
A Preliminaries

In this section we define several notions used later in the paper. We start from the soft-margin support
vector machine (see [25]).

Definition 16 (Support Vector Machine (SVM)). Let x1, . . . , xn ∈ Rd be n vectors and y1, . . . , yn ∈
{−1, 1} be n labels. Let k(x, x′) be a kernel function. An optimization problem of the following form
is a (primal) SVM.

minimize
α1,...,αn≥0, b
ξ1,...,ξn≥0

λ

2

n∑
i,j=1

αiαjyiyjk(xi, xj) +
1

n

n∑
i=1

ξi

subject to yif(xi) ≥ 1− ξi, i = 1, . . . , n,

(7)

where f(x) := b +
∑n
i=1 αiyik(xi, x) and λ ≥ 0 is called the regularization parameter. ξi are

known as the slack variables.

The dual SVM is defined as

maximize
α1,...,αn≥0

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjk(xi, xj)

subject to
n∑
i=1

αiyi = 0,

α1, . . . , αn ≤
1

λn
.

(8)

We refer to the quantity b as the bias term. When we require that the bias is b = 0, we call the
optimization problem as SVM without the bias term. The primal SVM without the bias term remains
the same except f(x) =

∑n
i=1 αiyik(xi, x). The dual SVM remains the same except we remove the

equality constraint
∑n
i=1 αiyi = 0.

The (primal) hard-margin SVM defined in the previous section corresponds to soft-margin SVM in
the setting when λ→ 0. The dual hard-margin SVM is defined as follows.

Definition 17 (Dual hard-margin SVM). Let x1, . . . , xn ∈ Rd be n vectors and y1, . . . , yn ∈
{−1, 1} be n labels. Let k(x, x′) be a kernel function. An optimization problem of the following form
is a dual hard-margin SVM.

maximize
α1,...,αn≥0

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjk(xi, xj)

subject to
n∑
i=1

αiyi = 0.

(9)

If the primal hard-margin SVM is without the bias term (b = 0), then we omit the inequality constraint∑n
i=1 αiyi = 0 in the dual SVM.

We will use the following fact (see [25]).

Fact 18. If α∗1, . . . , α
∗
n achieve the minimum in an SVM, then the same α∗1, . . . , α

∗
n achieve the

maximum in the dual SVM. Also, the minimum value and the maximum value are equal.

B Hardness for SVM without the bias term

In this section we formalize the intuition from Section 4. We start from the following two lemmas.

Lemma 19 (NO case). If for all ai ∈ A and bj ∈ B we have Hamming(ai, bj) ≥ t, then

value(A,B) ≤ value(A) + value(B) + 200n6 exp(−100 log n · t).

12

Lemma 20 (YES case). If there exist ai ∈ A and bj ∈ B such that Hamming(ai, bj) ≤ t− 1, then

value(A,B) ≥ value(A) + value(B) +
1

4
exp(−100 log n · (t− 1)).

Assuming the two lemmas we can distinguish the NO case from the YES case because

200n6 exp(−100 log n · t)� 1

4
exp(−100 log n · (t− 1))

by our choice of the parameter C = 100 log n for the Gaussian kernel.

Before we proceed with the proofs of the two lemmas, we prove the following auxiliary statement.
Lemma 21. Consider SVM (3). Let α∗1, . . . , α

∗
n be the setting of values for α1, . . . , αn that achieves

value(A). Then for all i = 1, . . . , n we have that n ≥ α∗i ≥ 1/2.

Analogous statement holds for SVM (4).

Proof. First we note that value(A) ≤ n2/2 because the objective value of (3) is at most n2/2 if we
set α1 = . . . = αn = 1. Note that all inequalities of (3) are satisfied for this setting of variables.
Now we lower bound value(A):

value(A) =
1

2

n∑
i,j

α∗iα
∗
jk(ai, aj) ≥

1

2

n∑
i=1

(α∗i)
2.

From value(A) ≥ 1
2

∑n
i=1(α∗i)

2 and value(A) ≤ n2/2 we conclude that α∗i ≤ n for all i.

Now we will show that α∗i ≥ 1/2 for all i = 1, . . . , n. Consider the inequality
n∑
j=1

α∗jk(ai, aj) = α∗i +
∑
j : j 6=i

α∗jk(ai, aj) ≥ 1

which is satisfied by α∗1, . . . , α
∗
n because this is an inequality constraint in (3). Note that k(ai, aj) ≤

1
10n2 for all i 6= j because C = 100 log n and ‖ai − aj‖22 = Hamming(ai, aj) ≥ 1 for all i 6= j.
Also, we already obtained that α∗j ≤ n for all j. This gives us the required lower bound for α∗i :

α∗i ≥ 1−
∑
j : j 6=i

α∗jk(ai, aj) ≥ 1− n · n · 1

10n2
≥ 1/2.

Additive precision For particular value of t, the sufficient additive precision for solving the three
SVMs is 1

100 exp(−100 log n · (t − 1)) to be able to distinguish the NO case from the YES case.
Since we want to be able to distinguish the two cases for any t ∈ {2, . . . , d}, it suffices to have an
additive precision exp(−100 log n · d) ≤ 1

100 exp(−100 log n · (t− 1)). From [5] we know that any
d = ω(log n) is sufficient to show hardness. Therefore, any additive approximation exp(−ω(log2 n))
is sufficient to show the hardness for SVM.

Multiplicative precision Consider any ε = exp(−ω(log2 n)) and suppose we can approximate
within multiplicative factor (1 + ε) quantities value(A), value(B) and value(A,B). From the proof
of Lemma 21 we know that value(A), value(B) ≤ n2/2. If value(A,B) ≤ 10n2, then (1 + ε)-
approximation of the three quantities allows us to compute the three quantities within additive
exp(−ω(log2 n)) factor and the hardness follows from the previous paragraph. On the other hand, if
value(A,B) > 10n2, then (1 + ε)-approximation of value(A,B) allows us to determine that we are
in the YES case.

In the rest of the section we complete the proof of the theorem by proving Lemma 19 and Lemma 20.

Proof of Lemma 19. Let α∗1, . . . , α
∗
n and β∗1 , . . . , β

∗
n be the optimal assignments to SVMs (3) and (4),

respectively. We use the notation δ := exp(−100 log n · t). Note that k(ai, bj) = exp(−100 log n ·
‖ai − bj‖22) ≤ δ for all i, j because ||ai − bj ||22 = Hamming(ai, bj) ≥ t for all i, j.

13

We define α′i := α∗i +10n2δ and β′i := β∗i +10n2δ for all i = 1, . . . , n. We observe that α′i, β
′
i ≤ 2n

for all i because α∗i , β
∗
i ≤ n for all i (Lemma 21) and δ = exp(−100 log n · t) ≤ 1

10n2 . Let V be the
value of the objective function in (5) when evaluated on α′i and β′i.

We make two claims. We claim that α′i and β′i satisfy the inequality constraints in (5). This
implies that value(A,B) ≤ V since (5) is a minimization problem. Our second claim is that
V ≤ value(A) + value(B) + 200n6δ. The two claims combined complete the proof of the lemma.

We start with the proof of the second claim. We want to show that V ≤ value(A)+value(B)+200n6δ.
We get the following inequality:

V =
1

2

n∑
i,j=1

α′iα
′
jk(ai, aj) +

1

2

n∑
i,j=1

β′iβ
′
jk(bi, bj) −

n∑
i,j=1

α′iβ
′
jk(ai, bj)

≤ 1

2

n∑
i,j=1

α′iα
′
jk(ai, aj) +

1

2

n∑
i,j=1

β′iβ
′
jk(bi, bj)

since the third sum is non-negative. It is sufficient to show two inequalities 1
2

∑n
i,j=1 α

′
iα
′
jk(ai, aj) ≤

value(A) + 100n6δ and 1
2

∑n
i,j=1 β

′
iβ
′
jk(bi, bj) ≤ value(B) + 100n6δ to establish the inequality

V ≤ value(A) + value(B) + 200n6δ. We prove the first inequality. The proof for the second
inequality is analogous. We use the definition of α′i = α∗i + 10n2δ:

1

2

n∑
i,j=1

α′iα
′
jk(ai, aj)

=
1

2

n∑
i,j=1

(α∗i + 10n2δ)(α∗j + 10n2δ)k(ai, aj)

≤ 1

2

n∑
i,j=1

(
α∗iα

∗
jk(ai, aj) + 20n3δ + 100n4δ2

)
≤ value(A) + 100n6δ,

where in the first inequality we use that α∗i ≤ n and k(ai, aj) ≤ 1.

Now we prove the first claim. We show that the inequality constraints are satisfied by α′i and β′i. We
prove that the inequality

n∑
j=1

α′jk(ai, aj)−
n∑
j=1

β′jk(ai, bj) ≥ 1 (10)

is satisfied for all i = 1, . . . , n. The proof that the inequalities −
∑n
j=1 β

′
jk(bi, bj) +∑n

j=1 α
′
jk(bi, aj) ≤ −1 are satisfied is analogous.

We lower bound the first sum of the left hand side of (10) by repeatedly using the definition of
α′i = α∗i + 10n2δ:

n∑
j=1

α′jk(ai, aj)

= (α∗i + 10n2δ) +
∑
j : j 6=i

α′jk(ai, aj)

≥ 10n2δ + α∗i +
∑
j : j 6=i

α∗jk(ai, aj)

= 10n2δ +

n∑
j=1

α∗jk(ai, aj)

≥ 1 + 10n2δ.

In the last inequality we used the fact that α∗i satisfy the inequality constraints of SVM (3).

14

We upper bound the second sum of the left hand side of (10) by using the inequality β′j ≤ 2n and
k(ai, bj) ≤ δ for all i, j:

n∑
j=1

β′jk(ai, bj) ≤ 2n2δ.

Finally, we can show that the inequality constraint is satisfied:
n∑
j=1

α′jk(ai, aj)−
n∑
j=1

β′jk(ai, bj) ≥ 1 + 10n2δ − 2n2δ ≥ 1.

Proof of Lemma 20. To analyze the YES case, we consider the dual SVMs (see Definition 17) of the
three SVMs (3), (4) and (5):

1. The dual SVM of SVM (3):

maximize
α1,...,αn≥0

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjk(ai, aj). (11)

2. The dual SVM of SVM (4):

maximize
β1,...,βn≥0

n∑
i=1

βi −
1

2

n∑
i,j=1

βiβjk(ai, aj). (12)

3. The dual SVM of SVM (5):

maximize
α1,...,αn≥0
β1,...,βn≥0

n∑
i=1

αi +

n∑
i=1

βi −
1

2

n∑
i,j=1

αiαjk(ai, aj) −
1

2

n∑
i,j=1

βiβjk(bi, bj) +

n∑
i,j=1

αiβjk(ai, bj).

(13)

Since the optimal values of the primal and dual SVMs are equal, we have that value(A), value(B)
and value(A,B) are equal to optimal values of dual SVMs (11), (12) and (13), respectively (see Fact
18).

Let α∗1, . . . , α
∗
n and β∗1 , . . . , β

∗
n be the optimal assignments to dual SVMs (11) and (12), respectively.

Our goal is to lower bound value(A,B). Since (13) is a maximization problem, it is sufficient to
show an assignment to αi and βj that gives a large value to the objective function. For this we set
αi = α∗i and βj = β∗j for all i, j = 1, . . . , n. This gives the following inequality:

value(A,B) ≥
n∑
i=1

α∗i +

n∑
i=1

β∗i −
1

2

n∑
i,j=1

α∗iα
∗
jk(ai, aj) −

1

2

n∑
i,j=1

β∗i β
∗
j k(bi, bj) +

n∑
i,j=1

α∗i β
∗
j k(ai, bj)

≥ value(A) + value(B) +

n∑
i,j=1

α∗i β
∗
j k(ai, bj),

where we use the fact that value(A) and value(B) are the optimal values of dual SVMs (11) and (12),
respectively.

To complete the proof of the lemma, it suffices to show the following inequality:
n∑

i,j=1

α∗i β
∗
j k(ai, bj) ≥

1

4
exp(−100 log n · (t− 1)). (14)

Notice that so far we did not use the fact that there is a close pair of vectors ai ∈ A and bj ∈ B such
that Hamming(ai, bj) ≤ t− 1. We use this fact now. We lower bound the left hand side of (14) by
the summand corresponding to the close pair:

n∑
i,j=1

α∗i β
∗
j k(ai, bj) ≥ α∗i β∗j k(ai, bj) ≥ α∗i β∗j exp(−100 log n · (t− 1)),

15

where in the last inequality we use Hamming(ai, bj) ≤ t − 1 and the definition of the Gaussian
kernel.

The proof is completed by observing that α∗i ≥ 1
2 and β∗i ≥ 1

2 which follows from Fact 18 and
Lemma 21.

C Hardness for SVM with the bias term

In the previous section we showed hardness for SVM without the bias term. In this section we show
hardness for SVM with the bias term.
Theorem 22. Let x1, . . . , xn ∈ {−1, 0, 1}d be n vectors and let y1, . . . , yn ∈ {−1, 1} be n labels.

Let k(a, a′) = exp
(
−C‖a− a′‖22

)
be the Gaussian kernel with C = 100 log n.

Consider the corresponding hard-margin SVM with the bias term:

minimize
α1,...,αn≥0, b

1

2

n∑
i,j=1

αiαjyiyjk(xi, xj)

subject to yif(xi) ≥ 1, i = 1, . . . , n,

(15)

where f(x) := b+
∑n
i=1 αiyik(xi, x).

Consider any ε = exp(−ω(log2 n)). Approximating the optimal value of (15) within the multiplica-
tive factor (1 + ε) requires almost quadratic time assuming SETH. This holds for the dimensionality
d = O(log3 n) of the input vectors.

The same hardness result holds for any additive exp(−ω(log2 n)) approximation factor.

Proof. Consider a hard instance from Theorem 4 for SVM without the bias term. Let x1, . . . , xn ∈
{0, 1}d be the n binary vectors of dimensionality d = ω(log n) and y1, . . . , yn ∈ {−1, 1} be the n
corresponding labels. For this input consider the dual SVM without the bias term (see Definition 17):

maximize
γ1,...,γn≥0

n∑
i=1

γi −
1

2

n∑
i,j=1

γiγjyiyjk(xi, xj). (16)

We will show how to reduce SVM without the bias term (16) to SVM with the bias term. By Theorem
4 this will give hardness result for SVM with the bias term. We start with a simpler reduction that
will achieve almost what we need except the entries of the vectors will not be from the set {−1, 0, 1}.
Then we will show how to change the reduction to fix this.

Consider 2n vectors x1, . . . , xn,−x1, . . . ,−xn ∈ {−1, 0, 1}d with 2n labels
y1, . . . , yn,−y1, . . . ,−yn ∈ {−1, 1}. Consider an SVM with the bias term for the 2n vec-
tors, that is, an SVM of the form (15). From Definition 17 we know that its dual SVM
is

maximize
α1,...,αn≥0
β1,...,βn≥0

n∑
i=1

αi +

n∑
j=1

βj

− 1

2

n∑
i,j=1

αiαjyiyjk(xi, xj) −
1

2

n∑
i,j=1

βiβjyiyjk(xi, xj) +

n∑
i,j=1

αiβjyiyjk(xi,−xj)

subject to
n∑
i=1

αiyi =

n∑
j=1

βjyj .

(17)

Consider any setting of values for αi and βj . Notice that if we swap the value of αi and βi for every
i, the value of the objective function of (17) does not change. This is implies that we can define
γi := αi+βi

2 and set αi = βi = γi for every i. Because of the convexity of the optimization problem,
the value of the objective function can only increase after this change. Clearly, the equality constraint

16

will be satisfied. Therefore, w.l.o.g. we can assume that αi = βi = γi for some γi and we can omit
the equality constraint.

We rewrite (17) in terms of γi and divide the objective function by 2:

maximize
γ1,...,γn≥0

n∑
i=1

γi −
1

2

n∑
i,j=1

γiγjyiyjk(xi, xj) +
1

2

n∑
i,j=1

γiγjyiyjk(xi,−xj). (18)

Notice that (18) and (16) are almost the same. The only difference is the third term

1

2

n∑
i,j=1

γiγjyiyjk(xi,−xj)

in (18). We can make this term to be equal to 0 and not change the first two terms as follows. We
append an extra coordinate to every vector xi and set this coordinate to be large enough value M .
If we set M = +∞, the third term becomes 0. The first term does not depend on the vectors. The
second term depends only on the distances between the vectors (which are not affected by adding the
same entry to all vectors). Thus, the first two terms do not change after this modification.

We showed that we can reduce SVM without the bias term (16) to the SVM with the bias term (17).
By combining this reduction with Theorem 4 we obtain hardness for SVM with the bias term. This is
almost what we need except that the reduction presented above produces vectors with entries that
are not from the set {−1, 0, 1}. In every vector xi or −xi there is an entry that has value M or −M ,
respectively. In the rest of the proof we show how to fix this, by bounding M by O(log3 n) and
distributing its contribution over O(log3 n) coordinates.

Final reduction The final reduction is as follows:

• Take a hard instance for the SVM without the bias term from Theorem 4. Let x1, . . . , xn ∈
{0, 1}d be the n binary vectors of dimensionality d = ω(log n) and y1, . . . , yn ∈ {−1, 1}
be the n corresponding labels.

• Append log3 n entries to each of the vectors xi, i = 1, . . . , n and set the entries to be 1.

• Solve SVM (15) on the 2n vectors x1, . . . , xn,−x1, . . . ,−xn ∈ {−1, 0, 1}d with 2n labels
y1, . . . , yn,−y1, . . . ,−yn ∈ {−1, 1}. Let V be the optimal value of the SVM divided by 2.

• Output V .

Correctness of the reduction From the above discussion we know that we output the optimal
value V of the optimization problem (18). Let V ′ be the optimal value of SVM (16).

By Theorem 4, it is sufficient to show that |V − V ′| ≤ exp(−ω(log2 n)) to establish hardness for
SVM with the bias term. We will show that |V −V ′| ≤ nO(1) exp(− log3 n). This gives hardness for
additive approximation of SVM with the bias term. However, |V − V ′| ≤ exp(−ω(log2 n)) is also
sufficient to show hardness for multiplicative approximation (see the discussion on the approximation
in the proof of Theorem 4).

In the rest of the section we show that |V − V ′| ≤ nO(1) exp(− log3 n). Let γ′i be the assignment to
γi that achieves V ′ in SVM (16). Let γ∗i be the assignment to γi that achieves V in (18). We will
show that γ′i ≤ O(n) for all i = 1, . . . , n. It is also true that γ∗i ≤ O(n) for all i = 1, . . . , n and
the proof is analogous. Since x1, . . . , xn are different binary vectors and k(xi, xj) is the Gaussian
kernel with the parameter C = 100 log n, we have that k(xi, xj) ≤ 1/n10 for all i 6= j. This gives
the following upper bound:

V ′ =

n∑
i=1

γ′i −
1

2

n∑
i,j=1

γ′iγ
′
jyiyjk(xi, xj) ≤

n∑
i=1

(
γ′i −

(
1

2
− o(1)

)
(γ′i)

2

)
.

Observe that every non-negative summand on the right hand side is at most O(1). Therefore, if there
exists i such that γ′i ≥ ω(n), then the right hand side is negative. This contradicts the lower bound
V ′ ≥ 0 (which follows by setting all γi to be 0 in (16)).

17

By plugging γ′i into (18) and using the fact that γ′i ≤ O(n), we obtain the following inequality:

V ≥ V ′ + 1

2

n∑
i,j=1

γ′iγ
′
jyiyjk(xi,−xj) ≥ V ′ − nO(1) exp(− log3 n). (19)

In the last inequality we use k(xi,−xj) ≤ exp(− log3 n) which holds for all i, j = 1, ..., n (observe
that each xi and xj ends with log3 n entries 1 and use the definition of the Gaussian kernel).

Similarly, by plugging γ∗i into (16) and using the fact that γ∗i ≤ O(n), we obtain the following
inequality:

V ′ ≥ V − 1

2

n∑
i,j=1

γ∗i γ
∗
j yiyjk(xi,−xj) ≥ V − nO(1) exp(− log3 n). (20)

Inequalities (19) and (20) combined give the desired inequality |V −V ′| ≤ nO(1) exp(− log3 n).

D Hardness for soft-margin SVM

Theorem 23. Let x1, . . . , xn ∈ {−1, 0, 1}d be n vectors and let y1, . . . , yn ∈ {−1, 1} be n labels.

Let k(a, a′) = exp
(
−C‖a− a′‖22

)
be the Gaussian kernel with C = 100 log n.

Consider the corresponding soft-margin SVM with the bias term:

minimize
α1,...,αn≥0, b
ξ1,...,ξn≥0

λ

2

n∑
i,j=1

αiαjyiyjk(xi, xj) +
1

n

n∑
i=1

ξi

subject to yif(xi) ≥ 1− ξi, i = 1, . . . , n,

(21)

where f(x) := b+
∑n
i=1 αiyik(xi, x).

Consider any ε = exp(−ω(log2 n)) and any 0 < λ ≤ 1
Kn2 for a large enough constant K > 0.

Approximating the optimal value of (21) within the multiplicative factor (1 + ε) requires almost
quadratic time assuming SETH. This holds for the dimensionality d = O(log3 n) of the input vectors.

The same hardness result holds for any additive exp(−ω(log2 n)) approximation factor.

Proof. Consider the hard instance from Theorem 22 for the hard-margin SVM. The dual of the
hard-margin SVM is (17). From the proof we know that the optimal αi and βi satisfy αi = βi =
γ∗i ≤ 2Kn for some large enough constant K > 0 for all i = 1, . . . , n. Thus, w.l.o.g. we can add
these inequalities to the set of constraints. We compare the resulting dual SVM to Definition 16
and conclude that the resulting dual SVM is a dual of a soft-margin SVM with the regularization
parameter λ = 1

Kn2 . Therefore, the hardness follows from Theorem 22.

E Hardness proof for Kernel PCA

In this section, we present the full proof of quadratic hardness for Kernel PCA. It will also be helpful
for Kernel Ridge Regression in the next section.

Given a matrix X , we denote its trace (the sum of the diagonal entries) by tr(X) and the total sum
of its entries by s(X). In the context of the matrix K ′ defining our problem, we have the following
equality:

tr(K ′) = tr((I − 1n)K(I − 1n))

= tr(K(I − 1n)2) = tr(K(I − 1n))

= tr(K)− tr(K1n) = n− s(K)/n .

Since the sum of the eigenvalues is equal to the trace of the matrix and tr(K ′) = n− s(K)/n, it is
sufficient to show hardness for computing s(K). The following lemma completes the proof of the
theorem.

18

Lemma 24. Computing s(K) within multiplicative error 1 + ε for ε = exp(−ω(log2 n)) requires
almost quadratic time assuming SETH.

Proof. As for SVMs, we will reduce the BHCP problem to the computation of s(K). Let A and B be
the two sets of n binary vectors coming from an instance of the BHCP problem. LetKA,KB ∈ Rn×n
be the kernel matrices corresponding to the sets A and B, respectively. Let KA,B ∈ R2n×2n be the
kernel matrix corresponding to the set A ∪B. We observe that

s :=(s(KA,B)− s(KA)− s(KB))/2

=

n∑
i,j=1

k(ai, bj)

=

n∑
i,j=1

exp(−C||ai − bj ||22).

Now we consider two cases.

Case 1. There are no close pairs, that is, for all i, j = 1, . . . , n we have ||ai − bj ||22 ≥ t and
exp(−C||ai − bj ||22) ≤ exp(−Ct) =: δ. Then s ≤ n2δ.

Case 2. There is a close pair. That is, ||ai′ − bj′ ||22 ≤ t − 1 for some i′, j′. This implies that
exp(−C||ai′ − bj′ ||22) ≥ exp(−C(t− 1)) =: ∆. Thus, s ≥ ∆.

Since C = 100 log n, we have that ∆ ≥ n10δ and we can distinguish the two cases.

Precision. To distinguish s ≥ ∆ from s ≤ n2δ, it is sufficient that ∆ ≥ 2n2δ. This holds for C =
100 log n. The sufficient additive precision is exp(−Cd) = exp(−ω(log2 n)). Since s(K) ≤ O(n2)
for any Gaussian kernel matrix K, we also get that (1 + ε) multiplicative approximation is sufficient
to distinguish the cases for any ε = exp(−ω(log2 n)).

F Hardness for kernel ridge regression

We start with stating helpful definitions and lemmas.

We will use the following lemma which is a consequence of the binomial inverse theorem.
Lemma 25. Let X and Y be two square matrices of equal size. Then the following equality holds:

(X + Y)−1 = X−1 −X−1(I + Y X−1)−1Y X−1.

Definition 26 (Almost identity matrix). Let X ∈ Rn×n be a matrix. We call it almost identity matrix
if X = I + Y and |Yi,j | ≤ n−ω(1) for all i, j = 1, . . . , n.

We will need the following two lemmas.
Lemma 27. The product of two almost identity matrices is an almost identity matrix.

Proof. Follows easily from the definition.

Lemma 28. The inverse of an almost identity matrix is an almost identity matrix.

Proof. Let X be an almost identity matrix. We want to show that X−1 is an almost identity matrix.
We write X = I − Y such that |Yi,j | ≤ n−ω(1) for all i, j = 1, . . . , n. We have the following matrix
equality

X−1 = (I − Y)−1 = I + Y + Y 2 + Y 3 + . . .

To show that X−1 is an almost identity, we will show that the absolute value of every entry of
Z := Y +Y 2 +Y 3 + . . . is at most n−ω(1). Let ε ≤ n−ω(1) is an upper bound on |Yi,j | for all i, j =
1, . . . , n. Then |Zi,j | ≤ Z ′i,j , where Z ′ := Y ′+ (Y ′)2 + (Y ′)3 + . . . and Y ′ is a matrix consisting of
entries that are all equal to ε. The proof follows since Z ′i,j =

∑∞
k=1 ε

knk−1 ≤ 10ε ≤ n−ω(1).

19

In the rest of the section we prove Theorem 6.

Proof of Theorem 6. We reduce the BHCP problem to the problem of computing the sum of the
entries of K−1.

Let A and B be the two sets of binary vectors from the BHCP instance. Let K ∈ R2n×2n be the
corresponding kernel matrix. We can write the kernel matrix K as combination of four smaller
matrices K1,1,K1,2,K2,1,K2,2 ∈ Rn×n:

K =

[
K1,1 K1,2

K2,1 K2,2

]
.

K1,1 is the kernel matrix for the set of vectorsA andK2,2 is the kernel matrix for the set of vectorsB.

We define two new matrices X,Y ∈ R2n×2n: X =

[
K1,1 0

0 K2,2

]
and Y =

[
0 K1,2

K2,1 0

]
.

For any matrix Z, let s(Z) denote the sum of all entries of Z. Using Lemma 25, we can write K−1
as follows:

K−1 = (X + Y)−1 = X−1 −X−1(I + Y X−1)−1Y X−1.

We note that the matrix X is an almost identity and that |Yi,j | ≤ n−ω(1) for all i, j = 1, . . . , 2n. This
follows from the fact that we use the Gaussian kernel function with the parameter C = ω(log n)
and the input vectors are binary. Combining this with lemmas 27 and 28 allows us to conclude that
matrices X−1(I + Y X−1)−1 and X−1 are almost identity. Since all entries of the matrix Y are
non-negative, we conclude that

s(X−1(I + Y X−1)−1Y X−1) = s(Y)(1± n−ω(1)).

We obtain that

s(K−1) = s(X−1)− s(X−1(I + Y X−1)−1Y X−1)

= s(X−1)− s(Y)(1± n−ω(1))
= s

(
(K1,1)−1

)
+ s

(
(K2,2)−1

)
− s(Y)(1± n−ω(1)).

Fix any α = exp(−ω(log2 n)). Suppose that we can estimate each s(K−1), s
(
(K1,1)−1

)
and

s
(
(K2,2)−1

)
within the additive factor of α. This allows us to estimate s(Y) within the additive

factor of 10α. This is enough to solve the BHCP problem. We consider two cases.

Case 1 There are no close pairs, that is, for all i, j = 1, . . . , n we have ||ai − bj ||22 ≥ t and
exp(−C||ai − bj ||22) ≤ exp(−Ct) =: δ. Then s(Y) ≤ 2n2δ.

Case 2 There is a close pair. That is, ||ai′ − bj′ ||22 ≤ t − 1 for some i′, j′. This implies that
exp(−C||ai′ − bj′ ||22) ≥ exp(−C(t− 1)) =: ∆. Thus, s(Y) ≥ ∆.

Since C = ω(log n), we have that ∆ ≥ 100n2δ and we can distinguish the two cases assuming that
the additive precision α = exp(−ω(log2 n)) is small enough.

Precision To distinguish s(Y) ≤ 2n2δ from s(Y) ≥ ∆, it is sufficient that ∆ ≥ 100n2δ and
α ≤ ∆/1000. We know that ∆ ≥ 100n2δ holds because C = ω(log n). Since ∆ ≤ exp(−Cd), we
want to choose C and d such that the α ≤ ∆/1000 is satisfied. We can do that because we can pick
C to be any C = ω(log n) and the BHCP problem requires almost quadratic time assuming SETH
for any d = ω(log n).

We get that additive ε approximation is sufficient to distinguish the cases for any ε =
exp(−ω(log2 n)). We observe that s(K−1) ≤ O(n) for any almost identity matrix K. This
means that (1 + ε) multiplicative approximation is sufficient for the same ε. This completes the proof
of the theorem.

20

G Hardness for training of the final layer of a neural network

Recall that the trainable parameters are α := (α1, . . . , αn)T, and that the optimization problem (2) is
equivalent to the following optimization problem:

minimize
α∈Rn

m∑
i=1

l(yi · (Mα)i), (22)

where M ∈ Rm×n is the matrix defined as Mi,j := S(uTi wj) for i = 1, . . . ,m and j = 1, . . . n. For
the rest of the section we will use m = Θ(n).

Let A = {a1, . . . , an} ⊆ {0, 1}d and B = {b1, . . . , bn} ⊆ {0, 1}d with d = ω(log n) be the input
to the Orthogonal Vectors problem. We construct a matrix M as a combination of three smaller
matrices:

M =

[
M1

M2

M2

]
.

Both matrices M1,M2 ∈ Rn×n are of size n× n. Thus we have that the number of rows of M is
m = 3n.

We describe the two matrices M1,M2 below. Recall that v0, v1, and v2 are given in Definition 12.

• (M1)i,j = S
(
v0 − (v2 − v0) · aTi bj

)
. For any two real values x, y ∈ R we write x ≈ y if

x = y up to an inversely superpolynomial additive factor. In other words, |x− y| ≤ n−ω(1).
We observe that if two vectors ai and bj are orthogonal, then the corresponding entry
(M1)i,j = S(v0) = Θ(1) and otherwise (M1)i,j ≈ 0. We will show that an

(
1 + 1

4n

)
-

approximation of the optimal value of the optimization problem (22) will allow us to decide
whether there is an entry in M1 that is S(v0) = Θ(1). This will give the required hardness.
It remains to show how to construct the matrix M1 using a neural network. We set the

weights for the j-th hidden unit to be
[
bj
1

]
. That is, d weights are specified by the vector

bj , and we add one more input with weight 1. The i-th example (corresponding to the i-th

row of the matrix M1) is the vector
[
−(v2 − v0)ai

v0

]
. The output of the j-th unit on this

example (which corresponds to entry (M1)i,j) is equal to

S

([
−(v2 − v0)ai

v0

]T [
bj
1

])
= S

(
v0 − (v2 − v0) · aTi bj

)
= (M1)i,j

as required.

• (M2)i,j = S
(
v1 − (v2 − v1) · b̄i

T
bj

)
, where b̄i is a binary vector obtained from the binary

vector bi by complementing all bits. We observe that this forces the diagonal entries of
M2 to be equal to (M2)i,i = S(v1) = 1/n1000K for all i = 1, . . . , n and the off-diagonal
entries to be (M2)i,j ≈ 0 for all i 6= j.9

To complete the description of the optimization problem (22), we assign labels to the inputs corre-
sponding to the rows of the matrix M . We assign label 1 to all inputs corresponding to rows of the
matrix M1 and the first copy of the matrix M2. We assign label −1 to all remaining rows of the
matrix M corresponding to the second copy of matrix M2.

It now suffices to prove Lemma 13 and Lemma 14.

Proof of Lemma 13. To obtain an upper bound on the optimal value in the presence of an orthogonal
pair, we set the vector α to have all entries equal to n100K . For this α we have

9For all i 6= j we have b̄i
T
bj ≥ 1. This holds because all vectors bi are distinct and have the same number of

1s.

21

• |(M1α)i| ≥ Ω(n100K) for all i = 1, . . . , n such that there is exists j = 1, . . . , n with
aTi bj = 0. Let x ≥ 1 be the number of such i.

• |(M1α)i| ≤ n−ω(1) for all i = 1, . . . , n such that there is no j = 1, . . . , n with aTi bj = 0.
The number of such i is n− x.

By using the second property of Definition 11, the total loss corresponding to M1 is upper bounded
by

x · l(Ω(n100K)) + (n− x) · l(n−ω(1)) ≤ x · o(1) + (n− x) · (l(0) + o(1/n))

≤ (n− 1) · l(0) + o(1) =: l1.

Finally, the total loss corresponding to the two copies of the matrix M2 is upper bounded by

2n · l(±O(n−800K)) = 2n · (l(0)± o(1/n))

≤ 2n · l(0) + o(1) =: l2.

The total loss corresponding to the matrix M is upper bounded by l1 + l2 ≤ (3n− 1) · l(0) + o(1)
as required.

Proof of Lemma 14. We first observe that the total loss corresponding to the two copies of the
matrix M2 is lower bounded by 2n · l(0). Consider the i-th row in both copies of matrix M2. By
using the convexity of the function l, the loss corresponding to the two rows is lower bounded by
l((M2α)i) + l(−(M2α)i) ≥ 2 · l(0). By summing over all n pairs of rows we obtain the required
lower bound on the loss.

We claim that ‖α‖∞ ≤ n10
6K . Suppose that this is not the case and let i be the index of the largest

entry of α in magnitude. Then the i-th entry of the vector M2α is

(M2α)i = αi(M2)i,i ± n · αi · n−ω(1)

≥ αi
n1000K

− αin−ω(1) ,

where we recall that the diagonal entries of matrix M2 are equal to (M2)i,i = S(v1) = 1/nK . If
|αi| > n10

6K , then |(M2α)i| ≥ n1000k. However, by the second property in Definition 11, this
implies that the loss is lower bounded by ω(n) for the i-row (for the first or the second copy of M2).
This contradicts a simple lower bound of 4n · l(0) on the loss obtained by setting α = 0 to be the all
0s vector. We use the third property of a nice loss function which says that l(0) > 0.

For the rest of the proof, we assume that ‖α‖∞ ≤ n10
6K . We will show that the total loss corre-

sponding to M1 is lower bounded by n · l(0)− o(1). This is sufficient since we already showed that
the two copies of M2 contribute a loss of at least 2n · l(0).

Since all entries of the matrix M1 are inversely superpolynomial (there is no pair of orthogonal
vectors), we have that |(M1α)i| ≤ n−ω(1) for all i = 1, . . . , n. Using the second property again, the
loss corresponding to M1 is lower bounded by

n · l(±n−ω(1)) ≥ n · (l(0)− o(1/n))

≥ n · l(0)− o(1)

as required.

H Gradient computation

We start from the proof of Lemma 15.

Proof.

∂lα,A,B
∂αj

=
∑
a∈A

∂l(Fα,B(a))

∂Fα,B(a)
S(a, bj) = l′(0) ·

∑
a∈A

S(a, bj) (since Fα,B(a) = 0).

22

Sigmoid activation function We can show our hardness result holds also for the sigmoid activation
function.
Theorem 29. Consider a neural net with of size n with the sigmoid activation function σ(x) = 1

1+e−x .
Approximating the `p norm (for any p ≥ 1) of the gradient of the empirical risk for m examples
within the multiplicative factor of nC for any constant C > 0 takes at least O

(
(nm)1−o(1)

)
time

assuming SETH.

Proof. We set S(a, b) := σ(−10(C + 1)(log n) · aTb). Using Lemma 15, we get that the `1 norm of
the gradient is equal to |l′(0)| ·

∑
a∈A,b∈B

1

1+e10(C+1)(log n)·aTb
. It is easy to show that this quantity is

at least |l′(0)|/2 if there is an orthogonal pair and at most |l′(0)|/(2nC) otherwise. Since l′(0) 6= 0,
we get the required approximation hardness.

Polynomial activation function On the other hand, by using the polynomial lifting technique, we
can show that changing the activation function can lead to non-trivially faster algorithms:
Theorem 30. Consider a neural net with one hidden layer of size n, with the polynomial activation
function σ(x) = xr for some integer r ≥ 2. Computing the gradients of the empirical loss function
for m examples in Rd can be done in time O((n+m)dr).

Note that the running time of the “standard” back-propagation algorithm is O(dnm) for networks
with this architecture. Thus our algorithm improves over back-propagation for a non-trivial range of
parameters, especially for quadratic activation function when r = 2.

We start by defining the network architecture more formally. We consider a neural network computing
a function f : R1×d → R defined as f(x) := S(xA)α, where

• x ∈ R1×d is an input row vector of dimensionality d.

• A ∈ Rd×m is a matrix with j-th column specifying weights of edges connecting the input
units with the j-th hidden unit.

• S : R → R is a non-linearity that is applied entry-wise. S(x) = xr for some constant
integer r ≥ 2 for the rest of the section.

• α ∈ Rm is column vector with αj specifying the weight of the edge that connects the j-th
hidden unit with the output linear unit.

Let X ∈ Rn×d be the matrix specifying n inputs vectors. The i-th row of X specifies the i-th input
vector. Let z := f(X) ∈ Rn be the output of function f when evaluated on the input matrix X . Let
l : Rn → R be the total loss function defined as l(z) :=

∑n
i=1 li(zi) for some functions li : R→ R.

Let
∂l

∂α
:=

(
∂l

∂α1
, . . . ,

∂l

∂αm

)T

∈ Rm

be the vector of gradients for weights α1, . . . , αm. Let ∂l
∂A ∈ Rd×m be the matrix that specifies

gradient of l with respect to entries Ak,j . That is,(
∂l

∂A

)
k,j

:=
∂l

∂Ak,j

for k = 1, . . . , d and j = 1, . . . ,m.
Theorem 31. We can evaluate ∂l

∂α and ∂l
∂A in O((n+m)dr).

Proof. Let l′(z) :=
(
∂l1
∂z1

, . . . , ∂ln∂zn

)
∈ Rn denote the vector that collects all ∂li∂zi

.

We note that

∂li
∂αj

=
∂li
∂zi
· (output of the j-th hidden unit on the i-th input vector)

= l′i(zi) · (X(r)A(r))i,j .

23

This gives

∂l

∂α
=
(
X(r)A(r)

)T
l′(z)

=
(
A(r)

)T((
X(r)

)T
l′(z)

)
.

The last expression can be evaluated in the required O((n+m)dr) = (n+m)1+o(1) time.

We note that

∂l

∂Ak,j
=

n∑
i=1

∂li
∂Ak,j

=

n∑
i=1

Xi,k · r · (input to the j-th hidden unit)r−1 · αj · l′i(zi).

For two matrices A and B of equal size let A ◦B be the entry-wise product. We define the column
vector vk ∈ Rn: (vk)i = Xi,k · r · l′i(zi) for k = 1, . . . , d. Then the k-th row of ∂l

∂A is equal to
(vTkX

(r−1)A(r−1)) ◦ αT. We observe that we can compute

(vTkX
(r−1)A(r−1)) ◦ αT = ((vTkX

(r−1))A(r−1)) ◦ αT

in O((n + m)dr−1) time. Since we have to do that for every k = 1, . . . , d, the stated runtime
follows.

24

	Introduction
	Background
	Our contributions
	Kernel ERM problems
	Neural network ERM problems
	Hardness of gradient computation
	Related work

	Overview of the hardness proof for kernel SVMs
	Overview of the hardness proof for training the final layer of a neural network
	Hardness proof for gradient computation
	Conclusions
	Preliminaries
	Hardness for SVM without the bias term
	Hardness for SVM with the bias term
	Hardness for soft-margin SVM
	Hardness proof for Kernel PCA
	Hardness for kernel ridge regression
	Hardness for training of the final layer of a neural network
	Gradient computation

