
Supplementary material for
“Robust Optimization for Non-Convex Objectives”

A Faster Convergence to Approximate Solution

Theorem 6 (Faster Convergence). Given access to an ↵-approximate stochastic oracle, Algorithm 1
with some parameter ⌘ computes a distribution P over solutions, defined as a uniform distribution
over a set {x1, . . . , xT }, such that

max
i2[m]

Ex⇠P [Li(x)]  ↵(1 + ⌘)⌧ +
log(m)

⌘T
. (16)

In the case of robust reward maximization, the reward version of Algorithm 1 computes a distribution
P such that:

min
i2[m]

Ex⇠P [Li(x)] � ↵(1� ⌘)⌧ �
log(m)

⌘T
. (17)

Proof. We present the case of losses as the result for the case of rewards follows along similar lines.
The proof follows similar lines as that of Theorem 1. The main difference is that we use a stronger
property of the Exponential Weight Updates algorithm. In particular it is known that the regret of
EWU, when run on a sequence of rewards that lie in [�1, 1] is at most [2]:

✏(T) = ⌘
TX

t=1

EI⇠wt

⇥
LI(xt)

2
⇤
+

log(m)

⌘T
 ⌘

TX

t=1

EI⇠wt [LI(xt)] +
log(m)

⌘T
(18)

where the second inequality follows from the fact that Li(x) 2 [0, 1]. Thus, by the definition of
regret, we can write:

(1 + ⌘)
1

T

TX

t=1

EI⇠wt [LI(xt)] � max
i2[m]

1

T

TX

t=1

Li(xt)�
log(m)

⌘T
. (19)

Combining the above with the guarantee of the stochastic oracle we have

⌧ = min
x2X

max
i2[m]

Li(x) � min
x2X

1

T

TX

t=1

EI⇠wt [LI(x)]

�
1

T

TX

t=1

min
x2X

EI⇠wt [LI(x)]

�
1

T

TX

t=1

1

↵
· EI⇠wt [LI(xt)] (By oracle guarantee for each t)

�
1

↵(1 + ⌘)
·

max
i2[m]

1

T

TX

t=1

Li(xt)�
log(m)

⌘T

!
. (By regret of adversary)

Thus, if we define with P to be the uniform distribution over {x1, . . . , xT }, then we have derived:

max
i2[m]

Ex⇠P [Li(x)]  ↵(1 + ⌘)⌧ +
log(m)

⌘T
(20)

as required.

B Robust Optimization with Infinite Loss Sets

We now extend our main results to the case where the uncertainty about the loss function is more
general. In particular, we allow for sets of possible losses L that are not necessary finite. In particular,
the loss function depends on a parameter w 2 W that is unknown and which could take any value in

1

Algorithm 3 Oracle Efficient Improper Robust Optimization with Infinite Loss Sets
Input: A convex set Y and loss function L(·, ·) which defines the set of possible losses L
Input: Approximately optimal stochastic oracle M
Input: Accuracy parameter T and step-size ⌘
for each time step t 2 [T] do

Set

✓t = ✓t�1 +ryL(xt, yt) (24)
wt = ⇧W (⌘ · ✓t) (25)

Set xt = M(wt)
end for
Output the uniform distribution over {x1, . . . , xT }

a set W . The loss of the learner is a function L(x,w) of both his action x 2 X and this parameter
w 2 W , and the form of the function L is known. Hence, the set of possible losses is defined as:

L = {L(·, w) : w 2 W} (21)

Our goal is to find some x 2 X that achieves low loss in the worst-case over loss functions in L. For
x 2 X , write g(x) = maxw2W L(x,w) for the worst-case loss of x. The minimax optimum is

⌧ = min
x2X

g(x) = min
x2X

max
w2W

L(x,w). (22)

Our goal in ↵-approximate robust optimization is to find x such that g(x)  ↵⌧ . Given a distribution
P over solutions X , write g(P) = maxw2W Ex⇠P [L(x,w)] for the worst-case expected loss of a
solution drawn from P . The goal of improper robust optimization: find a distribution P over solutions
X such that g(P)  ↵⌧ .

We will make the assumption that L(x,w) is concave in w, 1-Lipschitz with respect to w and that the
set W is convex. The case of finite losses that we considered in the main text is a special case where
the space W is the simplex on m coordinates, and where: L(x,w) =

P
m

i=1 w[i] · Li(x).

We will also assume that we are given access to an approximate stochastic oracle, which finds a
solution x 2 X that approximately minimizes a given distribution over loss functions:
Definition 2 (↵-Approximate Stochastic Oracle). Given a choice of w 2 W , the oracle M(w)
computes an ↵-approximate solution x⇤ = M(w) to the known parameter problem, i.e.:

L(x⇤, w)  ↵min
x2X

L(x,w) (23)

B.1 Improper Robust Optimization with Oracles

We first show that, given access to an ↵-approximate stochastic oracle, it is possible to efficiently
implement improper ↵-approximate robust optimization, subject to a vanishing additive loss term.
The algorithm is a variant of Algorithm 1, where we replace the Multiplicative Weight Updates
algorithm for the choice of wt with a projected gradient descent algorithm, which works for any
convex set W . To describe the algorithm we will need some notation. First we denote with ⇧Y(w) to
be the projection of w on the set Y , i.e. ⇧W(w) = argminw⇤2W kw⇤

� wk22. Moreover, ryL(x, y)
is the gradient of function L(x, y) with respect to y.
Theorem 7. Given access to an ↵-approximate stochastic oracle, Algorithm 3, with ⌘ =
maxw2W kwk2p

2T
computes a distribution P over solutions, defined as a uniform distribution over

a set {x1, . . . , xT }, such that:

max
w2W

Ex⇠P [L(x,w)]  ↵⌧ + max
w2W

kwk2

r
2

T
(26)

Proof. We can interpret Algorithm 1 in the following way. We define a zero-sum game between a
learner and an adversary. The learner’s action set is equal to X and the adversaries action set is W .

2

The loss of the learner when he picks x 2 X and the adversary picks w 2 W is defined as L(x,w).
The corresponding payoff of the adversary is L(x,w).

We will run no-regret dynamics on this zero-sum game, where at every iteration t = 1, . . . , T , the
adversary will pick a wt 2 W and subsequently the learner picks a solution xt. We will be using the
projected gradient descent algorithm to compute what wt is at each iteration, as defined in Equations
(24) and (25). Subsequently the learner picks a solution xt that is the output of the ↵-approximate
stochastic oracle on the parameter chosen by the adversary at time-step t. That is,

xt = M (wt) . (27)

By the regret guarantees of the projected gradient descent algorithm for the adversary, we have that:

1

T

TX

t=1

L(xt, wt) � max
w2W

1

T

TX

t=1

L(xt, w)� ✏(T) (28)

for ✏(T) = maxw2W kwk2
q

2
T

. Combining the above with the guarantee of the stochastic oracle we
have

⌧ = min
x2X

max
w2W

L(x,w) � min
x2X

1

T

TX

t=1

L(x,wt)

�
1

T

TX

t=1

min
x2X

L(x,wt)

�
1

T

TX

t=1

1

↵
· L(xt, wt) (By oracle guarantee for each t)

�
1

↵
·

max
w2W

1

T

TX

t=1

L(xt, w)� ✏(T)

!
. (By no-regret of adversary)

Thus if we define with P to be the uniform distribution over {x1, . . . , xT }, then we have derived that

max
w2W

Ex⇠P [L(x,w)]  ↵⌧ + ✏(T) (29)

as required.

A corollary of Theorem 7 is that if the solution space X is convex and the function L(x, y) is also
convex in x for every y, then we can compute a single solution x⇤ that is approximately minimax
optimal.
Corollary 8. If the space X is a convex space and the function L(x, y) is convex in x for any y, then
the point x⇤ = 1

T

P
T

t=1 xt 2 X , where {x1, . . . , xT } are the output of Algorithm 3, satisfies:

max
w2W

L(x⇤, w)  ↵⌧ + max
w2W

kwk2

r
2

T
(30)

Proof. By Theorem 7, we get that if P is the uniform distribution over {x1, . . . , xT } then

max
w2W

Ex⇠P [L(x,w)]  ↵⌧ + max
w2W

kwk2

r
2

T
.

Since X is convex, the solution x⇤ = Ex⇠P [x] is also part of X . Moreover, since each L(x, y) is
convex in x, we have that Ex⇠P [L(x, y)] � L(Ex⇠P [x], y) = L(x⇤, y). We therefore conclude

max
w2W

L(x⇤, w)  max
w2W

Ex⇠P [L(x,w)]  ↵⌧ + max
w2W

kwk2

r
2

T

as required.

Our results for improper statistical learning can also be analogously generalized to this more general
loss uncertainty.

3

C NP-Hardness of Proper Robust Optimization

The convexity assumption of Corollary 2 is necessary. In general, achieving any non-trivial ex-post
robust solution is computationally infeasible, even when there are only polynomially many loss
functions and they are all concave.
Theorem 9. There exists a constant c for which the following problem is NP-hard. Given a collection
of linear loss functions L = {`1, . . . , `m} over a ground set N of d elements, and an optimal
stochastic oracle over feasibility set X = {S ⇢ N : |S| = k}, find a solution x⇤

2 X such that

max
`2L

`(x⇤)  ⌧ +
k

m
.

Proof. We reduce from the set packing problem, in which there is a collection of sets {T1, . . . , Td}

over a ground set U of m elements {u1, . . . , um}, and the goal is to find a collection of k sets that
are all pairwise disjoint. This problem is known to be NP-hard, even if we assume k < m/4.

Given an instance of the set packing problem, we define an instance of robust loss minimization as
follows. There is a collection of m linear functions L = {`1, . . . , `m}, and N is a set of mk + d
items, say {aij}im,jk [{br}rd. The linear functions are given by `i(aij) = 1/k for all i and j,
`i(ai0j) = 0 for all i0 6= i and all j, `i(br) = 2/m if ui 2 Tr, and `i(br) = 1/km if ui 62 Tr.

We claim that in this setting, an optimal stochastic oracle can be implemented in polynomial time.
Indeed, let D be any distribution over L, and let `i be any function with minimum probability under
D. Then the set S = {ai1, . . . , aik} minimizes the expected loss under D. This is because the
contribution of any given element aij to the loss is equal to 1/k times the probability of `i under D,
which is at most 1/km for the lowest-probability element, whereas the loss due to any element br
is at least 1/km. Thus, since the optimal stochastic oracle is polytime implementable, it suffices to
show NP-hardness without access to such an oracle.

To establish hardness, note that if a set packing exists, then the solution to the robust optimization
problem given by S = {br : Tr is in the packing } satisfies `i(S)  2/m+(k� 1)/km < 3/m. On
the other hand, if a set packing does not exist, then any solution S for the robust optimization problem
either contains an element aij — in which case `i(S) � 1/k > 4/m — or must contain at least two
elements br, bs such that Tr \ Ts 6= ;, which implies there exists some i such that `i(S) � 4/m. We
can therefore reduce the set packing problem to the problem of determining whether the minimax
optimum ⌧ is greater than 4/m or less than 3/m. We conclude that it is NP-hard to find any S⇤ such
that max`2L `(S⇤)  ⌧ + 1/m.

Similarly, for robust submodular maximization, in order to achieve a non-trivial approximation
guarantee it is necessary to either convexify the outcome space (e.g., by returning distributions over
solutions) or extend the solution space to allow solutions that are larger by a factor of ⌦(log |F|).
This is true even when there are only polynomially many functions to optimize over, and even when
they are all linear.
Theorem 10. There exists a constant c for which the following problem is NP-hard. Given any ↵ > 0,
and a collection of linear functions F = {f1, . . . , fm} over a ground set N of d elements, and an
optimal stochastic oracle over subsets of N of size k, find a subset S⇤

✓ N with |S⇤
|  ck log(m)

such that
min
f2F

f(S⇤) �
1

↵
⌧ �

1

↵km
.

Proof. We reduce from the set cover problem, in which there is a collection of sets {T1, . . . , Td} over
a ground set U of m elements {u1, . . . , um}, whose union is U , and the goal is to find a collection
of at most k sets whose union is U . There exists a constant c such that it is NP-hard to distinguish
between the case where such a collection exists, and no collection of size at most ck log(n) exists.

Given an instance of the set cover problem, we define an instance of the robust linear maximization
problem as follows. There is a collection of m linear functions F = {f1, . . . , fm}, and N is a set
of km+ d items, say {aij}im,jk [{br}rd. For each i  m and j  k, set fi(aij) = 1/k and
fi(ai0j) = 0 for all i0 6= i. For each i  m and r  d, set fi(br) = 1/km if ui 2 Tr in our instance
of the set cover problem, and fi(br) = 0 otherwise.

4

We claim that in this setting, an optimal stochastic oracle can be implemented in polynomial time.
Indeed, let D be any distribution over F , and suppose fi is any function with maximum probability
under D. Then the set S = {ai1, . . . , aik} maximizes expected value under D. This is because the
value of any given element aij is at least 1/k times the probability of fi under D, which is at least
1/m, whereas the value of any element br is at most 1/km. Thus, since the optimal stochastic oracle
is polytime implementable, it suffices to show NP-hardness without access to such an oracle.

To establish hardness, note first that if a solution to the set cover problem exists, then the solution
to the robust optimization problem given by S = {br : Tr is in the cover } satisfies fi(S) � 1/km
for all i. On the other hand, if no set cover of size k exists, then for any solution S to the robust
optimization problem there must exist some element ui such that ui 6= Tr for every br 2 S, and such
that aij 6= S for all j. This implies that fi(S) = 0, and hence ⌧ = 0. We have therefore reduced the
set cover problem to distinguishing cases where ⌧ � 1/km from cases where ⌧ = 0. We conclude
that it is NP-hard to find any S⇤ for which minf2F f(S⇤) � 1

↵
(⌧ �

1
km

), for any positive ↵.

D Strengthening the Benchmark

We now observe that our construction actually competes with a stronger benchmark than ⌧ . In
particular, one that allows for distributions over solutions:

⌧⇤ = min
G2�(X)

max
i2[m]

Ex⇠G [Li(x)] (31)

Hence, our assumption is that there exists a distribution G over solutions X such that for any
realization of the objective function, the expected value of the objective under this distribution over
solutions is at least ⌧⇤.

Now we ask: given an oracle for the distributional problem, can we find a solution for the robust
problem that achieve minimum reward at least ⌧⇤. We show that this is possible:

Theorem 11. Given access to an ↵-approximate stochastic oracle, we can compute a distribution P

over solutions, defined as a uniform distribution over a set {x1, . . . , xT }, such that:

max
i2[m]

Ex⇠P [Li(x)]  ↵⌧⇤ +

r
2 log(m)

T
(32)

Proof. Observe that a stochastic oracle for the setting with solution space X and functions L =
{L1, . . . , Lm} is also a stochastic oracle for the setting with solution space D = �(X) and functions
L
0 = {L0

1, . . . , L
0
m
}, where for any D 2 D: L0

j
(D) = Ex⇠D [Lj(x)]. Moreover, observe that ⌧⇤

is exactly equal to ⌧ for the setting with solution space D and function space L
0. Thus applying

Theorem 1 to that setting we get an algorithm which computes a distribution P
0 over distributions of

solutions in X , that satisfies:

max
i2[m]

ED⇠P0 [Ex⇠D[Lj(x)]]  ↵⌧⇤ +

r
2 log(m)

T
(33)

Observe that a distribution over distributions of solutions is simply a distribution over solutions,
which concludes the proof of the Theorem.

E Experiments

E.1 Hybrid Method

In order to apply the robust optimization algorithm we need to construct a neural network architecture
that facilitates it. In each iteration t, such an architecture receives a distribution over corruption types
wt = [wt[1], ...,wt[m]] and produces a set of weights ✓t.

5

Figure 4: First interpretation of stochastic oracle, training on a sample of images drawn from the
mixture of corruptions.

In the Hybrid Method, our first oracle, we take each training data image and perturb it by exactly one
corruption, with corruption i being selected with probability wt[i]. Then apply mini-batch gradient
descent, picking mini-batches from the perturbed data set, to train a classifier ✓t. Note that the
resulting classifier will take into account corruption i more when wt[i] is larger.

E.2 Composite Method

Figure 5: Second interpretation of stochastic oracle, by creating m coupled instantiations of the net
architecture (one for each corruption type), with the i-th instance taking as input the image corrupted
with the i-th corruption and then defining the loss as the convex combination of the losses from each
instance.

In the Composite Method, at each iteration, we use m copies of the training data, where copy i
has Corruption Type i applied to all training images. The new neural network architecture has m
sub-networks, each taking in one of the m training data copies as input. All sub-networks share
the same set of neural network weights. During a step of neural network training, a mini-batch is
selected from the original training image set, and the corresponding images in each of the m training
set copies are used to compute weighted average of the losses

P
m

i=1 wt[i]Losst,i, which is then used
to train the weights.

E.3 Corruption Set Details

Background Corruption Set consists of images with (i) an unperturbed white background–the
original images, (ii) a light gray tint background, (iii) a gradient background, (iv) and a checkerboard
background.

6

Shrink Corruption Set consists of images with (i) no distortion–the original images, (ii) a 25%
shrinkage along the horizontal axis, (iii) a 25% shrinkage along the vertical axis, and (iv) a 25%
shrinkage in both axes.

Pixel Corruption Set consists of images that (i) remain unaltered–the original images, (ii) have
Unif [�0.15,�0.05] perturbation added i.i.d. to each pixel, (iii) have Unif [�0.05, 0.05] pertur-
bation added i.i.d. to each pixel, and (iv) have Unif [0.05, 0.15] perturbation added i.i.d. to each
pixel.

Mixed Corruption Set consists of images that (i) remain unaltered–the original images, and one
corruption type from each of the previous three corruption sets (which were selected at random),
namely that with (ii) the checkerboard background, (iii) 25% shrinkage in both axes, and (iv) i.i.d.
Unif [�0.15,�0.05] perturbation.

E.4 Neural Network Results

Background Set Shrink Set Pixel Set Mixed Set

Best Individual Baseline 8.85
(8.38,9.32)

7.19
(7.09,7.28)

1.82
(1.81,1.82)

8.75
(8.50,9.00)

Even Split Baseline 28.35
(26.81,29.89)

11.54
(11.25,11.83)

1.93
(1.91,1.95)

9.92
(9.78,10.06)

Uniform Distribution Baseline 2.06
(2.05,2.08)

1.74
(1.72,1.76)

1.30
(1.30,1.31)

1.46
(1.45,1.47)

Hybrid Method 1.38
(1.37,1.39)

1.48
(1.47,1.49)

1.29
(1.28,1.30)

1.36
(1.35,1.36)

Composite Method 1.31
(1.30,1.31)

1.30
(1.29,1.31)

1.25
(1.24,1.25)

1.25
(1.24,1.26)

Table 1: Individual Bottleneck Loss results (mean over 10 independent runs and a 95% confidence
interval for the mean) with T = 50 on all four Corruption Sets. Composite Method outperforms
Hybrid Method, and both outperform baselines, with such differences being statistically significant.

E.5 Analysis of Multiplicative Weights Update

Consider the robust optimization algorithm using the Hybrid and Composite Methods, but parameter-

izing ⌘ as ⌘ = c · T�� (for constant c =
q

logm

2) to alter the multiplicative weights update formula.
In this paper, we have been using � = 0.5 =) ⌘ = cp

T
. Lower values of � leads to larger changes

in the distribution over corruption types between robust optimization iterations. Here we rerun our
experiments from Section 3.1 using � = 0.1; we did not tune �–the only values of � tested were 0.1
and 0.5.5

5A possible future step would be to use cross-validation to tune � or design an adaptive parameter algorithm
for �.

7

Figure 6: Comparison of Individual Bottleneck Loss between using � = 0.5 vs. � = 0.1 in the
multiplicative weights update, for both the Hybrid and Composite Methods. The � = 0.1 setting
yields lower loss.

The improved performance with � = 0.1 compared to � = 0.5 is related to an important property of
our robust optimization algorithm in practice–namely that w stabilizes for sufficiently large T . Over
the course of iterations of the algorithm, w moves from the initial discrete uniform distribution to
some optimal stable distribution, where the stable distribution is consistent across independent runs.
The � = 0.1 setting yields to better Individual Bottleneck Loss than the � = 0.5 setting for finite T
because it converges more rapidly to the stable distribution.

Figure 7: Left: The amount that the distribution over corruption types w changes between iteration t
& t+ 1 decays rapidly as t increases, and the distribution stabilizes. Plot shows 16 time series, corre-
sponding to results for each combination of ({Hybrid, Composite},{� = 0.5, � = 0.1},{Background,
Shrink, Pixel, Mixed}), using the mean over 10 runs. Right: The difference between � = 0.1 &
� = 0.5 in the amount that w changes between iterations. Shows the difference between pairs of time
series from the previous figure (thus there are 16

2 = 8 time series shown). Values are positive for
small t and near 0 for larger t, showing that the � = 0.1 setting yields faster changes in w initially,
thereby allowing w to more quickly approach the stable distribution.

8

F Experiments on Robust Influence Maximization

F.1 Influence Results

Wikipedia A Wikipedia B Complete A Complete B

Individual Baseline 56.56
(53.55,59.57)

35.84
(31.93,39.75)

19.77
(16.57,22.96)

11.27
(10.77,11.77)

Uniform Baseline 82.30
(78.19,86.41)

46.60
(40.53,52.67)

3.10
(2.24,3.96)

5.20
(4.07,6.33)

Perturbed Dist. Baseline 83.35
(79.87,86.82)

48.92
(43.80,54.03)

21.99
(17.38,26.61)

10.14
(9.37,10.91)

Robust Optimization 94.33
(90.61,98.05)

66.42
(64.17,68.66)

36.34
(33.46,39.21)

17.91
(17.22,18.60)

Table 2: Mean worst-case influence mini2[m] ES⇠P [fi(S)] for the solution P returned by each
method, over 10 independent runs using T = 200, and 95% confidence intervals for those means.

Robust Optimization outperforms the baselines, and the differences are statistically significant.6

F.2 Performance of Single Solutions

For the Complete Graph A case, it is computationally feasible to obtain the absolute best seed set
(via brute force over

�100
2

�
total possible seed sets), so we can consider the ratio of the best individual

seed set generated at some iteration t by robust optimization to the absolute best seed set–that is,
maxS2P mini2[m] fi(S)
maxS mini2[m] fi(S) . The mean of this ratio over 10 runs was 0.733.

For the other three cases, it is not computationally feasible to obtain the absolute best seed set, but
we can instead compare the best individual seed set generated by the robust optimization procedure
to the Bottleneck Influence value from considering all of P = {S1, ..., ST }–specifically, the ratio
maxS2P mini2[m] fi(S)
mini2[m] ES⇠Pfi(S) . Based on the mean of 10 runs, this ratio is 0.995 for Wikipedia A, 0.855

for Wikipedia B, and 0.509 for Complete B. The individual seed sets generated by the robust
optimization procedure are thus especially good for the Wikipedia Graph; those Wikipedia Graph
results are more representative of real graphs, since the Complete Graph has an artificially small
number of nodes (|V | = 100).

6Claim of statistical significance is based on means of differences between methods, which controls for
differences in the Gi, rather than differences between means, which are shown in Table 2.

9

