IR B N I N I SR

N=l

A Pseudo-code for Meta-Gradient Reinforcement Learning Algorithms

In this section, we provide the pseudo-code for meta-gradient reinforcement learning algorithms:

Algorithm 1: Meta-Gradient Reinforcement Learning

Input: minibatch size B, meta minibatch size B’, learning rate «, meta learning rate 8 and
reference meta-parameter 7 .

Initialise agent parameter # and meta-parameter 7 ;

while training do
Sample trajectories 7 = {71, 72, ..., 7} for updating agent 6 ;
Sample trajectories 7' = {7{,75, ..., Tp } for updating 7 ;
Compute the objective J (7, 6, n) over trajectories 7 € T ;
Obtain the updated agent 6’ < 6 — aw ;
Compute the meta-objective J(7/,6’, 77) over trajectories 7/ € T ;
Update agent parameter 6 < 6 ;
Update meta-parameter 1) < 1 — BW ;

end

In the agent update and meta-parameter update steps, i.e. Line 6 and Line 9 in Algorithm[I] we can
generalise the illustrated SGD updates into optimisers like RMSProp [Tieleman and Hinton, [2012]
and ADAM [Kingma and Ba, |[2015].

B Detailed Hyper-Parameters used in the Atari Experiments

In Table[2] we describe the details of the important hyper-parameters used in the Atari experiments.
The IMPALA hyper-parameter section is following |[Espeholt et al.|[2018]], which is provided here for
self-contained purpose. The hyper-parameters in meta-gradient section are obtained by a search on
six games (Beamrider, Breakout, Pong, Q*bert, Seaquest and Space Invaders) following common
practice in Deep RL Atari experiments [van Hasselt et al., 2016, [Mnih et al., 2016, [Wang et al.,
2016b|). All of the hyper-parameters are fixed across all Atari games.

IMPALA hyper-parameter Value

Network architecture Deep ResNet

Unroll length (n) 20

Batch size (B) 32

Baseline loss scaling (c) 0.5

Entropy cost (d) 0.01

Learning rate () 0.0006

RMSProp momentum 0.0

RMSProp decay 0.99

RMSProp € 0.1

Clip global gradient norm 40.0

Learning rate schedule Anneal linearly to 0
Number of learners 1 (NVIDIA P100)
Number of actors 80

Meta-gradient hyper-parameter Value

Trace decay (1) 0

Meta learning rate () 0.001

Meta optimiser ADAM [Kingma and Ba, [2015]]
Meta batch size (B’) 8

Meta update frequency Along with every agent update
Embedding network e, A linear embedding layer
Embedding size for n 16

Table 2: Detailed hyper-parameters for Atari experiments.

13

C Implementation Details

C.1 V-trace Return
The A-return [Suttonl |1988]] is defined as

G} = Rir + 71 (1 — Aes1)0(Seg1) + 1 Me41Gys -
This can be rewritten [Sutton et al., [2014]] as

Gi\ = 'U(St) + (5t + ’yt+1>\t+15t+1 + ...

[eS) k
=v(S) + > | [T rveridees | Serrs

k=0 \j=1

where §; = Ry 1 + Ye+10(St+1) — v(St), where we use the convention that H?zl =1

This return is on-policy. For some algorithms, especially policy-gradient methods, it is important that
we have an estimate for the current policy. But in the IMPALA architecture, the data may be slightly
stale before the learning algorithms consumes it. Then, off-policy corrections can be applied to make
the data on-policy again. In particular, IMPALA uses a v-trace return, defined by

) k
Gy =o(S) + Y corr | [[vewscees | een,
k=0 j=1

where ¢; = min (1, p;) and p; = %, where 7 is the current policy and 7 is the (older) policy

that was used to generate the data. Note that this return can be interpreted as an adaptive-\ return,
with a fixed adaptation scheme that depends only on the off-policy nature of the trajectory. A similar
scheme was proposed by Mahmood|[2017].

C.2 Calculate the Meta-Gradient with Auto-Diff

An important fact to note in the proposed approach is that, the update rule for — ¢’ in first-order
optimiser is linear and differentiable. In modern machine learning frameworks like TensorFlow [Abadi
et all 2016], we can alternatively obtain the meta-gradient specified in Equation (2)), by utilising
the automatic differentiation functionality in the framework. The only requirement is to rewrite the
update operations so that the agent update can allow the gradient to flow through, noting that the
build-in update operations are typically not differentiable in the common implementations.

C.3 Data Efficiency

In order to reduce the data we needed for meta learning, we can reuse the experiences for both agent
training and meta learning. For example, we can use experiences 7 for updating 6 into 6, validate the
performance of this update via evaluating J on experiences 7’. Vice versa, we can swap the roles
of 7 and 7/, then use experiences 7’ for updating 6, and validate the performance of this update via
evaluating J on experiences 7. In this way, the proposed algorithm does not require any extra data
other than the ones used to train the agent parameter 6 to conduct the meta learning update on 7.

C.4 Running Speed

As for running speed, with one learner on NVIDIA P100 GPU and 80 actors on 80 CPU cores,
our method runs around 13K environment steps/second, compared to around 20K environment
steps/second of IMPALA baseline on the same hardware and software environments. We introduce
around 35% additional compute overhead from the meta-gradient updates, however with this minor
overhead we can boost the performance significantly. We’d like to highlight that the total wall clock
time is about 4 hours for learning from 200 Million frames in each game.

14

C.5 IMPALA

We used the IMPALA algorithm with the deep architecture and the experts mode of training. In this
mode, a separate agent is trained on each environment (i.e. the standard RL setting), as opposed to a
multi-task setting. Population-based training was not utilised by the IMPALA experts in [Espeholt.
et al.| [2018]); we follow this convention. In principle, v and A could be exposed to population-based
training (PBT) [Jaderberg et al.,|2017a]], however, this would blow up the computation time by the
size of the population (24 in [Espeholt et al.| [2018]]), which is beyond reach for typical experiments;
furthermore adaptation by PBT does not exploit the gradient and is therefore perhaps less likely scale
to larger meta-parameterisations.

D Baseline Experiments on Atari Games

In this section, we show the baseline experiment results on Atari, including grid search and an
approach to predict auxiliary value functions for multiple discount factors.

D.1 Results of Grid Search of Discount Factor + on Atari Experiments

We conduct simple grid search on the discount factor v, i.e., let v = 0.99,0.995,0.998,0.999
respectively, and apply it in the IMPALA framework. The grid search of discount factor + is to
find some good 7 (7] = ¥ in this case) to be used in the meta-objective J (7', ¢’,), so that the meta
learning approach can have a good proxy to the true return to learn from.

Table 3: Performance comparison of IMPALA baseline with different discount factor +, all scores are
human-normalised [Mnih et al.,[2015, [Wang et al.,|2016b}, van Hasselt et al., 2016].

Human starts | No-ops starts
Agents median median
~ = 0.99 [Espeholt et al.| [2018]] 144.4% 191.8%
~v=0.995 211.9% 257.1%
v = 0.998 208.5% 210.7%
v = 0.999 114.9% 153.0%

As we can see from Table[3] the discount factor y has huge impact on the agent performance.

In addition, we use grid search as a way to pick the best v for each game and evaluate each game
with the chosen 7 in a fresh run. The grid search is performed over the same range of discount factors
as above. This obtains a median score of 214.7% under human-starts evaluation, compared to 268%
with our meta-gradient method.

D.2 Results of Learning Auxiliary Value Functions for Multiple Discount Factors

Since the agent is learning with an online adapting discount factor v, one hypothesis of the perfor-
mance improvement could be, the agent is learning from multiple discount factors and predicting
the value functions over multiple timescales. To validate the hypothesis, we conduct a baseline
experiment, which performs auxiliary tasks to predict the value functions with additional discount
factors (e.g. the agent augments IMPALA (y = 0.99) with auxiliary tasks to predict value functions
for v = {0.995,0.998,0.999}). The additional value predictions share the representation of the agent
and have a linear layer to predict the values for each of the additional discount factor. We compare
the results against our meta-gradient approach and the IMPALA baseline (7 = 0.99). We report the
median human-normalised scores under human-start evaluation condition, which the auxiliary value
predictions baseline obtains 152.5%. Though it improves from the IMPALA baseline (144.4%), it’s
much lower than what the meta-gradient approach achieves (233.2%), suggesting the primary benefit
indeed comes from adapting the meta-parameter 7).

15

E.1 Relative Performance Improvement in Individual Games
ing discount factor, i.e., n = {~v}, in Figure [2 and results of adapting both discount factor and

compared to the IMPALA baselines in individual Atari 2600 games. We show the results of adapt-
bootstrapping parameter, i.e., 7 = {7, A}, in Figure[3]

In this section, we provide the relative performance improvement of the meta-gradient algorithm

E Additional Experiment Results on Atari Games

I 96€ S€¢ Puogsauwel
I 99 T Puewwiouaddoy>
I, 6989 Hazioq
N °-281T Aue30qo.
I, 0L T 00debue
[©: 0T Sluu23
[%v6 oM jo”piezim
N %16 9buanal sieA
[%€ 2ydob
I %9t Jepu-weaq
I ckee opadinuad
[%627 nesse
Io\av~ sploJajse
[%€2 umop™udn
[%cz Jeasew nyTBuny
[%z Jepuasep
[%0z xwusoyd
[%81 0nd swn
%L1 presssau
[EIASRC ERVER]
%91 siopenul adeds
[%rT Jauunbiels
I %TT oy
%8 dweb siy aweu
B%S 3sieujueq
%€ wejueiny
%2 llequid oapin
%z junp a|qnop
%1 lread
[%t Buixoq
%T Jaquid Azesd
%1 Jejnelb
%1 bBuod
%0 9ka @1eaud
%0 >2ene uowsp
%0 2qIsoy
|%0 2imuan
[%0 1IN
[%0 snuepe
[%0 Aemaday

01npud %0
Aquap~buiysly %0-
2buanal ewnzajuow 9%Q-
punoLINs %T-
J3uuni_peos %T-
1sanbeas o,z-

SLIR|OS %€-

noxealq %

|
|
|
|
|
]
[]
xua1se %s- [l
[|
-

Jepiwe %/-
auo0z 3|13eq %0T
buimoq %gT- [
uewded sw %ege- I
voxxez o9s-
vatre - [
voab ose- I
Bups %65 T- [

[IWang et al.|, |2016b|]. Improvement

proposed—baseline
max (human,baseline) —random
16

Figure 2: The relative performance improvement of the meta-gradient algorithm, adapting discount
factor, i.e., n = {~v} with § = 0.99, compared to the baseline IMPALA (v = 0.99) in individual Atari

over 200% is capped into 200% for visualisation.

2600 games, where the gain is given by

I, %8 L $13233q
I +€0€ pueuiwod iaddoy>
I 0 0€ T 0oJebuex
[©4v8T Sploi2ise
] %0€ T SIUU3)
[— e T T xiuzoyd
[%S domjo” paezim
[veee 6o
[%9€ umop u~dn
I %SE xuaise
[% ve 4oydob
[vsee oy
I %€z 9buanaiTsieA
I %L1 l1equid oapIA
[%91 pretianu
[%ST puogsawel
I %ZT Jepiue
%01 nesse
.$w Jauuni peos
W%9 dweb sy aweu
%z Jaquip Azen
|%z 9As7aennd
%z ougisoy
[%T noxeaiq
[%0 shuepe
[%0 Buiis
|%0 Aemaauy
[%0- oJnpus
|%0- Buod
|%0- >2ene uowsp
%0~ 24MUA
%0- Jejnelb
%0- 2BuUIAII eWNZIIUOW
%T- Aqiap buiysly
%T- 1senbeas
%T- llesud
[t~ junp-a|gnop
[%1- suejos
[Pez- punouns
by~ Jauunbiels
8U0Z 9|1eq %E-
uewded sw %p-
J3sew” nybuny %9-
A0y 921 %8-
weyjuein %6-

]
|
|
Auejoqol %6- [
[|
[|

ojd”awn %0T-
JepluTweaq %z1-
stayIueq %ET- [l
buiimoq %8 1- [
1IN %52~ [
uoxxez %6¢- [N
uaiie 569y~ |
2ab %05~ |
13pU249P %8S~ [
2padiua> 9% - [
siopenur@2eds 5¢6- [

discount factor and bootstrapping parameter, n = {7, A} with ¥ = 0.995 and A = 1, compared

[IWang et a1.|, |2016b|]. Improvement over 200% is capped into 200% for
17

Curves

ining

proposed—baseline
max (human,baseline) —random

Figure 3: The relative performance improvement of the meta-gradient algorithm, adapting both
visualisation.

In this section, we provide the training curves for two representative experiments: adapting n = {v}

to the baseline IMPALA (y = 0.995) in individual Atari 2600 games, where the gain is given by
with 4 = 0.99 (Figure[d) and adapting 1) = {7, A} with 5 = 0.995 (Figure3).

E.2 Tra

CRE T T O A O O
(f §z

RN

R

Figure 4: Training curves for meta learning n = {~} with 4 = 0.99. We provide the comparison of
scores against baseline, and the change of for each game. Best viewed in electronic version.

18

A
———
—
o
\m
o
——
o~
_A,—/\f
\\&\‘v
\\HM\
e
—
e
—
N

Figure 5: Training curves for meta learning 7 = {7, A} with ¥ = 0.995 and A\ = 1. We provide the
comparison of scores against baseline, the change of -, and the change of A for each game. Best
viewed in electronic version. 19

	Pseudo-code for Meta-Gradient Reinforcement Learning Algorithms
	Detailed Hyper-Parameters used in the Atari Experiments
	Implementation Details
	V-trace Return
	Calculate the Meta-Gradient with Auto-Diff
	Data Efficiency
	Running Speed
	IMPALA

	Baseline Experiments on Atari Games
	Results of Grid Search of Discount Factor on Atari Experiments
	Results of Learning Auxiliary Value Functions for Multiple Discount Factors

	Additional Experiment Results on Atari Games
	Relative Performance Improvement in Individual Games
	Training Curves

