
5 Proofs

In this section we prove Theorems 1 and 2. Recall that we have a pointset x1, . . . , xn ∈ Rd with
aspect ratio Φ, and given error parameters ε, δ > 0. For the remainder of the section we fix the setting

Λ = log(16d1.5 log Φ/(εδ)).

Recall that in Section 3 we let G` denote the grid with side length 2` for every integer `. Our analysis
is based on the observation that randomly shifting the grids, which is used as the first step of our
algorithm, induces a padded decomposition [2] of the pointset. We now define this formally.
Definition 1 (padded point). We say that a point xi is (ε,Λ, `)-padded, if the grid cell in G` that
contains xi also contains the ball of radius ρ(`) centered at xi, where

ρ(`) = 8ε−12`−Λ
√
d.

We say that xi is (ε,Λ)-padded in the quadtree T , if it is (ε,Λ, `)-padded for every level ` of T .

Note that d and Λ are fixed parameters for a given input. We omit their dependence from the notation
ρ(`) for simplicity.

We now prove Theorem 1. It follows directly from combining the following two lemmas.
Lemma 1. If the grids are randomly shifted, as in Section 3, then every point xi is (ε,Λ)-padded in
T with probability 1− δ.

Proof. Fix a point xi, a coordinate k ∈ {1, . . . , d} and a level `. Let xi(k) denote the value of xi in
coordinate k. Along this coordinate, we are randomly shifting a 1-dimensional grid partitioned into
intervals of length 2`. Since the shift is uniformly random, the probability for xi(k) to be at distance
at most ρ(`) from an endpoint of the interval that contains it equals 2ρ(`)/2`. By plugging our setting
of ρ(`) and Λ, this probability equals δ/(d log Φ). Taking a union bound over the d coordinates, we
have probability at most δ/ log Φ for xi to be at distance at most ρ(`) from the boundary of the cell
of G` that contains it. In the complement event xi is (ε,Λ, `)-padded in G`. Taking another union
bound over the log Φ levels in the quadtree, xi is (ε,Λ)-padded with probability at least 1− δ.

Lemma 2. If a point xi is (ε,Λ)-padded in T , then for every j ∈ [n],
(1− ε)‖x̃i − x̃j‖ ≤ ‖xi − xj‖ ≤ (1 + ε)‖x̃i − x̃j‖,

where {x̃i} are as defined in Section 3.

Proof. We recall that T is a pruned quadtree in which every node v is associated with a grid cell
of an axis-parallel grid G` with side length 2`, which is aligned with and contained in H . We call
` the level of v, and denote it henceforth by `(v). We will use the term “bottom-left corner” of a
grid cell for the corner that minimizes all coordinate values (i.e., the high-dimensional analog of a
bottom-left corner in the plane).

Let r be the root of T . We may assume w.l.o.g. that the bottom-left corner of H is the origin in Rd,
since translating H together with the entire pointset does not change pairwise distances. Under this
assumption, we make the following observation, illustrated in Figure 9.

Observation 1. Let v be a node in T . If the path from r to v contains only short edges, then c(v)
(defined by the decompression algorithm in Section 3) is the bottom-left corner of the grid cell
associated with v.

Let xi be a padded point, and xj be any point. Recall that we denote by vi and vj the leaves
corresponding to xi and xj respectively (see Section 3). Let w be the lowest common ancestor of vi
and vj in T . Since xi and xj are in separate grid cells of G`(w)−1, and the cell containing xi also
contains the ball of radius ρ(`(w)− 1) around xi, we have

‖xi − xj‖ ≥ ρ(`(w)− 1) = 8ε−12`(w)−1−Λ
√
d. (1)

Let ui be the lowest node on the downward path from w to vi, that can be reached without traversing
a long edge. Similarly define uj for vj . See Figure 10 for illustration.

Note that ui must be either the leaf vi, or an internal node whose only outgoing edge is a long edge.
In both cases, ui is the bottom of a path of degree-1 nodes of length Λ:

11



Figure 9: By collecting the edge label bits along every dimension from the root to a node, and padding
with zeros as necessary, we obtain the binary expansion of the bottom-left corner of the associated
grid cell.

• If ui is a leaf: Since the pointset has aspect ratio Φ, then after log Φ levels the grid becomes
sufficiently fine such that each grid cell contains at most one point xi. Since we generate the
quadtree with L = log Φ + Λ levels, then each point xi is in its own grid cell for at least the
bottom Λ levels of the quadtree.

• If ui is an internal node which is the head of a long edge: Since the pruning step only places
long edges at the bottom of degree-1 paths of length Λ, then ui must be the bottom node of
such path.

On the other hand w is an ancestor of ui, and it has degree at least 2, since it is also an ancestor of uj .
Hence w is at least Λ levels above ui, implying `(vi) ≤ `(w)− Λ. Applying the same arguments to
uj we get also `(vj) ≤ `(w)− Λ.

Figure 10: In the proof of Lemma 2, w is the lowest common ancestor of vi, vj , the leaves corre-
sponding to xi, xj . ui is the lowest node on the downward path from w to vi which is achievable
without traversing any long edges (marked in red). uj is defined similarly for vj .

Let c∗(ui), c∗(uj) ∈ Rd be the bottom-left corners of the grid cells associated with ui and uj . If
all edges on the downward paths from the root of T to ui and uj were short, then Observation 1
would yield that c∗(ui) = c(ui) and c∗(uj) = c(uj). In general, there might be some long edges on
those paths, but they all must lie on the subpath from the root of T down to w, which is the same for

12



both paths. This is because by the choice of ui and uj , all downward edges from w to either of them
are short. Therefore c(ui) and c(uj) are shifted from the true bottom-left corners by the same shift,
which we denote by

η = c∗(ui)− c(ui) = c∗(uj)− c(uj).

Next, observe that the grid cell associated with ui has side 2`(ui) and it contains both c∗(ui) and xj .
Therefore ‖xi − c∗(ui)‖ ≤ 2`(ui)

√
d.

Furthermore, since ui is an ancestor of vi, then by the definition of c(ui) and c(vi), in each coordinate,
the binary expansions of these two vertices are equal from the location `(ui) and up. In the less
significant locations, c(ui) is zeroed while c(vi) may have arbitrary bits. This means that the
difference between c(ui) and c(vi) in each coordinate can be at most 2`(ui) in the absolute value,
and consequently ‖c(vi)− c(ui)‖ ≤ 2`(ui)

√
d. Recalling that the decompression algorithm defines

x̃i = c(vi), we get ‖x̃i − c(ui)‖ ≤ 2`(ui)
√
d.

Collecting the above inequalities, we have

‖xi − η − x̃i‖ = ‖xi − c(ui)− η + c(ui)− x̃i‖
= ‖xi − c∗(ui) + c(ui)− x̃i‖
≤ ‖xi − c∗(ui)‖+ ‖c(ui)− x̃i‖

≤ 2 · 2`(ui)
√
d

≤ 2 · 2`(w)−Λ
√
d.

Similarly for j we have ‖xi − η − x̃i‖ ≤ 2 · 2`(w)−Λ
√
d. Together, by the triangle inequality,

‖x̃i − x̃j‖ = ‖x̃i + η − xi + xi − xj + xj − η − x̃j‖
= ‖xi − xj‖ ± (‖xi − η − x̃i‖+ ‖xi − η − x̃i‖)

= ‖xi − xj‖ ± 4 · 2`(w)−Λ
√
d.

To complete the proof of Lemma 2 it remains to show 4 · 2`(w)−Λ
√
d ≤ ε · ‖xi − xj‖, which follows

from Equation (1).

5.1 Sketch Size and Running Time

Lemma 3. QuadSketch produces a sketch of size O(ndΛ + n log n) bits.

Proof. The tree T has n leaves, and we have pruned each non-branching path in it to length Λ. Hence
its total size is O(nΛ), and its structure can be stored with this many bits using (for example) the
DFS scan described in Section 3. Each short edge label is d bits long, so together they consume
O(ndΛ) bits. As for the long edges, there can be at most O(n) of them, since the bottom of each
long edge is either a branching node or a leaf. The long edge labels are lengths of downward paths in
the non-pruned tree T ∗, whose height bounded by is O(log Φ + Λ). Together the long edge labels
consume O(n log(log Φ + Λ)) bits, which is dominated by O(nΛ). Finally for each point xi we store
the index of its corresponding leaf vi, and since there are n leaves, this requires O(n log n) additional
bits to store.

Lemma 4. The QuadSketch construction algorithm runs in time O(ndL).

Proof. Given a quadtree cell and a point contained in it, in order to bucket the point into a cell in the
next level, we need to check for each coordinate whether the point falls in the upper or lower half of
the cell. This takes time O(d). Since each point is bucketed once in every level, and we generate T ∗
for L levels, the quadtree construction time is O(ndL). The pruning step requires just a linear scan
of T ∗, in time O(nL).

13



5.2 Maximum Distortion

We now prove Theorem 2.

Sketching algorithm Given a pointset X , apply QuadSketch to X and let T1 be the resulting tree.
Let Q ⊂ X be the padded points in T1 (meaning those for which the condition of Lemma 1 is
satisfied for T1). Continue by recursion on X \Q, until all points in X are padded in some tree. The
returned sketch contains all trees T1, . . . , Tk constructed during the recursion, and in addition, for
every point xi we store the index γi of the tree in which it is padded.

Query algorithm Given two point indices i, j, assume w.l.o.g. γ(i) ≤ γ(j), then the tree Tγ(i) has
corresponding leaves for both xi and xj . We decompress x̃i and x̃j from Tγ(i) and return ‖x̃i − x̃j‖.

Analysis The correctness of the estimate up to distortion 1± ε follows from Lemma 2. We now
bound the sketch size and the running time. Lemma 1 with δ = 0.25 implies that in each of the
trees T1, . . . , Tk, the expected fraction of padded points is 0.75. Hence by Markov’s inequality, with
probability 0.5 at least half the points are padded. Since the calls to QuadSketch are independent
(and its success probability depends only on its internal randomness and not on the input points),
with probability 0.5dlog2 ne ∼ 1/n this happens in each of the first k = dlog2 ne iterations. This
probability can be amplified to constant by O(log n) independent repetitions. If this event has
happened then the sketching algorithm terminates since Q becomes empty. Therefore the total
running time of a successful execution is O(log2 n) calls to QuadSketch, which by Lemma 4 is
Õ(ndL).

Furthermore, since the number of padded points decreases by at least half in every iteration, the total
size of the sketches T1, . . . , Tk is

O

(
k−1∑
k′=0

n

2k′
(dΛ + log

n

2k′
)

)
= O(n(dΛ + log n)),

the same as in Theorem 1 up to a constant factor. Finally, since each γ(i) is index in {1, . . . , dlog2 ne},
the γ(i)’s only take additional O(n log log n) bits to store.

14


	Proofs
	Sketch Size and Running Time
	Maximum Distortion


