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Appendix

A Notation

Symbol Description
D a dataset of elements x1, . . . , xN

xi an element of the dataset D

C a cluster of elements from D

C a clustering, i.e. a set of clusters
CD the set of all clusterings of D

E(C) the energy of a cluster
E(C) the energy of a clustering
T cluster trellis with vertices V and edges E

T [v] subtrellis rooted at v

D(v) cluster associated with node v in a T

V (T )(i) vertices in T containing xi

V (T )(i) vertices in T which do not contain xi

Z(D(v)) partition function w.r.t. D(v)
Z(T [v]) partition function memoized for Z(D(v))

Table 1: Notation

B Case Study: Correlation Clustering

The energy-based clustering framework is compatible with any objective computed from a set of
non-negative cluster scores3.

One such objective that is widely used in practice is known as correlation clustering [1]. We present
the traditional correlation clustering model in this section and present it in the energy based correlation
clustering model in the next section. The input to correlation clustering is a complete (weighted)
graph, G = (V, E), where each edge has real-valued weight, i.e., wuv 2 R, (u, v) 2 E. The goal is
to construct a clustering of the vertices that maximizes the sum of positive edge-weights within each
cluster minus the negative edge-weights across the clusters.

Formally, let CV be the set of all clusterings of V . Given a clustering C 2 CV , the sum
of all positive within cluster edge-weights with respect to a clustering C is denoted S

+(C) =P
C2C

P
(u,v)2C wuv1{wuv>0}.

Similarly, S
�(C) is the sum of the negative across-cluster edges with respect to C. The optimal

clustering C
?
2 CV is the one that maximizes the sum of positive within-cluster edge weights

minus the sum of all negative across-cluster edge weights, C
? = maxC2CV S

+(C) � S
�(C) =

maxC2CV S
±(C). The problem is known to be NP-Hard[1].

There exist other objective functions over clusterings that are ordering-equivalent to S
±(·). Define

S(C) =
P

C2C
P

(u,v)2C wuv .

Fact 6. Let O
?
S±(CD) be the sequence containing all clusterings of a set of elements, D, in descending

order with respect to S
±(·). Let O

?
S(CD) be the sequence containing all clusterings of D, in

descending order with respect to S(·). Then O
?
S±(CD) and O

?
S(CD) are ordering-equivalent.

Fact 6 is not widely known, though it has occasionally been used implicitly. For example, Kappes
et al [10], state S(·) as the correlation clustering objective. We provide a proof of Fact 6 in the
Appendix.

Although the two methods for scoring a correlation clustering (i.e., S
±(·) vs. S(·)) may compute

different scores for the same clustering, Fact 6 implies that any clustering C of a dataset, D, has the
3One approach to using the energy-based clustering framework with negative cluster scores is to exponentiate

the cluster scores prior to inputing them into the framework, as we will see in this section.
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same ordering under both objectives. Importantly, the best clustering, C
?, is equivalent under either

objective. Our analysis focuses on S(·) since it is more convenient computationally when the number
of clusters is large, which is common in practice [24].

The correlation clustering objective is computed in terms of positive and negative edge weights
whereas our framework operates over non-negative energies. We can use a Gibbs distribution
to transform cluster scores to energies, similar to [10]. Specifically, E(C) =

Q
C2C E(C) =Q

C2C exp[
P

(u,v)2C wuv]. After computing cluster energies, the full probability distribution over
clusterings is constructed using the equations in Definition 2.

B.1 Computing Cluster Energy

Computing the energy of cluster C requires summing the |C|(|C|�1)
2 within-cluster edge weights.

Since the number of potential clusters is 2N � 1 (for a dataset of size N ), the naïve approach sumsPN
k=1

�N
k

�
·
|k|(|k|�1)

2 = 2N�3(N2
�N) = O(N2

· 2N ) edge-weights.

Fact 7. Let C be a cluster with |C| > 2 and let Ci and Cj be two distinct clusters such that

Ci ⇢ C, Cj ⇢ C and |Ci| = |Cj | = |C| � 1. Then, the energy of C can be expressed as

E(C) = E(Ci)E(Cj)E(Ci\Cj[Cj\Ci)
E(Ci\Cj)

.

Fact 7 follows from set algebra and the linearity of the energy function. Algorithm 3 exploits Fact 7
to speed up trellis construction. Algorithm 3 can be found in the Appendix.
Fact 8. Algorithm 3 constructs a trellis, T , for a graph G = (VG, EG) and computes the energy of

all clusters. Computing the energy of all clusters requires O(|V (T )|) =
�N
2

�
+
PN

k=3

�N
k

�
⇤ 4, steps

where N = |VG|.

Specifically, cluster energies are memoized at each vertex in the trellis and then reused to compute the
energies of new clusters before they are added to the trellis. The energy for cluster C corresponding to
vertex v in the trellis is denoted E(v) in Algorithm 3. As described below, ComputeEnergy uses the
fast computation described in Fact 7 with memoized values for each of the E terms at corresponding
vertices in the trellis. A proof of Fact 8 is provided in the Appendix.

C Max Partition Algorithm

Algorithm 2 MaxCluster(T , D)

Pick xi 2 D

MaxScore(D) 0
MaxPart(D) ;
for v in V (T )(i) do

Let v
0 be such that D(v0) = D \ D(v)

if MaxScore(D(v0)) has not been assigned then
MaxCluster(T [v0], D(v0))
if MaxScore(D) < E(D(v)) · MaxScore(D(v0)) then

MaxScore(D) = E(D(v)) · MaxScore(D(v0))
MaxPart(D) = D(v) [MaxPart(D(v0))

return MaxPart(D),MaxScore(D)
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D Trellis Construction Algorithm

Algorithm 3 ConstructTrellis(G = (VG, EG))

V (T ) ;
E(T ) ;
for i 1 through |VG| do

for C in Pi(V ) do
Let v be a vertex corresponding to C

V (T ) V (T ) [ {v}

for C
0 in Pi�1(C) do

Let v
0 be the vertex corresponding to C

0

E(T ) E(T ) [ {(v0, v)}
E(v) ComputeEnergy(v)

return T

E Proof of Theorem 1

Proof. We compute Z(T ) using the equation defined in Fact 1. To begin, an element xi 2 D is
chosen and V (T )(i) is constructed. Computing Z(T ) requires the cluster energy of each v 2 V (T )(i)

(recall that there are 2N�1 such vertices) and the corresponding partition functions. These partition
functions are computed for a sub-trellis T [v] such that xi /2 D(v). Let T

k be the set of sub-trellises
of T over k elements none of which are xi. If the partition function of every sub-trellis in T

k�1 is
computed and memoized before the partition function of any sub-trellis in T

k, then, for any sub-trellis
T [v] 2 T

k, all relevant partition functions will have been memoized. By Fact 2, computing Z(T [v])
includes exactly 2k�1 terms.

What remains to be analyzed is the number of sub-trellises in each set T
k. Recall that any sub-trellis

in T
k must not contain the element xi. Then, the number of sub-trellises in T

k is
�N�1

k

�
. Summing

over all subtrellises, we must compute:
N�1X

k=1

✓
N � 1

k

◆
2k�1 =

1

6
(3N � 3)

terms. In total, computing the cost of the summing over all the subtrellis and the cost of computing
Z(T ) as given by Fact 2 is 1

6 (3
N
� 3) + 2N�1 = O(3N ). Since |V (T )| = 2N , then O(3N ) =

O(|V (T )|log(3)).

F Proof of Fact 2

Proof. According to Fact 1, Z(T ) can be written as a sum of products of cluster energies and partition
functions. Note that V (T )(i) and V (T )(i) are disjoint, V (T )(i) [ V (T )(i) = V (T ), and V (T )(i)

represents the nonempty sets in the powerset of N � 1 elements. This implies the size of V (T )(i)

is 2N�1. Therefore, in the special case described in Fact 2, the trellis can be used to compute the
partition function in time 2N�1.

G Proof of Fact 3

Proof. Consider C
?(D(v)), the clustering with the maximal energy over D(v). Select an arbitrary

element xi 2 D(v). Since C
?(D(v)) is a valid clustering, it must contain only one cluster that

contains xi; call that cluster C
?
i . Let cluster C

?
i be represented by a node v

0
2 V (T [v]). Given C

?
i ,

we can construct C
?(D(v)) by finding the maximal clustering of the remaining elements, i.e.,

argmax
v002CD(v)\D(v0)

E(D(v00)) = E(C?(D(v) \ D(v0)))

Finally, C
?
i 2 C

?(D(v)) since we take the argmax with the respect to V (T [v])(i) and C
?
i 2

V (T [v])(i).
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H Proof of Fact 4

Proof. Observe that the number of recursive calls to Algorithm 2 is the same as the number of
recursive calls to Algorithm 1. Next, observe that the amount of computation required at each
recursive call follows the same argument as in the proof of Theorem 1.

I Proof of Fact 5

Proof. Recall that Algorithm 1 begins by constructing V (T )(i) with respect to an arbitrary element
xi. Analogously, for the sparse trellis bT we construct bV (i). Note that |bV (i)

| < 2N�1 or else bT = T .
By our zero-energy assumption, for all v 2 V (T )(i)\bV (i), E(v) = 0. Therefore, the energy of any
clustering that is not computed by Algorithm 1 is also zero and may be omitted when computing the
partition function of bT .

Finally, we show by contradiction that the algorithm does not omit any clusterings with non-zero
energy. Assume that the algorithm does not compute the energy of a clustering C that has non-zero
energy. Since C is a valid clustering, it must contain a cluster C that contains the element xi. If
C 2 bT then the vertex v that represents C must be in bV (i) and E(v) > 0, so the algorithm would
have computed its energy. Therefore, v /2 bV (i) which means that E(C) = 0, a contradiction.

By Theorem 1, this algorithm runs in O(|bT |
log(3)) time and space linear in |bT |. Note that due to the

constraint that bT be closed under recursive complement, for every vertex v in the sparse trellis such
that v has no parents in bT , each element xi 2 D(v) is contained in |bT [v]|/2 clusters, allowing the
same counting argument as in the proof of Theorem 1.

J Tree-structured Sparse Trellis

The often-used hierarchical (tree structured) clustering encompasses one family of sparse trellises.
Each vertex in a tree-structured trellis has at most one parent. A tree-structured trellis meets the
definition of a sparse trellis since for any two vertices, v1, v2 in such a trellis, exactly one of the
following must hold: D(v1) ⇢ D(v2), D(v2) ⇢ D(v1), or D(v1) \D(v2) = ;. This family has the
advantage that many practical algorithms can be used for trellis construction, such as hierarchical
agglomerative clustering.Previous work explores using trees to encode distributions over clusterings,
though the focus is limited to modeling mixtures of tree consistent partitions rather than computing
the marginals, maximal clusterings, and the partition function[7, 3].

We are able to compute the maximal clustering in a tree-structured (sparse) trellis, T , in O(|T̂ |)
time and space as follows. Starting at the leaves, compare the energy of a parent and the product
of its childrens’ energies. Store the maximum of these two options at the parent, along with the
corresponding clustering (either the parent or the union of the clusterings stored at each child).
Continue the process upwards until the root of the trellis is reached. At the end of this process the
root contains the clustering with the maximal energy as well as the corresponding energy. The proof
of correctness is analogous to the one given for Fact 1.

We can use a similar technique to compute the partition function of a tree-structured trellis.
Fact 9. Let p be a parent vertex and let ch(p) be p’s children. Beginning at the leaves, proceed up

the tree computing Z(p) = E(p) +
Q

c2ch(p) Z(c), where Z(·) is the (memoized) partition function

at a node. Then Z(root) will contain the partition function for tree-consistent partitions.

Proof. We must compute the partition at p. Note that if p is a leaf, the partition function at p is E(p).
Otherwise, let ch(p) be the children of p. First, note that a valid clustering of D(p) consist of the
union of a clustering from each of the children of p, c 2 ch(p). The same is true for c, and all of
p’s descendents. Also, note that the energy of this sampled clustering is simply the product of the
energies of the samples. Recall that a partition function of a child v 2 ch(p), Z(v) is a sum of
clustering energies over all clusterings of the descendants of v. Therefore,

Q
v02ch(p) Z(v0) is a sum

of terms, each term being a product of one clustering from each child in ch(p), i.e., a valid clustering
of the descendants of p. Notice that this product contains all valid clusterings of the descendants of p
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such that each valid clustering is built by taking the union of a clustering from each child in ch(p).
Also, no clustering will be double counted because all of p’s children are disjoint. Adding the energy
of the complete partition, E(p), to this product computes the partition function of p.

K Proof of Fact 3

Proof. The algorithm constructs the trellis by computing clusters in ascending order of size– that
is all clusters of size i are computed before clusters of size i + 1. Edges are constructed between
vertices u and v if u represents a maximal proper subset of v’s cluster. Note that we use Pi(V ) to
represent the sets in the powerset of V with cardinalty i.

Since the trellis is connected it is clear that every vertex will be visited. The sets represented by leaf
nodes in the trellis are singletons, so there are no pairwise weights, therefore each leaf has score
equal to 0 and energy equal to 1. The score of a vertex with two elements is defined by the correlation
cluster affinity matrix. For all other verticies, v, we can select two children of v, call them vi, vj , such
that D(vi) [ D(vj) = D(v). We then compute E(D(v)) using Fact 7. Note that because |D(vi)|,
|D(vj)|, |D(vi) \D(vj)|, and |(D(vi) \ D(vj)) \ (D(vj) \ D(vi))| are all less than |D(v)|, each of
their energies are computed by Algorithm 3 prior to computing E(D(v)) and need not be recomputed.
Therefore the computation takes

�N
2

�
+
PN

k=3

�N
k

�
⇤4 = 4(2N�N

2
/2�N/2�1)+1/2(N�1)N =

O(2N ) = O(|V (T )|) operations.

L Proof of Fact 6

Two functions, f1,f2 are said to be order equivalent iff 8ci, cj 2 C, f1(ci) <= f1(cj) =)
f2(ci) <= f2(cj).

f(c) :=
X

ci2C

X

u,v2Ci

wuv ⇤ 1{wuv>0}

�

X

ci,cj2C

X

u2ci

X

v2cj

wuv ⇤ 1{wuv<=0}

g(c) :=
X

ci2C

X

u,v2Ci

wuv

We want to show that f(c) is order equivalent with g(c)

Proof. Note that

8C 2 Cn,

X

ci,cj2C

X

u2ci

X

v2cj

wuv ⇤ 1{wuv<=0}

+
X

ci2C

X

u,v2Ci

wuv ⇤ 1{wuv<=0} = E
�
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where E
� is a constant function of the input affinity matrix.

g(c) =
X

ci2C

X

u,v2Ci

wuv ⇤ 1{wuv>0}

+
X

ci2C

X

u,v2Ci

wuv ⇤ 1{wuv<=0}

g(c)�
X

ci2C

X

u,v2Ci

wuv ⇤ 1{wuv<=0} = f(c)

+
X

ci,cj2C

X

u2ci

X

v2cj

wuv ⇤ 1{wuv<=0}

g(c) = f(c) +
X

ci,cj2C

X

u2ci

X

v2cj

wuv ⇤ 1{wuv<=0}

+
X

ci2C

X

u,v2Ci

wuv ⇤ 1{wuv<=0}

g(c) = f(c) + E
�

M Likely Joins and Splits

The trellis can facilitate computing the most likely join, i.e., the pair of clusters that maximally
increases the resultant clustering energy when combined:

argmax
C,C02C

{E(C [ C
0) ⇤ 1{E(C[C0)>E(C)⇤E(C0)}}.

We also consider the most likely split of a cluster. For a cluster C, this reduces to finding the MAP
estimate for the partitioning of C. This can be computed directly using the subtrellis rooted at the
vertex corresponding to C. An alternative approach to using the trellis for finding likely splits for
clusters in a clustering is to choose to place a restriction on the set of possible splits, for example
that only a single datapoint can be split from an existing cluster C 2 C. These splits are the set of
children of the verticies in the trellis corresponding to clusters in C, and the one among them that
maximally increases the resultant clustering energy is

argmax
u2children(v(C))

{E(D(u)) ⇤ 1{E(D(u))>E(D(v))}|C 2 C}

where
children(v) = {u|u 2 T , D(u) ⇢ D(v),

||D(u)|� |D(v)|| = 1}

and v(C) is the vertex in T corresponding to C.

N Synthetic Data Example

We provide the following synthetic data example. We provide the probabilities and energies of
various clusterings of a Grid dataset, in which energies are computed by correlation clustering and
exponentiating the negative Euclidean distance between examples (which are simply evenly spaced
points on a grid). Notice that the MAP clustering and other clusterings in the Grid dataset exhibit
relatively similar probabilities.
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(a) Grid dataset.

MAP Horizontal Complete InsideShattered

(b) Clustering probabilities.

Data Clustering Prob. Energy
MAP 2.262e-06 10.206

Horizontal 5.403e-07 2.437
Grid Complete 2.216e-07 1.000

Shattered 2.216e-07 1.000
Inside 7.968e-08 0.356

Figure 6: Probability of clusterings of the Grid dataset.

O Pairwise Energies vs. Marginals in UCI Zoo Dataset

We repeat our experiment comparing pairwise energies vs. marginals, as described in section 5, using
data selected from the UCI zoo dataset [5]. Energies are computed by exponentiated cosine similarity.
Figures 7 and 8 show that the energies and marginals for many pairs are not well correlated. For
example, the pair sea wasp and termite has high energy, however the marginal probability of the pair
being clustered together is low.
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Figure 7: Heatmap of the pairwise energies
between the animals.
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Figure 8: Heatmap of the marginal probability that
a pair of animals will be clustered together.

P MAP Clustering of TCGA

The MAP clustering of the TCGA subsample is
C1: {7b57, 74ca, 28a2, 73ac, 200e, 62da, d6fa, c532}, C2: {6a88, 0232}, C3: {a8f5}
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