
Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample
Complexity

Appendix A Detailed Proofs

The following technical lemma, which characterizes the precision matrix ⌦ and the conditional mean
of the i-th random variable, given all other variables, in terms of the weight matrix B, will be useful
in later proofs.
Lemma 5. Let (G,P(W,�

2

)) be a GBN, B be the weight matrix corresponding to W and ⌦ = (⌦i,j)

be the inverse covariance matrix over X . For all j 6= i, we have that: ⌦i,j = (

1

/�2
)(B

T
⇤iB⇤j �

Bi,j �Bj,i), ⌦i,i = (

1

/�2
)(1 +B

T
⇤iB⇤i) and E [Xi|(X�i = x�i)] = ✓T

i x�i, where

✓ij = �⌦i,j

⌦i,i
=

Bi,j +Bj,i �B

T
⇤iB⇤j

1 +B

T
⇤iB⇤i

.

Proof of Lemma 5. Consider the conditional distribution of Xi|(X�i = x�i). From standard results
for Gaussians (see e.g., Chapter 2 of [31]), we have that:

Xi|(X�i = x�i) = ✓T
i x�i + "

0
i, where (10)

✓i = ⌃i,�i(⌃�i,�i)
�1

= �⌦i,�i

⌦i,i
and "

0
i ⇠ N (0,⌦

�1

i,i). (11)

From (5) we have that:

⌦i,j =
1

�

2

(I⇤i �B⇤i)
T
(I⇤j �B⇤j)

=

1

�

2

(B

T
⇤iB⇤j �Bi,j �Bj,i) (8j 2 �i), (12)

⌦i,i =
1

�

2

(I⇤i �B⇤i)
T
(I⇤i �B⇤i) =

1

�

2

(1 +B

T
⇤iB⇤i), (13)

where in (12) we used the fact that I⇤j is a vector of all zeros except for a one at the j-th index and in
(13) we used the fact that BT

⇤iI⇤i = Bi,i = 0. Combining (12) and (13) we prove our claim.

Next, we give detailed proofs of all the lemmas and theorems in our manuscript.

Proof of Lemma 1. The forward direction ()) follows directly from (5) and the fact that for a
terminal vertex i, B⇤,i = 0.

Now consider the reverse direction ((). In the first case, we have ✓i = ��

2

⌦i,⇤ 6= 0. Then, there
exists a j 2 �i such that ✓ij = ��

2

⌦i,j 6= 0, which implies, from Lemma 5, that B⇤,i = 0 and
therefore i is a terminal vertex.

In the second case, we have ✓i = ��

2

⌦i,⇤ = 0. We will proceed with a proof by contradiction.
Assume that i is not a terminal vertex. Then, there exists an edge (j, i) 2 E. Further, since ✓i = 0,
we must have, from Lemma 5, that Bi,j +Bj,i = B

T
⇤,iB⇤,j 6= 0. Therefore, nodes i and j must have

common children. Denote the set of common children of i and j by C
def

= �(i)\�(j). There must be
a node k 2 C such that nodes i and k in turn do not have any common children, otherwise the DAG
G must have a cycle. Now if i and k do not have any common children, then ✓ik = ��

2

⌦i,k 6= 0,
which is a contradiction. Therefore, i must be a terminal vertex.

Proof of Lemma 2. From Theorem 6 of [29] we get that |⌦⇤ � b
⌦|1  4k⌦⇤k

1

�n  ↵
/�2, if

�n  ↵
/4�2k⌦⇤k1. The lower bound requirement on �n comes from Theorem 6 of [29]: �n �

k⌦⇤k
1

|⌃⇤ �⌃

n|1.

Next, we show that the empirical covariance matrix ⌃

n is concentrated around the true covariance
matrix ⌃

⇤, elementwise, by using the results of [24]. Note that Xi
/

p
⌃⇤

i,i ⇠ N (0, 1). Therefore, from
Lemma 1 of [24], we have for a fixed i and j:

Pr{|⌃⇤
i,j �⌃

n
i,j | � "

0}  4 exp

⇢�n"

02

C

1

�
.

11

Therefore, by a union bound over all entries of ⌃n, we have:

=) Pr{|⌃⇤ �⌃

n|1  "

0} � 1� 4p

2

exp

⇢�n"

02

C

1

�
.

By setting 4p

2

exp(

�n"02
/C1) = � and solving for "0 we get that the following holds with probability

at least 1� �:

|⌃⇤ �⌃

n|1 
r

(

C1
/n) log

⇣
4p

2

�

⌘

The lower bound on the number of samples comes from ensuring that lower bound on �n is less than
the upper bound ↵

/4�2k⌦⇤k1, i.e., k⌦⇤k
1

p
(

C1
/n) log(4p

2
/�)  ↵

/4�2k⌦⇤k1.

Proof of Lemma 3. Let ⌃n def

= (

1

/n)XT
X, be the sample covariance matrix. We first lower bound

the minimum eigenvalue of the sample covariance matrix, �
min

(⌃

n
Si,Si

), which will be used later on
in the proof. For the purpose of this proof, we will simply write S instead of Si, since we will derive
our results for the i-th node for any i 2 [p].

�

min

(⌃

n
S,S) = min

kyk2=1

1

n

k(X⇤,S)yk2
2

=

s

2

min

(X⇤,S)

n

, (14)

where s

min

(.) (respectively s

max

(.)) denotes the minimum (respectively maximum) singular value.
Now note that for any l 2 [n], the |S|-dimensional vector Xl,S(⌃

⇤
S,S)

�1/2 is drawn from an isotropic
Gaussian distribution. Therefore, from Theorem 5.39 of [32] we have:

s

min

(X⇤,S(⌃
⇤
S,S)

�1/2
) � p

n� C

p
|S|� t,

with probability at least 1 � 2 exp(�ct

2

), where C and c are absolute constants that depend only
on the sub-Gaussian norm kXS(⌃

⇤
S,S)

�1/2
)k 2 . Next, using the fact that s

min

(X⇤,S(⌃
⇤
S,S)

�1/2
) 

s

min

(X⇤,S)smax

((⌃

⇤
S,S)

�1/2
), we get:

s

min

(X⇤,S) �
p
n� C

p|S|� t

s

max

((⌃

⇤
S,S)

�1/2
))

= s

min

((⌃

⇤
S,S)

1/2
))(

p
n� C

p
|S|� t). (15)

Finally, from (14) and (15), we have that:

�

min

(⌃

n
S,S) � �

min

(⌃

⇤
S,S)

1� C

r
|S|
n

� tp
n

!
2

� �

min

(⌃

⇤
S,S)

4

(16)

with probability at least 1� 2 exp(�cn), where c is an absolute constant, and the second line follows
from controlling the second term inside the parenthesis to be at most 1

/2.

Next, from the normal equations of least squares, we have that b✓i
S = (⌃

n
S,S)

�1

⌃

n
S,i, while the true

coefficient vector satisfies: ✓i
S = (⌃

⇤
S,S)

�1

⌃

⇤
S,i. For notational simplicity, let us write ✓S and b✓S,

respectively, instead of ✓i
S and b✓i

S. From the entry-wise tail bounds for the sample covariance matrix
derived by [24], we have that:

k⌃⇤
S,S✓S �⌃

n
S,S
b✓Sk1 = k⌃⇤

S,i �⌃

n
S,ik1  "

0
, (17)

with probability at least 1 � 4|S| exp((�n"02)
/C1). Let �S

def

=

b✓S � ✓S. Then, using the reverse
triangle inequality we get:

k⌃⇤
S,S✓S �⌃

n
S,S
b✓Sk1

= k(⌃⇤
S,S �⌃

n
S,S)✓S �⌃

n
S,S�Sk1

12

� k⌃n
S,S�Sk1 � |S|"0k✓Sk1. (18)

Next, from (17) and (18) we get:

k⌃n
S,S�Sk2  |S|3/2"0(k✓Sk1 +

1

/|S|)

=) k�Sk2  |S|3/2"0(k✓Sk1 +

1

/|S|)

�

min

(⌃

n
S,S)

=) k�Sk1  4|S|3/2"0(k✓Sk1 +

1

/|S|)

�

min

(⌃

⇤
S,S)

 ↵,

with probability at least 1� 4|S| exp�� n c↵�min(⌃
⇤
S,S)

|S|3/2(k✓Sk1+

1/|S|)

�
, where the second line follows from the

fact that ⌃n
S,S is full rank (with high probability), and the last line follows from (16) and the fact that

k.k1  k.k
2

. Finally, by controlling the probability of error to be at most �, we derive the lower
bound on the number of samples.

Proof of Lemma 4. Let B be the weight matrix corresponding to the edge weights W, and let B0
=

B�i,�i denote the weight matrix corresponding to the edge weights W0. Consider any topological
order ⌧ 2 TG. We will denote by (i)⌧ the i-th node in the toplogical order ⌧ 2 TG. The joint
distribution over (X⇤,(1)⌧ , . . . ,X⇤,(p)⌧) is given by a linear SEM where X⇤,(i)⌧ depends only on the
variables occurring before the variable (i)⌧ in the topological order ⌧ :

X⇤,(i)⌧ =

i�1X

j=1

B

(i)⌧ ,(j)⌧X⇤,(j)⌧ + ",

with " ⇠ N (0,�

2

). Therefore, if we remove a terminal vertex, then the linear equations that describe
the remaining variables do not change. Thus, if ⌦0 and ⌃

0 denote the precision and covariance matrix
after removing node i, which is a terminal node, then:

⌦

0
=

1

�

2

(I�B

0
)

T
(I�B

0
)

=

1

�

2

(I�B�i,�i)
T
(I�B�i,�i)

⌃

0
= �

2

(I�B

0
)

�1

(I�B

0
)

�T

= �

2

(I�B�i,�i)
�1

(I�B�i,�i)
�T

.

The fact that P(W0
,�

2

) is causal minimal (Assumption 1) and ↵-RSAF (Assumption 2) is self
evident. Next, using the fact that ⌃0

= ⌃�i,�i, we have:

0 < �

min

(⌃) = min

{y2Rp|yTy=1}
y

T
⌃y

 min

{y2Rp|yTy=1^yi=0}
y

T
⌃y

= min

y2Rp�1
y

T
⌃

0
y = �

min

(⌃

0
).

This proves that the distribution P(W0
,�

2

) is non-singular. Finally, the precision matrix and the
covariance matrix for X�i is given by ⌦

0
= ⌦ � (

1

/⌦i,i)⌦⇤,i⌦i,⇤ and ⌃

0
= ⌃�i,�i respectively,

which follows from standard results for marginalization of multivariate Gaussian distribution (see for
instance Chapter 2 of [31]).

Proof of Theorem 1. First note that the lower bound on the number of samples given by Theorem 1
subsumes the sample complexity requirement of inverse covariance estimation in Lemma 2 ordinary
least squares in Lemma 3. Next, by Assumption 2, we have that 8i 2 [p],

bSi = Si, with probability
at least 1� �. Therefore, from Lemma 3 k✓i

Si
� b✓i

bSi
k1  ↵, with probability at least 1� 2�.

Next, from Lemmas 2 and 3, and by our assumption that | ewi,j | � 3↵, we have that for a terminal
vertex i, the ratio ri is upper bounded as follows:

ri  | ewi,j |+ ↵

�

2

(| ewi,j |� ↵)

13

 4↵

�

2

(2↵)

=

2

�

2

,

where the second line follows from the fact that | ewi,j |+↵
�2

(| ewi,j |�↵) is a decreasing function of | ewi,j |.
Similarly, if i is a non-terminal vertex and has ci children, then the ratio is lower bounded as follows:

ri �
✓

1

�

2

◆ | ewi,j |� ↵

| ewi,j |
1+kw⇤,ik2

2
+ ↵

In order for our algorithm to correctly identify a terminal vertex in line 13, we need to ensure that the
lower bound on ri for a non-terminal vertex is strictly large than the upperbound on ri for a terminal
vertex. Therefore, we need to ensure that:

✓
1

�

2

◆ | ewi,j |� ↵

| ewi,j |
1+kw⇤,ik2

2
+ ↵

>

2

�

2

Let ci be the number of children of the i-th node. Then, using the fact that kw⇤,ik2
2

� 9ci↵
2, and the

function on the left hand side of the inequality above is an increasing function of | ewi,j |, this further
simplifies to

| ewi,j |� ↵ > 2

✓ | ewi,j |
1 + 9ci↵

2

+ ↵

◆

=) | ewi,j | > 3↵

1� 2

1+9ci↵2

.

Therefore, by Assumption 2 (ii), in line 13 of Algorithm 1 we correctly identify a terminal vertex
with probability at least 1� 3�. Using an union bound over the p� 1 iterations we conclude that,
with probability at least 1� 3(p� 1)�, Algorithm 1 recovers a correct causal ordering of the nodes.

Next in line 25, the true coefficient vector satisfies: ✓⇤
= ⌃zi,bSzi

(⌃bSzi ,
bSzi

)

�1

=

¯⌦zi,
bSzi

¯

⌦zi,zi
, where ¯

⌦

denotes the inverse covariance matrix over X{zi}[bSzi
. From the fact that, a node is independent of

its non-descendants given its parents, the non-zero entries of ✓⇤ correctly identifies the parent set
of zi. Therefore, by RSAF (Assumption 2), which states that the absolute value of the minimum
non-zero entry in ¯

⌦ is at least 3↵, we have that the support of the OLS estimate b✓ in line 25 correctly
recovers the parent set for zi with high probability, i.e., Pr{b⇡(zi) 6= ⇡G⇤

(zi)}  3(p� 1)�.

Finally, from Lemma 3 and another union bound over p � 1 iterations of learning the parameters
of the GBN, we get that |B⇤ � b

B|1  ↵ with probability at least 1 � 6(p � 1)�. Together with
condition (i) of Assumption 2, this implies bE = E⇤ with probability at least 1� 6(p� 1)�. Setting
6(p� 1)� = �

0 for some �

0 2 (0, 1) we prove our claim.

Appendix B Experiments

B.1 Our method vs PC algorithm on a non-faithful GBN

We ran our method and the PC algorithm on the example given in Figure 1. We sampled 50000

samples from the GBN to ensure that the CI tests used by the PC algorithm are accurate. The
following figure shows, from left to right, the true graph, the graph learned by our algorithm (with
edge weights rounded to two decimal places), and the graph recovered by the PC algorithm.

1

2
1

3
1

4
-1

5
1

0.25

1 -1 1

2
1

3
1

4
-1

5
1

0.25

1 -1 1

2 3

4 5

14

B.2 Experimental setup for structure recovery experiments

In this section, we describe in more detail our experimental setup for the various structure recovery
experiments we performed. We sample a random DAG structure G⇤ over p nodes by first generating an
Erdős-Rényi undirected graph where each edge is sampled independently with probability q. Then, we
randomly select a permutation of the vertex set [p] and direct the edges as i ! j if the node i appears
before node j in the permutation. We then generate a GBN (G⇤

,P(W⇤
,�

2

)) by setting the noise
variance �2

= 0.8 for all nodes and randomly setting the edge weights to w

⇤
i,j = ±1

/2 with probability
1

/2. It is easy to verify that the minimum non-zero effective influence is 0.25 in this class of graphs.
For each value of p 2 {50, 100, 150, 200}, and corresponding q 2 {0.01, 0.005, 0.0033, 0.0025},
we sampled 30 random GBNs and estimated the probability Pr{G⇤

=

bG} by computing the fraction
of times the learned DAG structure bG matched the true DAG structure G⇤ exactly. The number
of samples was set to Ck

2

log p, where C was the control parameter for each experiment For the
structure recovery experiments, where computed the probability of successful structure recovery as
the number of samples were varied, we discarded randomly sampled GBNs for which the minimum
eigenvalue of the inverse covariance matrix was less than 0.05 to avoid numerical issues. The
number of samples was set to Ck

2

log p, where C was the control parameter and was chosen to be in
{1, 20, 40, 80, 100, 120}, and k was the maximum size of the Markov blanket across all nodes in the
sampled DAG G⇤. The mean and maximum value of k (across 30 runs) for the different choices of
p was {3.2, 3.68, 4.12, 4.39} and {7, 10, 7, 9} respectively. The regularization parameter was set to
�n = 0.5k

p
(log p)

/n, as prescribed by Lemma 2.

B.3 Comparison with state-of-the-art methods

In this section, we compare the performance of our method against other state-of-the-art methods.
Once again, we sampled DAGs according to the procedure described in Appendix B.2. We considered
three methods for comparison: PC algorithm for learning GBNs by [15], the greedy equivalence
search (GES) algorithm by [13], and the max-min hill climbing (MMHC) algorithm by [17]. The first
two of the three algorithms estimate the Markov equivalence class and therefore return a completed
partially directed acyclic graph (CPDAG). However, in our experiments, the sampled DAGs belong
to Markov equivalence classes of size 1. Therefore, the CPDAGs should ideally have no undirected
edges. The number of samples was set to 120k

2

log p and the regularization parameter for our method
was set to 2

p
(log p)

/n. We do not compare against the `

0

penalized MLE algorithm by [9] for the
equal variance case, which is an exact algorithm, since it searches through the super-exponential
space of all DAGs and therefore does not scale beyond 20 nodes. The GES algorithm uses the
`

0

-penalized Gaussian MLE score proposed by [9] to greedily search for the best structure. We
used the R package pcalg for the implementation of the PC and GES algorithms, and the bnlearn
package for the implementation of the MMHC algorithm. MMHC and PC take an additional tuning
parameter ↵ which is the desired significance level for the individual conditional independence tests.
We tested values of ↵ 2 {0.01, 0.001, 0.0001} and found that ↵ = 0.0001 gave the best results
on an average. The number of samples was set to 120k

2

log p and the regularization parameter for
our method was set to 2

p
(log p)

/n. We also used both the BIC score and the Bayesian Gaussian
equivalent (BGe) score for the MMHC algorithm and found that BGe produced better results on an
average. We computed the mean precision, recall, and running time in seconds, for each method,
across 30 randomly sampled GBNs. Precision is defined as the fraction of all predicted (directed)
edges that are actually present in the true DAG, while recall is defined as the fraction of directed
edges in the true DAG that the method was able to recover. All methods were run on a single core of
Intel R� Xeon R� running at 3.00 Ghz. Table 1 shows that our method outperforms existing methods in
terms of precision and recall. Moreover, our method, is the fastest among all methods for p  100,
and is always faster than MMHC. Among, MMHC, GES and PC, the PC algorithm performed the
best since it is an exact algorithm. However, the PC algorithm failed to direct many edges as is
evident from its low precision score.

B.4 Unequal noise variance

We set out to understand the performance of our algorithm when we relax the assumption of equal
noise variance. Clearly, in this case, we no longer have identifiability of the true DAG structure.
Therefore, we instead ask the following experimental question: “What fraction of the true edges

15

Method Precision Recall Seconds Precision Recall Seconds
p = 50 p = 100

PC 0.587 ± 0.015 0.996 ± 0.004 0.177 ± 0.013 0.587 ± 0.008 0.999 ± 0.001 0.570 ± 0.044
GES 0.206 ± 0.014 0.396 ± 0.031 0.206 ± 0.025 0.204 ± 0.013 0.372 ± 0.020 0.557 ± 0.045

MMHC 0.581± 0.038 0.583± 0.038 0.460± 0.049 0.529± 0.019 0.533± 0.019 1.417± 0.141
Ours 1.000 ± 0.000 1.000 ± 0.000 0.089 ± 0.005 1.000 ± 0.000 1.000 ± 0.000 0.534 ± 0.004

p = 150 p = 200
PC 0.572± 0.006 0.996± 0.002 1.392± 0.043 0.573± 0.005 0.997± 0.001 1.876± 0.080

GES 0.162± 0.009 0.333± 0.017 1.031± 0.036 0.143± 0.005 0.310± 0.011 1.610± 0.077
MMHC 0.566± 0.014 0.577± 0.015 2.934± 0.241 0.582± 0.012 0.593± 0.012 5.511± 0.355

Ours 1.000± 0.000 1.000± 0.000 1.988± 0.010 1.000± 0.000 1.000± 0.000 5.130± 0.030
Table 1: Performance of different algorithms across 30 randomly sampled GBNs for each value of p 2
{50, 100, 150, 200}. Numbers in bold are the best for each metric across different algorithms. Our method
always recovers the true DAG structure exactly.

can we recover if we perturb the noise variance of the nodes slightly?” For this experiment, we
sampled GBNs as described in the previous paragraph. However, instead of setting the noise variance
to be 0.8 for all nodes, we set the noise variance for each node to be one of {1, 1� �, 1 + �} with
probability 1

/3, where � is the noise parameter. From Figure 3 we note that in the regime where
the noise variance of the different nodes varies by 0.125, i.e., between 0.9375 and 1.0625, we still
achieve close-to-perfect recovery.

Figure 3: Precision and Recall vs. noise parameter �, where the noise variance for each variable
was set to one of {1, 1� �, 1 + �} with equal probability. As � decreases, the accuracy and recall
increases and we achieve perfect recovery when � = 0, i.e. when the variables have equal noise
variance.

B.5 Experiments on real-world data

First, we test our method on extremely high-dimensional data sets. We used 14 cancer data sets pub-
licly available at the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/).
We preprocessed the data so that each variable is zero mean and unit variance across the dataset. We
use the method of [33] so that the biggest connected component has at most N 0

= 500 variables (as
prescribed in [33]). The technique of [33] computes a graph from edges with an absolute value of the
covariance higher than the regularization parameter of the `

1

-regularized MLE, and then splits the
graph into its connected components. Table 2 shows the number of edges, maximum node degree, and
the running time (wall clock time) of our method on 14 gene expression data sets. All experiments
were run on a single core of Intel R� Xeon R� running at 3.00 Ghz. Existing state-of-the-art methods
like PC, GES and MMHC, do not scale to such high dimensions.

Next, we qualitatively evaluate a GBN learned by our algorithm. We used gene expression data for
590 subjects with breast invasive carcinoma from the cancer genome atlas dataset. The dataset is
publicly available at http://tcga-data.nci.nih.gov/tcga/. We used 187 genes com-
monly regulated in cancer that were identified on independent datasets by [34]. The genes are
the following: ABCA8, ABHD6, ACLY, ADAM10, ADAM12, ADHFE1, AGXT2, ALDH6A1, ANK2,

ANKS1B, ANP32E, AP1S1, APOL2, ARL4D, ARPC1B, AURKA, AYTL2, BAT2D1, BAX, BFAR, BID,
BOLA2, BRP44L, C10orf116, C17orf27, C1orf58, C1orf96, C5orf4, C6orf60, C8orf76, CALU, CARD4,

16

http://www.ncbi.nlm.nih.gov/geo/
http://tcga-data.nci.nih.gov/tcga/

Dataset Disease Samples Variables Edges Max degree Time (Sec)
GSE1898 Liver cancer 182 21,794 1257 7 245.9
GSE29638 Colon cancer 50 22,011 2182 8 112.1
GSE30378 Colon cancer 95 22,011 1988 6 231.0
GSE20194 Breast cancer 278 22,283 1699 10 213.2
GSE22219 Breast cancer 216 24,332 1412 16 267.8
GSE13294 Colon cancer 155 54,675 4325 10 346.5
GSE17951 Prostate cancer 154 54,675 4168 11 84.0
GSE18105 Colon cancer 111 54,675 3111 13 215.1
GSE1476 Colon cancer 150 59,381 2056 9 211.1
GSE14322 Liver cancer 76 104,702 3815 31 227.1
GSE18638 Colon cancer 98 235,826 1079 3 400.7
GSE33011 Ovarian cancer 80 367,657 5926 11 339.3
GSE30217 Leukemia 54 964,431 1380 5 190.2
GSE33848 Lung cancer 30 1,852,426 843 7 215.5

Table 2: Results on high-dimensional gene expression data sets.

CASC5, CBX3, CCNB2, CCT5, CDC14B, CDCA7, CEP55, CHRDL1, CIDEA, CKLF, CLEC3B, CLU,
CNIH4, DBR1, DDX39, DHRS4, DKFZp667G2110, DKFZp762E1312, DMD, DNMT1, DTL, DTX3L,
E2F3, ECHDC2, ECHDC3, EFCBP1, EFHC2, EIF2AK1, EIF2C2, EIF2S2, Ells1, EPHX2, EPRS, ERBB4,
FAM107A, FAM49B, FARP1, FBXO3, FBXO32, FEN1, FEZ1, FKBP10, FKBP11, FLJ11286, FLJ14668,
FLJ20489, FLJ20701, FLJ21511, FMNL3, FMO4, FNDC3B, FOXP1, FTL, GEMIN6, GLT25D1, GNL2,
GOLPH2, GPR172A, GSTM5, GULP1, HDGF, HIF3A, HLA-F, HLF, HNRPK, HNRPU, HPSE2, HSPE1,
ILF3, IPO9, IQGAP3, K-ALPHA-1, KCNAB1, KDELC1, KDELR2, KDELR3, KIAA1217, KIAA1715, LDHD,
LOC162073, LOC91689, LRRFIP2, LSM4, MAGI1, MORC2, MPPE1, MSRA, MTERFD1, NAP1L1, NCL,
NDRG2, NME1, NONO, NOX4, NPM1, NR3C2, NRP2, NUSAP1, P53AIP1, PALM, PAQR8, PDIA6, PGK1,
PINK1, PLEKHB2, PLIN, PLOD3, PPAP2B, PPIH, PPP2R1B, PRC1, PSMA4, PSMA7, PSMB2, PSMB4,
PSMB8, PTP4A3, RBAK, RECK, RORA, RPN2, SCNM1, SEMA6D, SFXN1, SHANK2, SLAMF8, SLC24A3,
SLC38A1, SNCA, SNRPB, SNX10, SORBS2, SPP1, STAT1, SYNGR1, TAP1, TAPBP, TCEAL2, TMEM4,
TMEPAI, TNFSF13B, TNPO1, TRPM3, TTK, TTL, TUBAL3, UBA2, USP2, UTP18, WASF3, WHSC1,
WISP1, XTP3TPA, ZBTB12, ZWILCH.

After learning the DAG, we computed how many nodes are reachable from each of the 187 nodes. We
found out that the gene CCNB2 reaches the greatest number of nodes among all genes (163 nodes).
Interestingly, this gene was independently found to be associated with an unfavorable outcome
for breast-cancer patients in treatment [35]. As specifically mentioned by [35] “findings suggest
that cytoplasmic CCNB2 may function as an oncogene and could serve as a potential biomarker of
unfavorable prognosis over short-term follow-up in breast cancer”.

B.6 Learning GBNs using marginal variance

To ensure that the class of GBNs used in our synthetic experiments were non-trivial: meaning the
marginal variance of the nodes did not give away the causal ordering, we tested another algorithm,
which we will call the marginal-variance algorithm, to compute the DAG order by simply sorting the
nodes according to their marginal variance. Figure 4 shows the probability of successful structure
recovery across 30 randomly sampled GBNs, for the marginal-variance algorithm. We can observe
that the marginal-variance algorithm fails to recover the DAG structure much more frequently as the
number of variables grows. At p = 200, the algorithm fails to recover the true structure 50% of the
time.

Appendix C Discussion

C.1 Using RESIT for learning linear Gaussian SEMs

Proposition 1. Let (G,P(W, S)) be a GBN and X 2 Rp be a data sample drawn from P . For any
variable i, let ✓⇤

i = min✓2R(p�1)
1

2

E
⇥
(Xi � ✓T

X�i)
2

⇤
, and let Ri = Xi � (✓⇤

i)
T
X�i be the i-th

population residual. Then, the residual Ri is independent of Xj for all j 2 �i, i.e., Cov [Ri, Xj] = 0.

17

Figure 4: Performance of the marginal-variance algorithm that uses sorting of the nodes by marginal
variance to learn the DAG order.
A consequence of the above proposition is that, RESIT, which identifies terminal vertices, and
subsequently the DAG order, by performing independence tests between the residual Ri and the
covariates X�i, does not work even in the population setting.

Proof of Proposition 1. Without loss of generality, let us write the joint distribution of (Xi, X�i) as
follows:

✓
X�i

Xi

◆
⇠ N

✓
0,

✓
A b

b

T
c

◆◆
.

Then, from standard results for ordinary least squares, we have that ✓⇤
i =

argmin✓2Rp�1 E
⇥
1

2

kX⇤,i �X⇤,�i✓k2
2

⇤
= A

�1

b. Let Ri = Xi � b

T
A

�1

X�i. Using the
fact that both Ri and X�i are mean 0, we get:

Cov [Ri, X�i] = E
⇥
RiX

T
�i

⇤� E [Ri]E
⇥
X

T
�i

⇤

= E
⇥
XiX

T
�i

⇤� E
⇥
b

T
A

�1

X�iX
T
�i

⇤

= b

T � b

T
A

�1

A = 0.

C.2 Computational Complexity

The computational complexity of our algorithm is dominated by the inverse covariance estimation
step. As described in [29], the CLIME estimator of the inverse covariance matrix can be obtained
by solving p linear programs, each with 2p inequality constraints in a 4p-dimensional vector space.
Each of these linear programs can be solved in polynomial time by using interior point methods.
Further, state-of-the-art methods for inverse covariance estimation can potentially scale to a million
variables [25]. After estimating the inverse covariance matrix, our algorithm performs (p� 1) OLS
computations in (at-most) Rk, to learn the DAG order and another (p � 1) OLS computations to
learn the structure and parameters. This can be accomplished in O(pk

3

) time by directly inverting
(at-most) k ⇥ k symmetric positive-definite matrices. Thus, it is safe to conclude that our exact
algorithm for learning equal noise-variance GBNs is highly scalable.

18

	Introduction and Related Work
	Preliminaries
	Results
	Experiments
	Appendix Detailed Proofs
	Appendix Experiments
	Our method vs PC algorithm on a non-faithful GBN
	Experimental setup for structure recovery experiments
	Comparison with state-of-the-art methods
	Unequal noise variance
	Experiments on real-world data
	Learning GBNs using marginal variance

	Appendix Discussion
	Using RESIT for learning linear Gaussian SEMs
	Computational Complexity

