
A Proofs

A.1 Stability verification

Lemma 1. Using Assumptions 1 and 2, let Xτ be a discretization of X such that ‖x− [x]τ‖1 ≤ τ
for all x ∈ X . Then, for all x ∈ X , we have with probability at least 1− δ that∣∣v(µn−1([z]τ ))− v([x]τ )−

(
v(f(z))− v(x)

)∣∣ ≤ Lvβnσn−1([z]τ ) + (LvLf (Lπ + 1) +Lv)τ, (8)

where z = (x, π(x)) and [z]τ = ([x]τ , π([x]τ )).

Proof. Let z = (x, π(x)), [z]τ = ([x]τ , π([x]τ )), and µ = µn−1, σ = σn−1. Then we have that

∣∣v(µ([z]τ ))− v([x]τ )−
(
v(f(z))− v(x)

)∣∣,
=
∣∣v(µ([z]τ ))− v([x]τ )− v(f(z)) + v(x)

∣∣,
=
∣∣v(µ([z]τ ))− v(f([z]τ )) + v(f([z]τ ))− v(f(z)) + v(x)− v([x]τ )

∣∣,
≤
∣∣v(µ([z]τ ))− v(f([z]τ ))

∣∣+
∣∣v(f([z]τ ))− v(f(z))

∣∣+
∣∣v(x)− v([x]τ )

∣∣,
≤ Lv‖µ([z]τ )− f([z]τ )‖1 + Lv‖f([z]τ )− f(z)‖1 + Lv‖x− [x]τ‖1,
≤ Lvβnσ([z]τ ) + LvLf‖[z]τ − z‖1 + Lv‖x− [x]τ‖1,

where the last three inequalities follow from Assumptions 1 and 2 to last inequality follows
from Lemma 3. The result holds with probability at least 1− δ. By definition of the discretization
and the policy class ΠL we have on each grid cell that

‖z− [z]τ‖1 = ‖x− [x]τ‖1 + ‖π(x)− π([x]τ )‖1,
≤ τ + Lπ‖x− [x]τ‖1,
≤ (Lπ + 1)τ,

where the equality in the first step follows from the definition of the 1-norm. Plugging this into the
previous bound yields∣∣v(µ([z]τ ))− v([x]τ )−

(
v(f(z))− v(x)

)∣∣ ≤ Lvβnσ([z]τ ) + (LvLf (1 + Lπ) + Lv) τ,

which completes the proof.

Lemma 2. v(f(x,u)) ∈ Qn holds for all x ∈ X , u ∈ U , and n > 0 with probability at least (1−δ).

Proof. The proof is analogous to Lemma 1 and follows from Assumptions 1 and 2.

Corollary 1. v(f(x,u)) ∈ Cn holds for all x ∈ X , u ∈ U , and n > 0 with probability at least
(1− δ).

Proof. Direct consequence of the fact that Lemma 2 holds jointly for all n > 0 with probability at
least 1− δ.

Lemma 1 show that the decrease on the Lyapunov function on the discrete grid Xτ is close to that
on the continuous domain X . Given these confidence intervals, we can now establish the region of
attraction using Theorem 1:
Theorem 2. Under Assumptions 1 and 2 with L∆v := LvLf (Lπ + 1) + Lv , let Xτ be a discretiza-
tion of X such that ‖x− [x]τ‖1 ≤ τ for all x ∈ X . If, for all x ∈ V(c) ∩ Xτ with c > 0, u = π(x),
and for some n ≥ 0 it holds that un(x,u) < v(x)− L∆vτ, then v(f(x, π(x))) < v(x) holds for all
x ∈ V(c) with probability at least (1− δ) and V(c) is a region of attraction for (1) under policy π.

Proof. Using Lemma 1 it holds that v(f(x, π(x)) − v(x) < 0 for all continuous states x ∈ V(c)
with probability at least 1− δ, since all discrete states xτ ∈ V(c) ∩ X fulfill Theorem 2. Thus we
can use Theorem 1 to conclude that V(c) is a region of attraction for (1).
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Theorem 3. LetRπn be the true region of attraction of (1) under the policy πn. For any δ ∈ (0, 1),
we have with probability at least (1− δ) that V(cn) ⊆ Rπn for all n > 0.

Proof. Following the definition of Dn in (2), it is clear from the constraint in the optimization
problem (3) that for all x ∈ Dn it holds that (x, πn(x)) ∈ Dn or, equivalently that un(x, π(x)) −
v(x) < −L∆vτ , see (2). The result V(cn) ⊆ Rπn then follows from Theorem 2.

Note that the initialization of the confidence intervalsQ0 ensures that the decrease condition is always
fulfilled for the initial policy.

A.2 Gaussian process model

One particular assumption that satisfies both the Lipschitz continuity and allows us to use GPs as a
model of the dynamics is that the model errors g(x,u) live in some reproducing kernel Hilbert space
(RKHS, [40]) corresponding to a differentiable kernel k and have RKHS norm smaller than Bg [35].
In our theoretical analysis, we use this assumption to prove exploration guarantees.

A GP(µ(z), k(z, z′)) is a distribution over well-behaved, smooth functions f : X × U → R (see Re-
mark 1 for the vector-case, Rq) that is parameterized by a mean function µ and a covariance function
(kernel) k, which encodes assumptions about the functions [16]. In our case, the mean is given by
the prior model h, while the kernel corresponds to the one in the RKHS. Given noisy measurements
of the dynamics, f̂(z) = f(z) + ε with z = (x,u) at locations An = {z1, . . . , zn}, corrupted
by independent, Gaussian noise ε ∼ N (0, σ2) (we relax the Gaussian noise assumption in our
analysis), the posterior is a GP distribution again with mean, µn(z) = kn(z)T(Kn + σ2I)−1yn,
covariance kn(z, z′) = k(z, z′) − kn(z)T(Kn + σ2I)−1kn(z′), and variance σ2

n(z) = kn(z, z).
The vector yn = [f̂(z1)− h(z1), . . . , f̂(zn)− h(zn)]T contains observed, noisy deviations from
the mean, kn(z) = [k(z, z1), . . . , k(z, zn)] contains the covariances between the test input z and the
data points in Dn, Kn ∈ Rn×n has entries [Kn](i,j) = k(zi, zj), and I is the identity matrix.

Remark 1. In the case of multiple output dimensions (q > 1), we consider a function with one-
dimensional output f ′(x,u, i) : X × U × I → R, with the output dimension indexed by i ∈
I = {1, . . . , q}. This allows us to use the standard definitions of the RKHS norm and GP model.
In this case, we define the GP posterior distribution as µn(z) = [µn(z, 1), . . . , µn(z, q)]T and
σn(z) =

∑
1≤i≤q σn(z, i), where the unusual definition of the standard deviation is used in Lemma 3.

Given the previous assumptions, it follows from [28, Lemma 2] that the dynamics in (1) are Lipschitz
continuous with Lipschitz constant Lf = Lh + Lg , where Lg depends on the properties (smoothness)
of the kernel.

Moreover, we can construct high-probability confidence intervals on the dynamics in (1) that ful-
fill Assumption 2 using the GP model.
Lemma 3. ([35, Theorem 6]) Assume σ-sub-Gaussian noise and that the model error g(·)
in (1) has RKHS norm bounded by Bg. Choose βn = Bg + 4σ

√
γn + 1 + ln(1/δ). Then,

with probability at least 1− δ, δ ∈ (0, 1), for all n ≥ 1, x ∈ X , and u ∈ U it holds that
‖f(x,u)− µn−1(x,u)‖1 ≤ βnσn−1(x,u).

Proof. From [34, Theorem 2] it follows that |f(x,u, i)−µn−1(x,u, i)| ≤ βnσn(x,u, i) holds with
probability at least 1 − δ for all 1 ≤ i ≤ q. Following Remark 1, we can model the multi-output
function as a single-output function over an extended parameter space. Thus the result directly
transfers by definition of the one norm and our definition of σn for multiple output dimensions
in Remark 1. Note that by iteration n we have obtained nq measurements in the information
capacity γn.

That is, the true dynamics are contained within the GP posterior confidence intervals with high
probability. The bound depends on the information capacity,

γn = max
A⊂X×U×I : |A|=nq

I(yA; fA), (9)

which is the maximum mutual information that could be gained about the dynamics f from samples.
The information capacity has a sublinear dependence on n( 6= t) for many commonly used kernels
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such as the linear, squared exponential, and Matérn kernels and it can be efficiently and accurately
approximated [35]. Note that we explicitly account for the q measurements that we get for each of
the q states in (9).

Remark 2. The GP model assumes Gaussian noise, while Lemma 3 considers σ-sub-Gaussian noise.
Moreover, we consider functions with bounded RKHS norm, rather than samples from a GP. Lemma 3
thus states that even though we make different assumptions than the model, the confidence intervals
are conservative enough to capture the true function with high probability.

A.3 Safe exploration

Remark 3. In the following we assume that Dn and Sn are defined as in (4) and (5).

Baseline As a baseline, we consider a class of algorithms that know about the Lipschitz continuity
properties of v, f , and π. In addition, we can learn about v(f(x,u)) up to some arbitrary statistical
accuracy ε by visiting state x and obtaining a measurement for the next state after applying action u,
but face the safety restrictions defined in Sec. 2. Suppose we are given a set S of state-action pairs
about which we can learn safely. Specifically, this means that we have a policy such that, for any
state-action pair (x,u) in S, if we apply action u in state x and then apply actions according to the
policy, the state converges to the origin. Such a set can be constructed using the initial policy π0

from Sec. 2 as S0 = {(x, π0(x)) |x ∈ Sx0 }.
The goal of the algorithm is to expand this set of states that we can learn about safely. Thus, we need
to estimate the region of attraction by certifying that state-action pairs achieve the −L∆vτ decrease
condition in Theorem 2 by learning about state-action pairs in S . We can then generalize the gained
knowledge to unseen states by exploiting the Lipschitz continuity,

Rdec(S) = S0∪
{
z ∈ Xτ × Uτ | ∃(x,u) ∈ S : v(f(x,u))−v(x)+ε+L∆v‖z−(x,u)‖1<−L∆vτ

}
,

(10)

where we use that we can learn v(f(x,u)) up to ε accuracy within S. We specifically include S0 in
this set, to allow for initial policies that are safe, but does not meet the strict decrease requirements
of Theorem 2. Given that all states in Rdec(S) fulfill the requirements of Theorem 2, we can estimate
the corresponding region of attraction by committing to a control policy π ∈ ΠL and estimating the
largest safe level set of the Lyapunov function. With D = Rdec(S), the operator

Rlev(D) = V
(

argmax c, such that ∃π ∈ ΠL : ∀x ∈ V(c) ∩ Xτ , (x, π(x)) ∈ D
)

(11)

encodes this operation. It optimizes over safe policies π ∈ ΠL to determine the largest level set,
such that all state-action pairs (x, π(x)) at discrete states x in the level set V(c) ∩ Xτ fulfill the
decrease condition of Theorem 2. As a result, Rlev(Rdec(S)) is an estimate of the largest region
of attraction given the ε-accurate knowledge about state-action pairs in S. Based on this increased
region of attraction, there are more states that we can safely learn about. Specifically, we again use
the Lipschitz constant and statistical accuracy ε to determine all states that map back into the region
of attraction,

Rε(S) = S∪
{
z′ ∈ Rlev

τ (Rdec(S))× Uτ | ∃z ∈ S : v(f(z))+ε+LvLf‖z−z′‖1 ≤ max
x∈Rlev(Rdec(S))

v(x)
}
,

(12)

where Rlev
τ (D) = Rlev(D) ∩ Xτ . Thus, Rε(S) ⊇ S contains state-action pairs that we can visit to

learn about the system. Repeatedly applying this operator leads the largest set of state-action pairs
that any safe algorithm with the same knowledge and restricted to policies in ΠL could hope to reach.
Specifically, let R0

ε (S) = S and Ri+1
ε (S) = Rε(R

i
ε(S)). Then Rε(S) = limi→∞Riε(S) is the set

of all state-action pars on the discrete grid that any algorithm could hope to classify as safe without
leaving this safe set. Moreover, Rlev(Rε(S)) is the largest corresponding region of attraction that
any algorithm can classify as safe for the given Lyapunov function.

Proofs In the following we implicitly assume that the assumptions of Lemma 3 hold and that βn is
defined as specified within Lemma 3. Moreover, for ease of notation we assume that Sx0 is a level set
of the Lyapunov function v(·).

Lemma 4. V(cn) = Rlev(Dn) and cn = maxx∈Rlev(Dn) v(x)
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Algorithm 2 Theoretical algorithm
1: Input: Initial safe policy S0, dynamics model GP(µ(z), k(z, z′))
2: for all n = 1, . . . do
3: Dn =

⋃
(x,u)∈Sn−1

{
z′ ∈ Xτ × Uτ |un(x,u)− v(x) + L∆v‖z′ − (x,u)‖1 < −L∆vτ

}
,

4: πn, cn = argmaxπ∈ΠL,c∈R>0
c, such that for all x ∈ V(c) ∩ Xτ : (x, π(x)) ∈ Dn

5: Sn =
⋃

z∈Sn−1

{
z′ ∈ V(cn) ∩ Xτ × Uτ |un(z) + LvLf‖z− z′‖1 ≤ cn}

6: =
⋃

z∈Sn−1

{
z′ ∈ Rlev

τ (Dn)× Uτ |un(z) + LvLf‖z− z′‖1 ≤ maxx∈Rlev(Dn) v(x)}
7: (xn,un) = argmax(x,u)∈Sn un(x,u)− ln(x,u)

8: Sn = {z ∈ V(cn)× Uτ |un(z) ≤ cn}
9: Update GP with measurements f(xn,un) + εn

Proof. Directly by definition, compare (3) and (11).

Remark 4. Lemma 4 allows us to write the proofs entirely in terms of operators, rather than having
to deal with explicit policies. In the following and in Algorithm 2 we replace V(cn) and cn according
to Lemma 4. This moves the definitions closer to the baseline and makes for an easier comparison.

We roughly follow the proof strategy in [18], but deal with the additional complexity of having safe
sets that are defined in a more difficult way (indirectly through the policy). This is non-trivial and
the safe sets are carefully designed in order to ensure that the algorithm works for general nonlinear
systems.

We start by listing some fundamental properties of the sets that we defined below.

Lemma 5. It holds for all n ≥ 1 that

(i) ∀z ∈ Xτ × Uτ , un+1(z) ≤ un(z)

(ii) ∀z ∈ Xτ × Uτ , ln+1(z) ≥ ln(z)

(iii) S ⊆ R =⇒ Rlev(S) ⊆ Rlev(R)

(iv) S ⊆ R =⇒ Rdec(S) ⊆ Rdec(R)

(v) S ⊆ R =⇒ Rε(S) ⊆ Rε(R)

(vi) S ⊆ R =⇒ Rε(S) ⊆ Rε(R)

(vii) Sn ⊇ Sn−1 =⇒ Dn+1 ⊇ Dn
(viii) D1 ⊇ S0

(ix) Sn ⊇ Sn−1

(x) Dn ⊇ Dn−1

Proof. (i) and (ii) follow directly form the definition of Cn.

(iii) Let π ∈ ΠL be a policy such that for some c > 0 it holds for all x ∈ V(c) ∩ Xτ that
(x, π(x)) ∈ S. Then we have that (x, π(x)) ∈ R, since S ⊆ R. Thus it follows that with

cs = argmax c s.t. ∃π ∈ ΠL : ∀x ∈ V(c) ∩ Xτ , (x, π(x)) ∈ S (13)

and
cr = argmax c s.t. ∃π ∈ ΠL : ∀x ∈ V(c) ∩ Xτ , (x, π(x)) ∈ R (14)

we have that cr ≥ cs. This implies V(cr) ⊇ V(cs). The result follows.

(iv) Let z ∈ Rdec(S). Then there exists (x,u) ∈ S such that v(f(x,u))− v(x) + ε+ L∆v‖z−
(x,u)‖1 < −L∆vτ . Since S ⊆ R we have that (x,u) ∈ R as well and thus z ∈ Rdec(R).
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(v) S ⊆ R =⇒ Rlev(Rdec(S)) ⊆ Rlev(Rdec(R)) due to (iii) and (iv). Since z′ ∈ Rε(S), there
must exist an z ∈ S such that v(f(z)) + ε + LvLf‖z − z′‖1 ≤ maxx∈Rlev(Rdec(S)) v(x).
Since S ⊆ R it follows that z ∈ R. Moreover,

max
x∈Rlev(Rdec(S))

v(x) ≤ max
x∈Rlev(Rdec(R))

v(x) (15)

follows from Rlev(Rdec(S)) ⊆ Rlev(Rdec(R)), so that we conclude that z′ ∈ Rε(R).

(vi) This follows directly by repeatedly applying the result of (v).

(vii) Let z′ ∈ Dn. Then ∃(x,u) ∈ Sn−1 : un(x,u)− v(x) +L∆v‖z′− (x,u)‖1 < −L∆vτ . Since
Sn ⊇ Sn−1 it follows that (x,u) ∈ Sn as well. Moreover, we have

un+1(x,u)− v(x) + L∆v‖z′ − (x,u)‖1
≤ un(x,u)− v(x) + L∆v‖z′ − (x,u)‖1 < −L∆vτ

since un+1 is non-increasing, see (i). Thus z′ ∈ Dn+1.

(viii) By definition of C0 we have for all (x,u) ∈ S0 that u0(x,u) < v(x)− L∆vτ . Now we have
that

u1(x,u)− v(x) + L∆v‖(x,u)− (x,u)‖1,
= u1(x,u)− v(x),

≤ u0(x,u)− v(x), by Lemma 5 (i)
< − L∆vτ,

which implies that (x,u) ∈ D1.

(ix) Proof by induction. We consider the base case, z ∈ S0, which implies that z ∈ D1 by (viii).
Moreover, since Sx0 is a level set of the Lyapunov function v by assumption, we have that
Rlev(S0) = Sx0 . The previous statements together with (iii) imply that z ∈ Rlev

τ (D1) × Uτ ,
since D1 ⊇ S0 by (viii). Now, we have that

u1(z) + LvLf‖z− z‖1 = u1(z)
(i)

≤ u0(z).

Moreover, by definition of C0, we have for all (x,u) ∈ S0 that

u0(x,u) < v(x)− L∆vτ < v(x).

As a consequence,

u0(x,u) ≤ max
(x,u)∈S0

v(x), (16)

= max
x∈Rlev(S0)

v(x), (17)

≤ max
x∈Rlev(D1)

v(x), (18)

where the last inequality follows from (iii) and (viii). Thus we have z ∈ S1.

For the induction step, assume that for n ≥ 2 we have z′ ∈ Sn with Sn ⊇ Sn−1. Now since
z′ ∈ Sn we must have that z′ ∈ Rlev

τ (Dn)×Uτ . This implies that z′ ∈ Rlev
τ (Dn+1)×Uτ , due

to Lemma 5 (iii) and (vii) together with the induction assumption of Sn ⊇ Sn−1. Moreover,
there must exist a z ∈ Sn−1 ⊆ Sn such that

un+1(z) + LvLf‖z− z′‖1, ≤ un(z) + LvLf‖z− z′‖1, (19)
≤ max

x∈Rlev(Dn)
v(x), (20)

≤ max
x∈Rlev(Dn+1)

v(x), (21)

which in turn implies z ∈ Sn+1. The last inequality follows from Lemma 5 (iii) and (vii)
together with the induction assumption that Sn ⊇ Sn−1.

(x) This is a direct consequence of (vii), (viii), and (ix).
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Given these set properties, we first consider what happens if the safe set Sn does not expand after
collecting data points. We use these results later to conclude that the safe set must either expand or
that the maximum level set is reached. We denote by

zn = (xn,un)

the data point the is sampled according to (6).
Lemma 6. For any n1 ≥ n0 ≥ 1, if Sn1

= Sn0
, then for any n such that n0 ≤ n < n1, it holds that

2βnσn(zn) ≤
√
C1qβ2

nγn
n− n0

, (22)

where C1 = 8/ log(1 + σ−2).

Proof. We modify the results for q = 1 by [35] to this lemma, but use the different definition for βn
from [34]. Even though the goal of [35, Lemma 5.4] is different from ours, we can still apply their
reasoning to bound the amplitude of the confidence interval of the dynamics. In particular, in [35,
Lemma 5.4], we have rn = 2βnσn−1(zn) with zn = (xn,un) according to Lemma 3. Then

r2
n = 4β2

nσ
2
n−1(zn), (23)

= 4β2
n

(
q∑
i=1

σn−1(zn, i)

)2

, (24)

≤ 4β2
nq

q∑
i=1

σ2
n−1(zn, i) (Jensen’s ineq.), (25)

≤ 4β2
nqσ

2C2

q∑
i=1

log(1 + σ−2σ2
n−1(zn, i)), (26)

where C2 = σ−2/ log(1 + σ−2). The result then follows analogously to [35, Lemma 5.4] by noting
that

n∑
j=1

r2
j ≤ C1β

2
nqγn ∀n ≥ 1 (27)

according to the definition of γn in this paper and using the Cauchy-Schwarz inequality.

The previous result allows us to bound the width of the confidence intervals:
Corollary 2. For any n1 ≥ n0 ≥ 1, if Sn1

= Sn0
, then for any n such that n0 ≤ n < n1, it holds

that

un(zn)− ln(zn) ≤ Lv

√
C1qβ2

nγn
n− n0

, (28)

where C1 = 8/ log(1 + σ−2).

Proof. Direct consequence of Lemma 6 together with the definition of C and Q.

Corollary 3. For any n ≥ 1 with C1 as defined in Lemma 6, let Nn be the smallest integer satisfying
Nn

β2
n+Nn

γn+Nn
≥ C1L

2
vq

ε2 and Sn+Nn = SNn , then, for any z ∈ Sn+Nn it holds that

un(z)− ln(z) ≤ ε. (29)

Proof. The result trivially follows from substituting Nn in the bound in Corollary 2.

Lemma 7. For any n ≥ 1, if Rε(S0) \ Sn 6= ∅, then Rε(Sn) \ Sn 6= ∅.
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Proof. As in [18, Lemma 6]. Assume, to the contrary, that Rε(Sn) \ Sn = ∅. By defini-
tion Rε(Sn) ⊇ Sn, therefore Rε(Sn) = Sn. Iteratively applying Rε to both sides, we get in the
limit Rε(Sn) = Sn. But then, by Lemma 5,(vi) and (ix), we get

Rε(S0) ⊆ Rε(Sn) = Sn, (30)

which contradicts the assumption that Rε(S0) \ Sn 6= ∅.

Lemma 8. For any n ≥ 1, if Rε(S0) \ Sn 6= ∅, then the following holds with probability at least
1− δ:

Sn+Nn ⊃ Sn. (31)

Proof. By Lemma 7, we have that Rε(Sn) \ Sn 6= ∅. By definition, this means that there exist
z ∈ Rε(Sn) \ Sn and z′ ∈ Sn such that

v(f(z′)) + ε+ LvLf‖z− z′‖1 ≤ max
x∈Rlev(Rdec(Sn))

v(x) (32)

Now we assume, to the contrary, that Sn+Nn = Sn (the safe set cannot decrease due to Lemma 5
(ix)). This implies that z ∈ Xτ × Uτ \ Sn+Nn and z′ ∈ Sn+Nn = Sn+Nn−1. Due to Corollary 2, it
follows that

un+Nn(z′) + LvLf‖z− z′‖1 (33)

≤ v(f(z′)) + ε+ LvLf‖z− z′‖1 (34)
≤ max

x∈Rlev(Rdec(Sn))
v(x) by (32) (35)

= max
x∈Rlev(Rdec(Sn+Nn ))

v(x) by (iii), (iv) and (ix) (36)

Thus, to conclude that z ∈ Sn+Nn according to (5), we need to show that
Rlev(Dn+Nn) ⊇ Rlev(Rdec(Sn)). To this end, we use Lemma 5 (iii) and show that
Dn+Nn ⊇ Rdec(Sn+Nn). Consider (x,u) ∈ Rdec(Sn+Nn), we know that there exists a (x′,u′) ∈
Sn+Nn = Sn+Nn−1 such that

−L∆vτ > v(f(x′,u′))− v(x′) + ε+ L∆v‖(x,u)− (x′,u′)‖1, (37)

≥ un+Nn(x′,u′)− v(x′) + L∆v‖(x,u)− (x′,u′)‖1, (38)

where the second inequality follows from Corollary 2. This implies that (x,u) ∈ Dn and thus
Dn+Nn ⊇ Rdec(Sn+Nn). This, in turn, implies that z ∈ Sn+Nn , which is a contradiction.

Lemma 9. For any n ≥ 0, the following holds with probability at least 1− δ:

Sn ⊆ R0(S0). (39)

Proof. Proof by induction. For the base case, n = 0, we have S0 ⊆ R0(S0) by definition.

For the induction step, assume that for some n ≥ 1, Sn−1 ⊆ R0(S0). Let z ∈ Sn. Then, by
definition, ∃z′ ∈ Sn−1 such that

un(z′) + LvLf‖z− z′‖1 ≤ max
x∈Rlev(Dn)

v(x), (40)

which, by Corollary 1, implies that

v(f(z′)) + LvLf‖z− z′‖1 ≤ max
x∈Rlev(Dn)

v(x) (41)

Now since z′ ∈ R0(S0) by the induction hypothesis, in order to conclude that z ∈ R0(S0) we need
to show that Rlev(Dn) ⊆ Rlev(Rdec(R(S0))) .

Let (x,u) ∈ Dn, then there exist (x′, z′) ∈ Sn−1 such that

un−1(x′,u′)− v(x′) + L∆v‖(x,u)− (x′,u′)‖1 < −L∆vτ, (42)
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which, by Corollary 1, implies that

v(f(x′,u′))− v(x′) + L∆v‖(x,u)− (x′,u′)‖1 < −L∆vτ, (43)

which means that (x,u) ∈ Rdec(R0(S0)) since Sn−1 ⊆ R0(S0) and therefore (x′,u′) ∈ R0(S0)
holds by the induction hypothesis. We use (iii) to conclude that Rlev(Dn) ⊆ Rlev(Rdec(R(S0))),
which concludes the proof.

Lemma 10. Let n∗ be the smallest integer, such that n∗ ≥ |R0(S0)|Nn∗ . Then, there exists n0 ≤ n∗
such that Sn0+Nn0

= Sn0
holds with probability 1− δ.

Proof. By contradiction. Assume, to the contrary, that for all n ≤ n∗, Sn ⊂ Sn+Nn . From Lemma 5
(ix) we know that Sn ⊆ Sn+Nn . Since Nn is increasing in n, we have that Nn ≤ Nn∗ . Thus, we
must have

S0 ⊂ SNn∗ ⊂ S2Nn∗ · · · , (44)

so that for any 0 ≤ j ≤ |R0(S0)|, it holds that |SjTn∗ | > j. In particular, for j = |R0(S0)|, we get

|SjNn∗ | > |R0(S0)|, (45)

which contradicts SjNn∗ ⊆ R0(S0) from Lemma 9.

Corollary 4. Let n∗ be the smallest integer such that

n∗

βn∗γn∗
≥ C1L

2
vq|R0(S0)|
ε2

, (46)

then there exists a n0 ≤ n∗ such that Sn0+Nn0
= Sn0

.

Proof. A direct consequence of Lemma 10 and Corollary 3.

A.4 Safety and policy adaptation

In the following, we denote the true region of attraction of (1) under a policy π byRπ .

Lemma 11. Rlev(Dn) ⊆ Rπn for all n ≥ 0.

Proof. By definition, we have for all (x,u) ∈ Dn that the exists (x′,u′) ∈ Sn−1 such that

−L∆vτ ≥ un(x′,u′)− v(x′) + L∆v‖(x,u)− (x′,u′)‖1,
≥ v(f(x′,u′))− v(x′) + L∆v‖(x,u)− (x′,u′)‖1,
≥ v(f(x,u))− v(x),

where the first inequality follows from Corollary 1 and the second one by Lipschitz continuity,
see Lemma 1.

By definition ofRlev in (11), it follows that for all x ∈ Rlev(Dn)∩Xτ we have that (x, πn(x)) ∈ Dn.
Moreover, Rlev(Dn) is a level set of the Lyapunov function by definition. Thus the result follows
from Theorem 2.

Lemma 12. f(x,u) ∈ Rπn ∀(x,u) ∈ Sn.

Proof. This holds for S0 by definition. For n ≥ 1, by defition, we have for all z ∈ Sn there exists an
z′ ∈ Sn−1 such that

max
x∈Rlev(Dn)

v(x) ≥ un(z′) + LvLf‖z− z′‖1

≥ v(f(z′)) + LvLf‖z− z′‖1
≥ v(f(z))

where the first inequality follows from Corollary 1 and the second one by Lipschitz continuity,
see Lemma 1. Since Rlev(Dn) ⊆ Rπn by Lemma 11, we have that f(z) ∈ Rπn .
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Theorem 4. Assume σ-sub-Gaussian measurement noise and that the model error g(·)
in (1) has RKHS norm smaller than Bg. Under the assumptions of Theorem 2,
with βn = Bg + 4σ

√
γn + 1 + ln(1/δ), and with measurements collected according to (6), let

n∗ be the smallest positive integer so that n∗

β2
n∗γn∗

≥ Cq(|R(S0)|+1)
L2
vε

2 where C = 8/ log(1 + σ−2).

Let Rπ be the true region of attraction of (1) under a policy π. For any ε > 0, and δ ∈ (0, 1), the
following holds jointly with probability at least (1− δ) for all n > 0:

(i) V(cn) ⊆ Rπn (ii) f(x,u) ∈ Rπn ∀(x,u) ∈ Sn. (iii) Rε(S0) ⊆ Sn ⊆ R0(S0).

Proof. See Lemmas 11 and 12 for (i) and (ii), respectively. Part (iii) is a direct consequence
of Corollary 4 and Lemma 9.
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