100
Training Iterations

50
0

50
100
150
200
250

To
ta

l R
ol

lo
ut

 R
ew

ar
d

PE-E-noisy PE-E

(d) PE-E

20 40 60 80 100
Training Iterations

50

0

50

100

150

200

250

T
o
ta

l
R

o
llo

u
t

R
e
w

a
rd

PE-TS1-noisy PE- TS1

(e) PE-TS1

20 40 60 80 100
Training Iterations

50

0

50

100

150

200

250

T
o
ta

l
R

o
llo

u
t

R
e
w

a
rd

PE-TS∞-noisy PE-TS∞

(f) PE-TS∞

Figure A.12: The distribution of cartpole’s reward for particular MBRL design decisions in the
presence of stochastic system noise (in this case additive noise onto the actions selected by the robot:
with standard deviation equal to 10% of each of the action range.)

A.10 Linear model comparison:

Figure A.13 shows that a linear model is unable to capture the halfcheetah dynamics well enough to
control it, and that a nonlinear model is necessary.

0 20 40 60 80 100
Number of Trials

0

1000

2000

3000

4000

5000

6000

Re
wa

rd

PE-TS
Linear Model

Figure A.13: Linear model comparison.

17

	Introduction
	Related work
	Model-based reinforcement learning
	Uncertainty-aware neural network dynamics models
	Planning and control with learned dynamics
	Our state propagation method: trajectory sampling (TS)
	Baseline state propagation methods for comparison

	Algorithm summary
	Experimental results
	Comparisons to prior reinforcement learning algorithms
	Analyzing dynamics modeling and uncertainty propagation

	Discussion & conclusion
	Appendix
	Well behaved probabilistic networks
	Fitting PE model to toy function
	One-step predictions of learned models
	Uncertainty propagation methods
	Forward Dynamics Model
	Experimental setting
	Additional considerations
	MPC action selection
	Stochastic systems:
	Linear model comparison:

