
A More on the exponential mechanism

It is convenient to understand the exponential mechanism as a composition of two Lipschitz maps.
We define a distance dDP between two probability measures µ1, µ2 ∈M1

+(Θ) by

dDP(µ1, µ2) := sup
A⊂Θ

| logµ1(A)− logµ2(A)|, (A.1)

where the supremum is taken over measurable sets. dDP(µ1, µ2) is defined to be +∞ if µ1 and µ2

are not absolutely continuous. It is easy to check that the (ε, 0)-differential privacy of randomized
estimator ρ is equivalent to the ε-Lipschitz property as a map between two metric spaces ρ : Xn →
M1

+(Θ). We define a function space RΘ := {f : Θ → R} equipped with supremum distance
d∞(f, g) := supθ |f(θ) − g(θ)|. If the sensitivity ∆L is finite, a function-valued function L :
Dn 7→ L(·, Dn) is ∆L-Lipschitz with respect to dH and d∞. We define a Gibbs map Gβ : RΘ →
M1

+(Θ) as follows: given a function f , Gβ(f) is a probability distribution whose density w.r.t.
π is proportional to exp(−βf). We can check that the Gibbs map is 2β-Lipschitz. Eventually,
Theorem 3 states that the exponential mechanism is 2β∆L-Lipschitz, because it is a composition of
two Lipschitz functions:

(Xn, dH)
L−→ (RΘ, d∞)

Gβ−→ (M1
+(Θ), dDP). (A.2)

B Gaussian mean estimation

In Section 3.2, (ε, δ)-differential privacy of Gibbs posteriors with strongly convex loss func-
tions were investigated. A typical example of strongly convex loss function is a quadratic loss
`(θ, x) = 1

2 ‖θ − x‖
2
2, which arises in many fields in statistics and machine learning. Theorem 10

can be applied if we use a restricted Gaussian prior, and the resulting Gibbs posterior satisfies (ε, δ)-
differential privacy. In this case, however, a tighter evaluation can be obtained because the posterior
becomes a Gaussian distribution and the KL-divergence is calculated in closed form.

We provide a motivating example of Gaussian mean estimation. Let X be a bounded random vari-
able in Rd that satisfies ‖X‖2 ≤ r with a known constant r > 0. Observing an i.i.d. sample
D = {x1, . . . , xn}, we consider the problem of estimating the mean θ0 = E[X]. The classical least
square estimator that minimizes the empirical risk 1

2

∑n
i=1 ‖θ − xi‖

2
2 is given by the sample mean

x̄ = 1
n

∑n
i=1 xi. Here, we consider a (quasi-)Bayesian conterpert of the least square estimator. Let

π(θ) be an isotropic Gaussian prior on θ:

π(θ) =
1
√

2π
d

exp

(
−λ

2
‖θ‖22

)
. (B.1)

Then, the Gibbs posterior

Gβ(θ|D) ∝ exp

(
−β

2

n∑
i=1

‖θ − xi‖22

)
π(θ) (B.2)

is a d-dimensional Gaussian distribution Nd(µ̄, σ̄2Id), in which the mean µ̄ and the variance σ̄2 are
given by

µ̄ =
nβ

nβ + λ
x̄, σ̄2 =

1

nβ + λ
. (B.3)

The Gibbs posterior satisfies (ε, δ)-differential privacy if β > 0 is taken sufficiently small. In fact,
we have the following theorem.
Theorem 15. Let β ∈ (0, 1] be a fixed parameter, and D,D′ ∈ Xn be an adjacent pair of datasets.
Then the Gaussian posterior defined in (B.2) satisfies

Gβ,D

{
log

dGβ,D
dGβ,D′

≥ ε
}
≤ exp

(
−nβ + λ

8r2β2

(
ε− 2r2β2

nβ + λ

)2
)

(B.4)

for ε ≥ 2β2r2

βn+λ . Especially, the Gibbs posterior satisfies (ε, δ)-differential privacy with δ given by the
right-hand side of (B.4).
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Proof. Assume that D and D′ differs in the first element. Gβ,D is a Gaussian distribiton and sat-
isfies LSI with constant σ̄−1 = nβ + λ. Thus, it suffices to prove a bound of the KL-divergence
DKL(Gβ,D, Gβ,D′). It is well known that the KL-divergence between two Gaussian distributions is
given by

DKL(Nd(µ1,Σ1), Nd(µ2,Σ2))

=
1

2

{
TrΣ−1

2 Σ1 + (µ2 − µ1)>Σ−1
2 (µ2 − µ1)− d+ log

|Σ2|
|Σ1|

}
. (B.5)

Applying this formula with µ1 = β
nβ+λ

∑
x∈D x, µ2 = β

nβ+λ

∑
x∈D′ x, and Σ1 = Σ2 = 1

nβ+λId,
we have

DKL(Gβ,D, Gβ,D′) =
β2

2(nβ + λ)
‖x1 − x′1‖

2
2 ≤

2β2r2

βn+ λ
. (B.6)

Combining this with the concentration inequality (19), we get the desired result.

We provide some comments on the effectiveness of the upper bound (B.4), compared to the ex-
ponential mechanism and the Gaussian mechanism. If (ε, δ) = (0.1, 0.001) and R = 1 and
λ = 0, we can check from (B.4) that the Gaussian posterior satisfies (ε, δ)-differential privacy
for β < 1.79× 10−4n. In contrast, if we use a prior supported on a compact ball |θ| ≤ 1, the expo-
nential mechanism suggests that β ≤ ε/8 = 0.0125 works. Then, the (ε, δ)-type analysis yields a
larger upper bound if n ≥ 15. Moreover, if n > 5600, the (pseudo-)Bayesian posterior (i.e. β = 1)
automatically satisfies (0.1, 0.001)-differential privacy.

If π is the uniform prior (i.e. λ = 0), the Gaussian posterior (B.2) can be regarded as the Gaussian
mechanism. The Gaussian mechanism suggests that taking

β ≤ ε2n

8r2 log 2
δ

(B.7)

is sufficient to (ε, δ)-differential privacy (e.g. Proposition 1.3.3 of [5]). For example, this upper
bound becomes 1.26× 10−4n for (ε, δ) = (0.1, 0.001). On the other hand, (B.4) is satisfied if

β ≤ n

2r2
η(ε, δ), (B.8)

where
η(ε, δ) = ε+ 2 log(δ−1)− 2

√
log(δ−1)(ε+ log(δ−1)). (B.9)

We now compare the upper bounds (B.7) and (B.8) when a = ε
log(δ−1) is sufficiently small. Using

Taylor expansion of g(a) = 1 + 2
a − 2

√
1
a

(
1 + 1

a

)
around a = 0, we can approximate η(ε, δ) as

η(ε, δ) = ε

[
ε

4 log(δ−1)
+O

(
ε2

(log(δ−1))2

)]
.

Hence, the right-hand side of (B.8) has the leading term ε2n/8r2 log 2
δ , which coincides with (B.7).

C Utility analysis

In this section, we provide some utility analyses for the Gibbs posterior sampling algorithm.

C.1 Consistency in parametric statistics

Let P = {pθ = p(· | θ) | θ ∈ Θ} be a statistical model, which is a family of probability densities
indexed by Θ ⊂ Rd. In parametric statistics, a natural loss function is the negative log-likelihood
function `(θ, x) = − log p(x | θ). In this case, the density of the Gibbs posterior is given by
Gβ(θ | D) ∝ π(θ)

∏n
i=1 p(xi | θ)β . Given an i.i.d. sample D = Dn = {x1, . . . , xn} that is drawn

from a distribution in P , we consider the problem of estimating the true parameter θ0 ∈ Θ. For this
setting, it is already shown in [9] that the Gibbs posterior is consistent if the pair (P, π) satisfies the
usual regularity conditions for the consistency. In this subsection, we provide similar consistency
results for reader’s convenience.
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We consider the case that the assumption of our main theorem (Theorem 7) is satisfied. By Corollary
8, the Gibbs posterior satisfies (ε, δ)-differential privacy if β < B(ε, δ), where

B(ε, δ) =
ε

2L

√
mπ

1 + 2 log(1/δ)
. (C.1)

For simplicity, we assume that β is a fixed value and does not depend on the sample size n.

Theorem 16. Let D = {x1, . . . , xn} be an i.i.d. sample from a distribution p0 = p(· | θ0). Assume
that Assumption 6 is satisfied for `(θ, x) = − log p(x | θ) and π(θ). We also assume the following
conditions:

(i) π(θ0) > 0,

(ii) the function θ 7→ log p(X | θ) is differentiable at θ0 ∈ Θ in p0-almost surely,

(iii) the Fisher information matrix I0 = I(θ0) = −Eθ0 [∇2`] is invertible, and

(iv) there exists a uniformly consistent estimator Tn = Tn(Dn) for θ ∈ Θ, i.e.

sup
θ∈Θ

Prθ {‖Tn − θ‖ ≥ ε} → 0.

Then, we have the following statements.

1. (Consistency in the Frequentist sense) For n ≥ 1, let θ̂n ∼ Gβ(· | Dn) be the output of the
Gibbs posterior sampling algorithm. Then, ‖θ̂n − θ0‖2 → 0 holds in p0-probability.

2. (Posterior convergence rate) For any sequence Mn →∞, we have

Gβ,Dn
{
‖θ − θ0‖ ≥Mn/

√
n
} p0−→ 0. (C.2)

3. (Misspecified Bernstein–von Mises theorem) Let Nµ,Σ(A) be the probability of an event
A ⊂ Rd with respect to the distribution Nd(µ,Σ). Then the Gibbs posterior converges to a
normal distributions with mean θ0 and covariance matrix (nβ)−1I−1

0 :

sup
B⊂Θ

∣∣∣Gβ,Dn{√n(θ − θ0) ∈ B} − N0,β−1I−1
0

(B)
∣∣∣ p0−→ 0. (C.3)

Proof. Since (C.2) implies the consistency, it suffice to show the second and third statements. The
Gibbs posterior Gβ,D can be regarded as a Bayesian posterior in a (improper) misspecified model
Pβ = {p(· | θ)β | θ ∈ Θ}. The following proof is a direct application of the general theory for
posterior contraction in misspecified model [6]. We should note that, although elements in Pβ are
not probability densities, the results in [6] can be applied.

Note that any element of Pβ can be written as q = pβθ with aθ ∈ Θ. Since the true parameter is

included in Θ, the (non-normalized) KL-divergence Ep0 log
pβ0
q = βDKL(p0, pθ) defined on Pβ is

minimized by q0 = pβ0 . Hence, we want to prove the contraction of the Gibbs posterior around θ0.
In fact, the assumptions of Theorem 3.1 of [6] are easily checked, and thus we have (C.2). Note that
(iv) implies the existence of a suitable sequence of tests that distinguishes θ0 and slightly distant
parameter ([8], Section 10.2).

To prove the normal approximation (C.3), we require an additional condition in which the log-
likelihood ratio is well-approximated by a quadratic form around θ0. By Lemma 2.1 of [6], the
modelP satisfies the local asymptotic normality (LAN) condition around the true parameter θ0 ∈ Θ.
More precisely, for every compact set H ⊂ Rd,

sup
h∈H

∣∣∣∣∣
n∑
i=1

[log p(xi | θ0 + h/
√
n)− log p(xi | θ0)]− β

2
h>I0h

∣∣∣∣∣→ 0

holds in outer p0-probability. Then, by Theorem 2.1 of [6], we have (C.3).
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In the above proposition, condition (iv) can be replaced by the existence of a suitable sequence of
test, albeit with a more complex statement. Such conditions can be checked from identifiability of
the model and some continuity conditions (e.g. Lemma 10.4 or Lemma 10.6 in [8]).
Example 17 (Bernoulli distribution with logit-normal prior). Let p̃(x | p) = px(1 − p)1−x (x ∈
{0, 1}, p ∈ (0, 1)) be the likelihood function of the Bernoulli distribution. In this case, the map p 7→
− log p̃(x | p) is not Lipschitz nor convex. However, reparametrizing as θ = σ−1(p) = log p

1−p ,
`(θ, x) = − log p̃(x | σ(θ)) = −xθ + log(1 + eθ) is 1-Lipschitz and convex for x ∈ {0, 1}.
We now consider a normal prior π(θ) = φ1(θ | µ, v). When θ ∼ π(θ), the distribution of p = σ(θ)
is called a “logit-normal” distribution. Given any datasetD ∈ {0, 1}n, the Gibbs posterior is written
as Gβ(θ | D) ∝ π(θ)σ(θ)nβx̄(1− σ(θ))nβ(1−x̄), where x̄ = n−1

∑
i xi is the maximum likelihood

estimator for p. Since− log π(θ) is v−1-strongly convex, we can apply Theorem 7. In fact, the Gibbs
posterior satisfies (ε, δ)-differential privacy if β ≤ 2−1ε(v(1 + 2 log(δ−1)))−1/2. For example, if
(ε, δ) = (0.1, 0.001) and v = 1, it is satisfied with β = 0.012.

We can also prove that there exists a uniformly consistent estimator for this model. In fact, since
the above statistical model is identifiable and the map θ 7→ pθ = p̃(· | σ(θ)) is continuous in
total-variation distance1, we can apply Theorem 10.6 in [8]. Consequently, the Gibbs posterior is
consistent, and converges to a normal distribution. The asymptotic variance is given by [βσ(θ0)(1−
σ(θ0))]−1, which is at least 83 times bigger than the Bayesian case.

C.2 PAC-Bayesian bounds

In this subsection, we study the relationship between the Gibbs posteriors and some distribution-
dependent risk bounds, namely the PAC-Bayesian bounds. Define the risk R(θ) and the empirical
risk Rn(θ) by

R(θ) = EP [`(θ,X)], Rn(θ) =
1

n

n∑
i=1

`(θ, xi),

where EP is the expectation with respect to an unknown probability measureP . It is well-known that
the Gibbs posterior can be characterized as the optimal random estimator for PAC-Bayesian learning
(e.g. [3, 1]). In particular, the Gibbs posterior minimizes the following quantity that commonly
appears in the PAC-Bayesian upper bounds:

Gβ,D ∈ argmin
ρ∈M1

+(Θ)

{
EρRn(θ) +

1

β
DKL(ρ, π)

}
. (C.4)

Therefore, these risk bounds can be useful for analysing the generalization performance of the dif-
ferentially private posterior sampling algorithms. To the best of our knowledge, the relationship be-
tween the exponential mechanism and the PAC-Bayesian bound was first pointed out by Mir (2012)
[7]. Here, we provide an example of PAC-Bayesian upper bound, which is applicable to the Gibbs
posterior discussed in Section 3. The following theorem is proved in Theorem 4.1 and Theorem 4.2
in [1]
Theorem 18 ([1]). We say that a Hoeffding assumption is satisfied for prior π when there is a
function f(β, n) and an interval β∗ > 0 such that, for any β ∈ (0, β∗) and θ ∈ Θ,

EπEPn [exp(β(R(θ)−Rn(θ))]

EπEPn [exp(β(Rn(θ)−R(θ))]

}
≤ exp(f(β, n)). (C.5)

Assume that Assumption 6 and Hoeffding assumption hold. Then, for any β ∈ (0, β∗) and α ∈
(0, 1),

EGβ,DR(θ) ≤ EGβ,DRn(θ) +
f(β, n) +DKL(Gβ,D, π) + logα−1

β
(C.6)

holds with probability at least 1−α. Moreover, we have an oracle-type inequality: for any α ∈ (0, 1),
we have

EGβ,DR(θ) ≤ inf
ρ∈M1

+(Θ)

{
EρR(θ) + 2

f(β, n) +DKL(ρ, π) + logα−1

β

}
(C.7)

with probability at least 1− 2α.
1The total variation distance between pθ1 and pθ2 is given by |σ(θ1)− σ(θ2)|.
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Example 19 (Hinge loss). Let X = Z × {−1,+1} be a binary-labeled feature space which we
defined in Section 3.3. To simplify the notation, we omit the bias term b. Here, we consider the
hinge loss `hinge : Rd ×X → R defined by

`H(θ, x) = max{0, 1− yθ>z}.
We use a Gaussian prior π(θ) = φd(θ | 0, (nλ)−1I). Then, by Lemma 6.1 in [1], Hoeffding
assumption (C.5) is satisfied with f(β, n) = β2/4n − 1

2 log
(

1− r2β2

4λn2

)
and β∗ = 2

√
λn/r. By

Corollary 8 and Theorem 18, the Gibbs posterior Gβ,D simultaneously satisfies (ε, δ)-differential
privacy and the risk bounds (C.6) (C.7) if

β ≤
√
λn

r
min

{
ε

2
√

1 + 2 log(δ−1)
, 2
√
n

}
.

D Omitted proofs

D.1 Proofs in Section 3.1

In this subsection, we provide formal proofs for Theorem 7. In the simplified proof in Section 5, we
assumed that `(·, x) is twice differentiable. However, Theorem 7 still holds for non-differentiable
loss functions such as the hinge losses. Note that a function f : Rd → R is said to be m-strongly
convex, if it satisfies

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− m

2
λ(1− λ) ‖x− y‖22 (D.1)

for all x, y ∈ Rd and t ∈ [0, 1]. If f is twice differentiable, this is equivelent to the definition given
in Section 1.2.

Let ϕ : Rd → R be a mollifier, namely, a compactly supported C∞-function that satisfies (a)∫
Rd ϕ(x)dx = 1 and (b) lima↓0 a

−dϕ(a−1x) = δ(x) (the convergence is understood in the space of
Schwartz distributions). For example, we can take ϕ as

ϕ(x) =

Z−1 exp

(
− 1

1− ‖x‖22

)
if ‖x‖22 ≤ 1

0 otherwise

, (D.2)

where Z is a normalization constant. For any f : Rd → R and a > 0, define a new function
Φa(f) : Rd → R by

Φa(f)(x) =

∫
Rd
a−dϕ(a−1(x− y))f(y)dy

=

∫
Rd
a−dϕ(a−1x)f(x− y)dy. (D.3)

Then Φa(f) becomes a C∞-function and converges pointwise to f as a ↓ 0. Furthermore, Φa
preserves the convexity in the following sense.
Lemma 20. If f : Rd → R is a convex function, then Φa(f) is C∞ and convex. Moreover, if f is
m-strongly convex, then Φa(f) is also m-strongly convex.

Proof. We will prove the latter statement. Since f is m-strongly convex, we have

Φa(f)(λx+ (1− λ)y) =

∫
Rd
a−dϕ(a−1z)f(λx+ (1− λ)y)dz

≤
∫
Rd
a−dϕ(a−1z)

[
λf(x− z) + (1− λ)f(y − z)− m

2
λ(1− λ) ‖x− y‖22

]
dz

= λΦa(f)(x) + (1− λ)Φa(f)(y)− m

2
λ(1− λ) ‖x− y‖22 .

for all x, y ∈ Rd and λ ∈ [0, 1].
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We are ready to prove Theorem 7.

Proof of Theorem 7. We will write L(θ) = β
∑n
i=1 `(θ, xi). By Lemma 20, Φa(L) is an infinitely

diferentiable convex function for any a > 0. Define a probability measure Gaβ,D with a density

Gaβ(θ|D) =
exp(−Φa(L)(θ))π(θ)∫

Rd exp(−Φa(L)(θ))π(θ)dθ
. (D.4)

Since `(θ, x) is assumed to be non-neggative,L and Φa(L) are both non-negattive by their definition.
Hence exp(−Φa(L)(θ)) ≤ 1, and by the dominated convergence theorem we have∫

Rd
exp(−Φa(L)(θ))π(θ)dθ →

∫
Rd

exp(−L(θ))π(θ)dθ (D.5)

as a ↓ 0. Therefore, Gaβ(θ|D) converges pointwise to Gβ(θ|D) as a ↓ 0, and Gaβ,D converges
weakly to the Gibbs posterior Gβ,D ([2], p.29).

Since Ua(θ) = βΦa(L)(θ) − log π(θ) is mπ-strongly convex, Gaβ,D satisfies LSI with constant
m−1
π . By a similar argument to Section 5, we have

EGaβ,D

[
log

dGβ,D
dGβ,D′

]
≤ 2L2β2

mπ
(D.6)

and

Gaβ,D

{
log

dGβ,D
dGβ,D′

≥ ε
}
≤ exp

(
− mπ

8L2β2

(
ε− 2L2β2

mπ

)2
)

(D.7)

with ε > 2L2β2

mπ
. Since the set {θ ∈ Rd : log

dGβ,D
dGβ,D′

≥ ε} is obviously a continuity set (i.e. having
no mass on its boundary), taking the limit as a ↓ 0 in the both side of (D.7) yields the desired result.

D.2 Proofs in Section 4

Proof of Proposition 12. Let D,D′ ∈ Xn be an adjacent pair of datasets. For any measurable set
A ⊂ Θ, we have

ρ′D(A) ≤ ρD(A) + γ ≤ eερD′(A) + δ

≤ eερD′(A) + (eε + 1)γ + δ. (D.8)

Proposition 13 is a straightforward application of Corollary 1 of Dalalyan (2014) [4]. For the sake
of completeness, we give the statement.

Theorem 21 ([4], Corollary 1). Assume that U : Rd → R (d ≥ 2) is a m-strongly convex and
M -smooth function such that

∫
Rd exp(−U(θ))dθ < ∞. Let µ ∈ M1

+ be a Gibbs measure with
density exp(−U(θ))/

∫
exp(−U(θ))dθ, and γ ∈ (0, 1/2) be an approximation level. Let the time

horizon S and the step-size h be defined by

S =
4 log(1/γ) + d log(M/m)

2m
, h =

γ2(2α− 1)

M2Sdα
, (D.9)

where α = (1 +MdSγ−2)/2. Then the output of the T = dS/he-step LMC algorithm with initial
distribution N(θ∗,M−1Id) attains a γ-approximation of µ in the total variation distance.

Proof of Proposition 13. Set α = 1 in Theorem 21. The desired result follows from Proposition
12.
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