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1 Appendices

1.1 Proposition 1: Convergence Discussion

We propose the following update for the precision / inverse mass matrix, denoted as MI , at the kth

M-step:

M
(k)
I = (1− κ(k))M (k−1)

I + κ(k)M
(k,est)
I , (1)

where M (k,est)
I is the estimate computed from the gathered samples in the kth M-step, and

{
κ(k)

}
is

a step sequence satisfying some standard assumptions, as described below.

Proposition 1. Assume the M (k,est)
I ’s provide an unbiased estimate of ∇J , and have bounded

eigenvalues. Let inf‖MI−M∗
I ‖2>ε∇J(MI) > 0 ∀ε > 0. Further, let the sequence

{
κ(k)

}
satisfy∑

k κ
(k) =∞,

∑
k

(
κ(k)

)2
<∞. Then the sequence

{
M

(k)
I

}
converges to the MLE of the precision

almost surely.

Proof. The proof follows the basic outline laid out in [1]. With a slight abuse of notation, we use Mk

to denote the iterates, M̄k to denote M (k,est)
I , and replace the κ(k)s with κk. Then, as mentioned in

the main text, the update (1) can be written in the following first-order form:

Mk = Mk−1 + κk∇J(Mk),

where J(·) is the L2-regularized energy mentioned in the main text, as a function of the precision,
and we assume EzM̄k(z) = ∇J(Mk), z being a random variable codifying the stochasticity in the
estimate M̄k. As mentioned in the main paper, this stochasticity can be thought of as a surrogate for
the Monte Carlo error in the collected momenta samples. Now define the Lyapunov function:

h(Mk) = ‖Mk −M∗‖2,
where M∗ is the unique maximizer of the regularized objective function; as mentioned earlier, this
exists because the precision is a natural parameter of the normal written in exponential family form,
and the log likelihood of the latter is concave in the natural parameters. Then we can write the
difference in Lyapunov errors for successive iterates as

h(Mk+1)− h(Mk) = −2κk (Mk −M∗)T M̄k(zk) + κ2k‖M̄k(zk)‖2.

Denoting the σ-algebra of all the z variables seen till the kth step by Fk, and using conditional
independences of the expectations given this information, we can write the expectation of the quantity
above as:

E (h(Mk+1)− h(Mk)| Fk) = −2κk (Mk −M∗)T ∇J(Mk) + κ2kE‖M̄k(zk)‖2. (2)

Now, since we assumed the M̄k’s to have bounded eigenvalues, we can bound the expectation on the
right above as follows:

E‖M̄k(zk)‖2 ≤ A+B‖Mk −M∗‖2,
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for sufficiently large values of A,B ≥ 0. This allows to write 2 as follows:

E
(
h(Mk+1)− (1− κ2kB)h(Mk)|Fk

)
≤ −2κk (Mk −M∗)T ∇J(Mk) + κ2kA. (3)

Now we define two sequences as follows:

µk =

k∏
i=1

1

1− κ2kB
, h′k = µkh(Mk). (4)

The sequence {µk} can be seen to converge based on our assumptions on κ2k. Then we can bound the
positive variations of h′k-s as:

E
[
E(h′k+1 − h′k)+

]
|Fk ≤ κ2kµkA.

This proves h′k to be a quasi-martingale. By the convergence theorem for quasi-martingales [2],
we know that these converge almost surely. Since {µk} converge as well, we have almost sure
convergence of the h(Mk)’s. Combined with the assumption that

∑
k κk =∞ and eqn. (3), we have

almost sure convergence of (Mk −M∗)T ∇J(Mk) to 0. The final assumption of the proposition
allows us to use this result to prove that Mk →M∗ almost surely.

1.2 Stochastic samplers with MCEM augmentations

In this section we present the MCEM variant of the SGHMC algorithm [3], followed by the SG-
NPHMC algorithm using stochastic dynamics derived from the Nosé-Poincaré Hamiltonian. This is
then given the MCEM treatment, leading to the SG-NPHMC-EM method.

1.2.1 SGHMC-EM

The MCEM variant of the SGHMC algorithm, which we denote SGHMC-EM, is given in Alg. (3).
We simply take the standard HMC dynamics, add Fokker-Planck correction terms to handle the
stochastic noise, and use the MCEM framework from the main paper to collect appropriate number
of samples of p, and use them to update the mass M . C and B̂ are user-specified estimates of the
noise in the stochastic gradients.

Algorithm 3 SGHMC-EM

Input: θ(0), ε, A, LP_S, S_count
· Initialize ξ(0), p(0) and M ;
repeat
· Sample p(t) ∼ N(0,M);
for i = 1 to LP_S do
· p(i+1) ← p(i) − εCM−1p(i) − ε∇̃L(θ(i)) +

√
2(C − B̂)N (0, ε);

· θ(i+1) ← θ(i) + εM−1p(i+1);
end for
· Set

(
θ(t+1),p(t+1)

)
=
(
θ(LP _S+1),p(LP _S+1)

)
;

· Store MC-EM sample p(t+1);
if (t+ 1) mod S_count = 0 then
· Update M using MC-EM samples;

end if
· Update S_count as described in the text;

until forever

1.2.2 SG-NPHMC

As mentioned in the main paper, the Nosé-Poincaré energy function can be written as follows [4, 5]:

HNP = s

[
−L(θ) +

1

2

(p
s

)
M−1

(p
s

)
+
q2

2Q
+ gkT log s−H0

]
, (5)
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where L(θ) is the joint log-likelihood, s is the thermostat control, p and q the momentum terms
corresponding to θ and s respectively, and M and Q the respective mass terms. See [4, 5] for
descriptions of the other constants. Our goal is to learn both M and Q using the MCEM framework,
as opposed to [4], where both were formulated in terms of θ. To that end, we propose the following
system of equations for the stochastic scenario:

pt+ε/2 = p +
ε

2

[
s∇̃L(θ)− B(θ)√

s
M−1pt+ε/2

]
,

ε

4Q
(qt+

ε/2)2 +

[
1 +

A(θ)sε

2Q

]
qt+

ε/2 −
[
q +

ε

2

[
− gkT (1 + log s) +

1

2

(
pt+ε/2

s

)
M−1

(
pt+ε/2

s

)
+ L̃(θ) +H0

]]
= 0,

st+ε = s+ ε

[
qt+ε/2

Q

(
s+ st+

ε/2
)]
, θt+ε = θ + εM−1p

[
1

s
+

1

st+ε

]
,

pt+ε = pt+ε/2 +
ε

2

[
st+ε∇̃L(θt+ε)− B(θt+ε)√

st+ε
M−1pt+ε/2

]
, qt+ε = qt+

ε/2 +
ε

2

[
H0 + L̃(θt+ε)

− gkT (1 + log st+ε) +
1

2

(
pt+ε/2

st+ε

)
M−1

(
pt+ε/2

st+ε

)
− A(θ)s

2Q
qt+

ε/2 −
(
qt+ε/2

)2
2Q

]
,

(6)

where t+ ε/2 denotes the half-step dynamics, ˜ signifies noisy stochastic estimates, and A(θ) and
B(θ) denote the stochastic noise terms, necessary for the Fokker-Planck corrections [4].
Proposition 2. The dynamics (6) preserve the Nosé-Poincaré energy (5).

Proof. We start off with the basic dynamics derived from the Nosé-Poincaré Hamiltonian:

θ̇ = M−1
p
s

ṗ = s∇L(θ)

ṡ =
q

Q
s

q̇ = L(θ) +
1

2

(p
s

)T
M−1

(p
s

)
− gkT (1 + log s)− q2

2Q
+H0,

(7)

where the dot notation denotes the time derivatives. Following the notation of [6], this can be
expressed as: θ̇ṗ

ṡ
q̇

 = −

0 0 0 −I
0 0 I 0
0 −I 0 0
I 0 0 0



∂
sHNP
∂
qHNP
∂
θHNP
∂
pHNP

+ N, (8)

where N = [0,N (0, 2
√
sB(θ)), 0,N (0, 2B(θ))] would be the stochastic noise from the minibatch

estimates of∇L(θ) and L(θ) respectively. Denoting the first matrix on the right by D and the second
by∇HNP , we can see that tr

{
∇T∇Dy

}
= 0 for any y = y(θ,p, s, q).

Recall that the joint distribution of interest, p(θ,p, s, q) ∝ exp(−HNP ); thus ∇p(θ,p, s, q) =
−p∇HNP .

Now, for any stochastic differential equation written as θ̇ = f(θ) +N (0, 2Q(θ)), the Fokker-Planck
equation can be written as:

∂

∂t
p(θ) = − ∂

∂θ
[f(θ)p(θ)] +

∂2

∂θ2
[Q(θ)p(θ)],

where p(θ) denotes the distribution of θ, and ∂2

∂θ2 =
∑
i,j

∂
∂θi

∂
∂θj

. For our Nosé-Poincaré case, the
right hand side can be written as:

tr
{
∇TX∇p(θ,p, s, q)

}
+ tr∇T {p(θ,p, s, q)D∇HNP }

= tr
{

(X +D)∇T∇p(θ,p, s, q)
}

+ tr∇T {p(θ,p, s, q)D∇HNP } ,
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where the diffusion noise matrix

X =

0 0 0 0
0 0 0

√
sB(θ)

0 0 0 0
0 A(θ) 0 0

 .
Thus replacing D by X + D in (8) would make the RHS zero. This transformation would add
correction terms to the dynamics 7 to yield the following:

θ̇ = M−1
p
s

ṗ = s∇L(θ)−
√
sB(θ)M−1

p
s

ṡ =
q

Q
s

q̇ = L(θ) +
1

2

(p
s

)T
M−1

(p
s

)
− gkT (1 + log s)− q2

2Q
−A(θ)

q

Q
s+H0.

Discretizing this system using the generalized leapfrog technique gives rise to the dynamics 6.

The dynamics 6 therefore induce the SG-NPHMC algorithm, shown in Alg. (4).

Algorithm 4 SG-NPHMC

Input: θ(0), ε, A, LP_S, S_count
· Initialize p(0), M , Q;
repeat
· Sample p(t) ∼ N(0,M), q ∼ N(0, Q);
for i = 1 to LP_S do
· Perform generalized leapfrog dynamics (6) to get p(i+ε),θ(i+ε), s(i+ε), q(i+ε);

end for
· Set

(
θ(t+1),p(t+1), ξ(t+1)

)
=
(
θ(LP _S+ε),p(LP _S+ε), s(LP _S+ε), q(LP _S+ε)

)
;

until forever

1.2.3 SG-NPHMC-EM

In this section we add the MCEM framework to Alg. (4) above. This allows us to learn M adaptively
while preserving the thermostat controls and symplecticness of the SG-NPHMC sampler.

Algorithm 5 SG-NPHMC-EM

Input: θ(0), ε, A,B, LP_S, S_count
· Initialize s(0), p(0), q(0), M and Q;
repeat

for i = 1 to LP_S do
· Perform generalized leapfrog dynamics (6) to get p(i+ε),θ(i+ε), s(i+ε), q(i+ε);

end for
· Set

(
θ(t+1),p(t+1), s(t+1), q(t+1)

)
=
(
θ(LP _S+ε),p(LP _S+ε), s(LP _S+ε), q(LP _S+ε)

)
;

· Store MC-EM samples p(t+1) and q(t+1);
if (t+ 1) mod S_count = 0 then
· Update M , Q using MC-EM samples of p and q respectively;

end if
· Update S_count as described in the text;

until forever
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1.3 Experimental addenda

For the topic modeling case, we used the following perplexity measure, as defined as [7]:

Perplexity = exp

(
− 1

Y

Ntest∑
n=1

V∑
v=1

ynv logmnv

)
,

where ynv refers to the count of vocabulary item v in held-out test document n, Y =
Ntest∑
n=1

V∑
v=1

ynv,

and mnv =
S∑
s=1

K∑
k=1

φ
(s)
vk θ

(s)
kn/

V∑
v=1

S∑
s=1

K∑
k=1

φ
(s)
vk θ

(s)
kn , where we collect S samples of θ, φ, and have K

latent topics. For the 20-Newsgroups dataset, we used learning tates of 1e−7 for the Tk chain, 1e−6
for the hyperparameter chain, for all the samplers. Stochastic noise estimates were of the order of
1e− 2 for SGHMC, SGNHT and their EM variants, and of the order of 1e− 1 for SG-NPHMC and
its EM version. We used minibatches of size 100, and 10 leapfrog iterations for all algorithms. The
document-level θ, φ were learnt using 20 leapfrog iterations of RHMC [8], which we found to mix
slightly better than Gibbs.

For the sample size updates, we used ν = 1, α = 1, d = 2, SI = 10. We initialized S_count to 50
for the topic modeling experiments with SG-NPHMC-EM, 100 for all other cases. All experiments
were run on a Macbook pro with a 2.5Ghz core i7 processor and 16GB ram.
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