
A Multi-Batch L-BFGS Method for Machine
Learning

Albert S. Berahas
Northwestern University

Evanston, IL
albertberahas@u.northwestern.edu

Jorge Nocedal
Northwestern University

Evanston, IL
j-nocedal@northwestern.edu

Martin Takáč
Lehigh University

Bethlehem, PA
takac.mt@gmail.com

Abstract

The question of how to parallelize the stochastic gradient descent (SGD) method
has received much attention in the literature. In this paper, we focus instead on batch
methods that use a sizeable fraction of the training set at each iteration to facilitate
parallelism, and that employ second-order information. In order to improve the
learning process, we follow a multi-batch approach in which the batch changes
at each iteration. This can cause difficulties because L-BFGS employs gradient
differences to update the Hessian approximations, and when these gradients are
computed using different data points the process can be unstable. This paper shows
how to perform stable quasi-Newton updating in the multi-batch setting, illustrates
the behavior of the algorithm in a distributed computing platform, and studies its
convergence properties for both the convex and nonconvex cases.

1 Introduction

It is common in machine learning to encounter optimization problems involving millions of parameters
and very large datasets. To deal with the computational demands imposed by such applications, high
performance implementations of stochastic gradient and batch quasi-Newton methods have been
developed [1, 11, 9]. In this paper we study a batch approach based on the L-BFGS method [20] that
strives to reach the right balance between efficient learning and productive parallelism.

In supervised learning, one seeks to minimize empirical risk,

F (w) :=
1

n

n∑
i=1

f(w;xi, yi)
def
=

1

n

n∑
i=1

fi(w),

where (xi, yi)ni=1 denote the training examples and f(·;x, y) : Rd → R is the composition of a
prediction function (parametrized by w) and a loss function. The training problem consists of finding
an optimal choice of the parameters w ∈ Rd with respect to F , i.e.,

min
w∈Rd

F (w) =
1

n

n∑
i=1

fi(w). (1.1)

At present, the preferred optimization method is the stochastic gradient descent (SGD) method [23, 5],
and its variants [14, 24, 12], which are implemented either in an asynchronous manner (e.g. when

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

using a parameter server in a distributed setting) or following a synchronous mini-batch approach that
exploits parallelism in the gradient evaluation [2, 22, 13]. A drawback of the asynchronous approach
is that it cannot use large batches, as this would cause updates to become too dense and compromise
the stability and scalability of the method [16, 22]. As a result, the algorithm spends more time in
communication as compared to computation. On the other hand, using a synchronous mini-batch
approach one can achieve a near-linear decrease in the number of SGD iterations as the mini-batch
size is increased, up to a certain point after which the increase in computation is not offset by the
faster convergence [26].

An alternative to SGD is a batch method, such as L-BFGS, which is able to reach high training
accuracy and allows one to perform more computation per node, so as to achieve a better balance
with communication costs [27]. Batch methods are, however, not as efficient learning algorithms as
SGD in a sequential setting [6]. To benefit from the strength of both methods some high performance
systems employ SGD at the start and later switch to a batch method [1].

Multi-Batch Method. In this paper, we follow a different approach consisting of a single method
that selects a sizeable subset (batch) of the training data to compute a step, and changes this batch at
each iteration to improve the learning abilities of the method. We call this a multi-batch approach
to differentiate it from the mini-batch approach used in conjunction with SGD, which employs a
very small subset of the training data. When using large batches it is natural to employ a quasi-
Newton method, as incorporating second-order information imposes little computational overhead
and improves the stability and speed of the method. We focus here on the L-BFGS method, which
employs gradient information to update an estimate of the Hessian and computes a step in O(d) flops,
where d is the number of variables. The multi-batch approach can, however, cause difficulties to
L-BFGS because this method employs gradient differences to update Hessian approximations. When
the gradients used in these differences are based on different data points, the updating procedure can
be unstable. Similar difficulties arise in a parallel implementation of the standard L-BFGS method, if
some of the computational nodes devoted to the evaluation of the function and gradient are unable to
return results on time — as this again amounts to using different data points to evaluate the function
and gradient at the beginning and the end of the iteration. The goal of this paper is to show that stable
quasi-Newton updating can be achieved in both settings without incurring extra computational cost, or
special synchronization. The key is to perform quasi-Newton updating based on the overlap between
consecutive batches. The only restriction is that this overlap should not be too small, something that
can be achieved in most situations.

Contributions. We describe a novel implementation of the batch L-BFGS method that is robust in
the absence of sample consistency; i.e., when different samples are used to evaluate the objective
function and its gradient at consecutive iterations. The numerical experiments show that the method
proposed in this paper — which we call the multi-batch L-BFGS method — achieves a good balance
between computation and communication costs. We also analyze the convergence properties of the
new method (using a fixed step length strategy) on both convex and nonconvex problems.

2 The Multi-Batch Quasi-Newton Method

In a pure batch approach, one applies a gradient based method, such as L-BFGS [20], to the
deterministic optimization problem (1.1). When the number n of training examples is large, it is
natural to parallelize the evaluation of F and ∇F by assigning the computation of the component
functions fi to different processors. If this is done on a distributed platform, it is possible for some
of the computational nodes to be slower than the rest. In this case, the contribution of the slow (or
unresponsive) computational nodes could be ignored given the stochastic nature of the objective
function. This leads, however, to an inconsistency in the objective function and gradient at the
beginning and at the end of the iteration, which can be detrimental to quasi-Newton methods. Thus,
we seek to find a fault-tolerant variant of the batch L-BFGS method that is capable of dealing with
slow or unresponsive computational nodes.

A similar challenge arises in a multi-batch implementation of the L-BFGS method in which the entire
training set T = {(xi, yi)ni=1} is not employed at every iteration, but rather, a subset of the data is
used to compute the gradient. Specifically, we consider a method in which the dataset is randomly
divided into a number of batches — say 10, 50, or 100 — and the minimization is performed with
respect to a different batch at every iteration. At the k-th iteration, the algorithm chooses a batch

2

Sk ⊂ {1, . . . , n}, computes

FSk(wk) =
1

|Sk|
∑
i∈Sk

fi (wk) , ∇FSk(wk) = gSk

k =
1

|Sk|
∑
i∈Sk

∇fi (wk) , (2.2)

and takes a step along the direction −Hkg
Sk

k , where Hk is an approximation to ∇2F (wk)−1. Allow-
ing the sample Sk to change freely at every iteration gives this approach flexibility of implementation
and is beneficial to the learning process, as we show in Section 4. (We refer to Sk as the sample of
training points, even though Sk only indexes those points.)

The case of unresponsive computational nodes and the multi-batch method are similar. The main
difference is that node failures create unpredictable changes to the samples Sk, whereas a multi-batch
method has control over sample generation. In either case, the algorithm employs a stochastic approx-
imation to the gradient and can no longer be considered deterministic. We must, however, distinguish
our setting from that of the classical SGD method, which employs small mini-batches and noisy
gradient approximations. Our algorithm operates with much larger batches so that distributing the
function evaluation is beneficial and the compute time of gSk

k is not overwhelmed by communication
costs. This gives rise to gradients with relatively small variance and justifies the use of a second-order
method such as L-BFGS.

Robust Quasi-Newton Updating. The difficulties created by the use of a different sample Sk at each
iteration can be circumvented if consecutive samples Sk and Sk+1 overlap, so thatOk = Sk∩Sk+1 6=
∅. One can then perform stable quasi-Newton updating by computing gradient differences based on
this overlap, i.e., by defining

yk+1 = gOk

k+1 − gOk

k , sk+1 = wk+1 − wk, (2.3)

in the notation given in (2.2). The correction pair (yk, sk) can then be used in the BFGS update.
When the overlap setOk is not too small, yk is a useful approximation of the curvature of the objective
function F along the most recent displacement, and will lead to a productive quasi-Newton step. This
observation is based on an important property of Newton-like methods, namely that there is much
more freedom in choosing a Hessian approximation than in computing the gradient [7, 3]. Thus, a
smaller sample Ok can be employed for updating the inverse Hessian approximation Hk than for
computing the batch gradient gSk

k in the search direction −Hkg
Sk

k . In summary, by ensuring that
unresponsive nodes do not constitute the vast majority of all working nodes in a fault-tolerant parallel
implementation, or by exerting a small degree of control over the creation of the samples Sk in the
multi-batch method, one can design a robust method that naturally builds upon the fundamental
properties of BFGS updating.

We should mention in passing that a commonly used strategy for ensuring stability of quasi-Newton
updating in machine learning is to enforce gradient consistency [25], i.e., to use the same sample
Sk to compute gradient evaluations at the beginning and the end of the iteration. Another popular
remedy is to use the same batch Sk for multiple iterations [19], alleviating the gradient inconsistency
problem at the price of slower convergence. In this paper, we assume that achieving such sample
consistency is not possible (in the fault-tolerant case) or desirable (in a multi-batch framework), and
wish to design a new variant of L-BFGS that imposes minimal restrictions in the sample changes.

2.1 Specification of the Method

At the k-th iteration, the multi-batch BFGS algorithm chooses a set Sk ⊂ {1, . . . , n} and computes a
new iterate

wk+1 = wk − αkHkg
Sk

k , (2.4)

where αk is the step length, gSk

k is the batch gradient (2.2) and Hk is the inverse BFGS Hessian
matrix approximation that is updated at every iteration by means of the formula

Hk+1 = V Tk HkVk + ρksks
T
k , ρk = 1

yTk sk
, Vk = I − ρkyksTk .

To compute the correction vectors (sk, yk), we determine the overlap set Ok = Sk ∩ Sk+1 consisting
of the samples that are common at the k-th and k + 1-st iterations. We define

FOk(wk) =
1

|Ok|
∑
i∈Ok

fi (wk) , ∇FOk(wk) = gOk

k =
1

|Ok|
∑
i∈Ok

∇fi (wk) ,

3

and compute the correction vectors as in (2.3). In this paper we assume that αk is constant.

In the limited memory version, the matrix Hk is defined at each iteration as the result of applying
m BFGS updates to a multiple of the identity matrix, using a set of m correction pairs {si, yi}
kept in storage. The memory parameter m is typically in the range 2 to 20. When computing the
matrix-vector product in (2.4) it is not necessary to form that matrix Hk since one can obtain this
product via the two-loop recursion [20], using the m most recent correction pairs {si, yi}. After the
step has been computed, the oldest pair (sj , yj) is discarded and the new curvature pair is stored.

A pseudo-code of the proposed method is given below, and depends on several parameters. The
parameter r denotes the fraction of samples in the dataset used to define the gradient, i.e., r = |S|

n .
The parameter o denotes the length of overlap between consecutive samples, and is defined as a
fraction of the number of samples in a given batch S, i.e., o = |O|

|S| .

Algorithm 1 Multi-Batch L-BFGS
Input: w0 (initial iterate), T = {(xi, yi), for i = 1, . . . , n} (training set), m (memory parameter), r
(batch, fraction of n), o (overlap, fraction of batch), k ← 0 (iteration counter).

1: Create initial batch S0 . As shown in Firgure 1
2: for k = 0, 1, 2, ... do
3: Calculate the search direction pk = −Hkg

Sk

k . Using L-BFGS formula
4: Choose the step length αk > 0
5: Compute wk+1 = wk + αkpk
6: Create the next batch Sk+1

7: Compute the curvature pairs sk+1 = wk+1 − wk and yk+1 = gOk

k+1 − gOk

k

8: Replace the oldest pair (si, yi) by sk+1, yk+1

9: end for

2.2 Sample Generation

We now discuss how the sample Sk+1 is created at each iteration (Line 8 in Algorithm 1).

Distributed Computing with Faults. Consider a distributed implementation in which slave nodes
read the current iterate wk from the master node, compute a local gradient on a subset of the
dataset, and send it back to the master node for aggregation in the calculation (2.2). Given a time
(computational) budget, it is possible for some nodes to fail to return a result. The schematic in
Figure 1a illustrates the gradient calculation across two iterations, k and k+1, in the presence of faults.
Here Bi, i = 1, ..., B denote the batches of data that each slave node i receives (where T = ∪iBi),
and ∇̃f(w) is the gradient calculation using all nodes that responded within the preallocated time.

MASTER

NODE

SLAVE

NODES

MASTER

NODE

(a) (b)

wkwk

wkwk

B1B1 B2B2 B3B3 BBBB· · ·

wk+1wk+1

wk+1wk+1

B1B1 B2B2 B3B3 BBBB· · ·

r̃fBB (wk)r̃fBB (wk)r̃fB3(wk)r̃fB3(wk)r̃fB1(wk)r̃fB1(wk) r̃fBB (wk+1)r̃fBB (wk+1)r̃fB1(wk+1)r̃fB1(wk+1)

r̃f(wk) r̃f(wk+1)

SHUFFLED DATA

n

d SHUFFLED DATA

O0

O0 O1

O1 O2

O2 O3

O3 O4

O4 O5

O5 O6S0

S1

S2

S3

S4

S5

S6

Figure 1: Sample and Overlap formation.

Let Jk ⊂ {1, 2, ..., B} and Jk+1 ⊂ {1, 2, ..., B} be the set of indices of all nodes that returned a
gradient at the k-th and k + 1-st iterations, respectively. Using this notation Sk = ∪j∈Jk

Bj and
Sk+1 = ∪j∈Jk+1

Bj , and we define Ok = ∪j∈Jk∩Jk+1
Bj . The simplest implementation in this

setting preallocates the data on each compute node, requiring minimal data communication, i.e., only

4

one data transfer. In this case the samples Sk will be independent if node failures occur randomly.
On the other hand, if the same set of nodes fail, then sample creation will be biased, which is harmful
both in theory and practice. One way to ensure independent sampling is to shuffle and redistribute the
data to all nodes after a certain number of iterations.

Multi-batch Sampling. We propose two strategies for the multi-batch setting.

Figure 1b illustrates the sample creation process in the first strategy. The dataset is shuffled and
batches are generated by collecting subsets of the training set, in order. Every set (except S0) is
of the form Sk = {Ok−1, Nk, Ok}, where Ok−1 and Ok are the overlapping samples with batches
Sk−1 and Sk+1 respectively, and Nk are the samples that are unique to batch Sk. After each pass
through the dataset, the samples are reshuffled, and the procedure described above is repeated. In our
implementation samples are drawn without replacement, guaranteeing that after every pass (epoch)
all samples are used. This strategy has the advantage that it requires no extra computation in the
evaluation of gOk

k and gOk

k+1, but the samples {Sk} are not independent.

The second sampling strategy is simpler and requires less control. At every iteration k, a batch Sk is
created by randomly selecting |Sk| elements from {1, . . . n}. The overlapping set Ok is then formed
by randomly selecting |Ok| elements from Sk (subsampling). This strategy is slightly more expensive
since gOk

k+1 requires extra computation, but if the overlap is small this cost is not significant.

3 Convergence Analysis

In this section, we analyze the convergence properties of the multi-batch L-BFGS method (Algorithm
1) when applied to the minimization of strongly convex and nonconvex objective functions, using a
fixed step length strategy. We assume that the goal is to minimize the empirical risk F given in (1.1),
but note that a similar analysis could be used to study the minimization of the expected risk.

3.1 Strongly Convex case

Due to the stochastic nature of the multi-batch approach, every iteration of Algorithm 1 employs a
gradient that contains errors that do not converge to zero. Therefore, by using a fixed step length
strategy one cannot establish convergence to the optimal solution w?, but only convergence to a
neighborhood of w? [18]. Nevertheless, this result is of interest as it reflects the common practice of
using a fixed step length and decreasing it only if the desired testing error has not been achieved. It
also illustrates the tradeoffs that arise between the size of the batch and the step length.

In our analysis, we make the following assumptions about the objective function and the algorithm.

Assumptions A.

1. F is twice continuously differentiable.
2. There exist positive constants λ̂ and Λ̂ such that λ̂I � ∇2FO(w) � Λ̂I for all w ∈ Rd and all

sets O ⊂ {1, 2, . . . , n}.
3. There is a constant γ such that ES

[
‖∇FS(w)‖

]2 ≤ γ2 for all w ∈ Rd and all sets S ⊂
{1, 2, . . . , n}.

4. The samples S are drawn independently and ∇FS(w) is an unbiased estimator of the true
gradient ∇F (w) for all w ∈ Rd, i.e., ES [∇FS(w)] = ∇F (w).

Note that Assumption A.2 implies that the entire Hessian∇2F (w) also satisfies

λI � ∇2F (w) � ΛI, ∀w ∈ Rd,

for some constants λ,Λ > 0. Assuming that every sub-sampled function FO(w) is strongly convex
is not unreasonable as a regularization term is commonly added in practice when that is not the case.

We begin by showing that the inverse Hessian approximations Hk generated by the multi-batch
L-BFGS method have eigenvalues that are uniformly bounded above and away from zero. The proof
technique used is an adaptation of that in [8].
Lemma 3.1. If Assumptions A.1-A.2 above hold, there exist constants 0 < µ1 ≤ µ2 such that the
Hessian approximations {Hk} generated by Algorithm 1 satisfy

µ1I � Hk � µ2I, for k = 0, 1, 2, . . .

5

Utilizing Lemma 3.1, we show that the multi-batch L-BFGS method with a constant step length
converges to a neighborhood of the optimal solution.
Theorem 3.2. Suppose that Assumptions A.1-A.4 hold and let F ? = F (w?), where w? is the
minimizer of F . Let {wk} be the iterates generated by Algorithm 1 with αk = α ∈ (0, 1

2µ1λ
), starting

from w0. Then for all k ≥ 0,

E[F (wk)− F ?] ≤ (1− 2αµ1λ)k[F (w0)− F ?] + [1− (1− αµ1λ)k]
αµ2

2γ
2Λ

4µ1λ

k→∞−−−−→ αµ2
2γ

2Λ

4µ1λ
.

The bound provided by this theorem has two components: (i) a term decaying linearly to zero, and
(ii) a term identifying the neighborhood of convergence. Note that a larger step length yields a
more favorable constant in the linearly decaying term, at the cost of an increase in the size of the
neighborhood of convergence. We will consider again these tradeoffs in Section 4, where we also
note that larger batches increase the opportunities for parallelism and improve the limiting accuracy
in the solution, but slow down the learning abilities of the algorithm.

One can establish convergence of the multi-batch L-BFGS method to the optimal solution w? by
employing a sequence of step lengths {αk} that converge to zero according to the schedule proposed
by Robbins and Monro [23]. However, that provides only a sublinear rate of convergence, which is of
little interest in our context where large batches are employed and some type of linear convergence is
expected. In this light, Theorem 3.2 is more relevant to practice.

3.2 Nonconvex case

The BFGS method is known to fail on noconvex problems [17, 10]. Even for L-BFGS, which
makes only a finite number of updates at each iteration, one cannot guarantee that the Hessian
approximations have eigenvalues that are uniformly bounded above and away from zero. To establish
convergence of the BFGS method in the nonconvex case cautious updating procedures have been
proposed [15]. Here we employ a cautious strategy that is well suited to our particular algorithm; we
skip the update, i.e., set Hk+1 = Hk, if the curvature condition

yTk sk ≥ ε‖sk‖2 (3.5)

is not satisfied, where ε > 0 is a predetermined constant. Using said mechanism we show that the
eigenvalues of the Hessian matrix approximations generated by the multi-batch L-BFGS method are
bounded above and away from zero (Lemma 3.3). The analysis presented in this section is based on
the following assumptions.

Assumptions B.

1. F is twice continuously differentiable.
2. The gradients of F are Λ-Lipschitz continuous, and the gradients of FO are ΛO-Lipschitz

continuous for all w ∈ Rd and all sets O ⊂ {1, 2, . . . , n}.
3. The function F (w) is bounded below by a scalar F̂ .
4. There exist constants γ ≥ 0 and η > 0 such that ES

[
‖∇FS(w)‖

]2 ≤ γ2 + η‖∇F (w)‖2 for all
w ∈ Rd and all sets S ⊂ {1, 2, . . . , n}.

5. The samples S are drawn independently and ∇FS(w) is an unbiased estimator of the true
gradient ∇F (w) for all w ∈ Rd, i.e., E[∇FS(w)] = ∇F (w).

Lemma 3.3. Suppose that Assumptions B.1-B.2 hold and let ε > 0 be given. Let {Hk} be the
Hessian approximations generated by Algorithm 1, with the modification that Hk+1 = Hk whenever
(3.5) is not satisfied. Then, there exist constants 0 < µ1 ≤ µ2 such that

µ1I � Hk � µ2I, for k = 0, 1, 2, . . .

We can now follow the analysis in [4, Chapter 4] to establish the following result about the behavior
of the gradient norm for the multi-batch L-BFGS method with a cautious update strategy.
Theorem 3.4. Suppose that Assumptions B.1-B.5 above hold, and let ε > 0 be given. Let {wk} be
the iterates generated by Algorithm 1, with αk = α ∈ (0, µ1

µ2
2ηΛ

), starting from w0, and with the

6

modification that Hk+1 = Hk whenever (3.5) is not satisfied. Then,

E
[1

L

L−1∑
k=0

‖∇F (wk)‖2
]
≤ αµ2

2γ
2Λ

µ1
+

2[F (w0)− F̂]

αµ1L

L→∞−−−−→ αµ2
2γ

2Λ

µ1
.

This result bounds the average norm of the gradient of F after the first L− 1 iterations, and shows
that the iterates spend increasingly more time in regions where the objective function has a small
gradient.

4 Numerical Results
In this Section, we present numerical results that evaluate the proposed robust multi-batch L-BFGS
scheme (Algorithm 1) on logistic regression problems. Figure 2 shows the performance on the
webspam dataset1, where we compare it against three methods: (i) multi-batch L-BFGS without
enforcing sample consistency (L-BFGS), where gradient differences are computed using different
samples, i.e., yk = g

Sk+1

k+1 − gSk

k ; (ii) multi-batch gradient descent (Gradient Descent), which is
obtained by setting Hk = I in Algorithm 1; and, (iii) serial SGD, where at every iteration one sample
is used to compute the gradient. We run each method with 10 different random seeds, and, where
applicable, report results for different batch (r) and overlap (o) sizes. The proposed method is more
stable than the standard L-BFGS method; this is especially noticeable when r is small. On the other
hand, serial SGD achieves similar accuracy as the robust L-BFGS method and at a similar rate (e.g.,
r = 1%), at the cost of n communications per epochs versus 1

r(1−o) communications per epoch.
Figure 2 also indicates that the robust L-BFGS method is not too sensitive to the size of overlap.
Similar behavior was observed on other datasets, in regimes where r · o was not too small; see
Appendix B.1. We mention in passing that the L-BFGS step was computed using the a vector-free
implementation proposed in [9].

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 1% K = 16 o=5%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 1% K = 16 o=10%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 1% K = 16 o=30%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

Figure 2: webspam dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without
enforcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD for various
batch (r) and overlap (o) sizes. Solid lines show average performance, and dashed lines show worst
and best performance, over 10 runs (per algorithm). K = 16 MPI processes.

We also explore the performance of the robust multi-batch L-BFGS method in the presence of node
failures (faults), and compare it to the multi-batch variant that does not enforce sample consistency
(L-BFGS). Figure 3 illustrates the performance of the methods on the webspam dataset, for various

1LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

7

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

probabilities of node failures p ∈ {0.1, 0.3, 0.5}, and suggests that the robust L-BFGS variant is
more stable; see Appendix B.2 for further results.

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

webspam α = 0.1 p= 0.1 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations/Epochs

‖∇
F

(w
)‖

webspam α = 0.1 p= 0.3 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations/Epochs

‖∇
F

(w
)‖

webspam α = 0.1 p= 0.5 K = 16

Robust L−BFGS

L−BFGS

Figure 3: webspam dataset. Comparison of Robust L-BFGS and L-BFGS (multi-batch L-BFGS
without enforcing sample consistency), for various node failure probabilities p. Solid lines show
average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm).
K = 16 MPI processes.

Lastly, we study the strong and weak scaling properties of the robust L-BFGS method on artificial
data (Figure 4). We measure the time needed to compute a gradient (Gradient) and the associated
communication (Gradient+C), as well as, the time needed to compute the L-BFGS direction (L-
BFGS) and the associated communication (L-BFGS+C), for various batch sizes (r). The figure
on the left shows strong scaling of multi-batch LBFGS on a d = 104 dimensional problem with
n = 107 samples. The size of input data is 24GB, and we vary the number of MPI processes,
K ∈ {1, 2, . . . , 128}. The time it takes to compute the gradient decreases with K, however, for small
values of r, the communication time exceeds the compute time. The figure on the right shows weak
scaling on a problem of similar size, but with varying sparsity. Each sample has 10 ·K non-zero
elements, thus for any K the size of local problem is roughly 1.5GB (for K = 128 size of data
192GB). We observe almost constant time for the gradient computation while the cost of computing
the L-BFGS direction decreases with K; however, if communication is considered, the overall time
needed to compute the L-BFGS direction increases slightly. For more details see Appendix C.

10
1

10
2

10
−6

10
−4

10
−2

10
0

r = 0.04%

Number of MPI processes − K

E
la

p
s
e
d
 T

im
e
 [
s
]

Strong Scaling

r = 0.08%
r = 0.16%
r = 0.32%
r = 0.63%
r = 1.25%
r = 2.50%
r = 5.00%
r = 10.00% Gradient

Gradient+C
L−BFGS

L−BFGS+C

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

r = 0.04%

Number of MPI processes − K

E
la

p
s
e
d
 T

im
e
 [
s
]

Weak Scaling − Fix problem dimensions

r = 0.08%
r = 0.16%
r = 0.32%
r = 0.63%
r = 1.25%
r = 2.50%
r = 5.00%
r = 10.00%

Gradient

Gradient+C

L−BFGS

L−BFGS+C

Figure 4: Strong and weak scaling of multi-batch L-BFGS method.

5 Conclusion

This paper describes a novel variant of the L-BFGS method that is robust and efficient in two settings.
The first occurs in the presence of node failures in a distributed computing implementation; the second
arises when one wishes to employ a different batch at each iteration in order to accelerate learning.
The proposed method avoids the pitfalls of using inconsistent gradient differences by performing
quasi-Newton updating based on the overlap between consecutive samples. Numerical results show
that the method is efficient in practice, and a convergence analysis illustrates its theoretical properties.

Acknowledgements

The first two authors were supported by the Office of Naval Research award N000141410313, the
Department of Energy grant DE-FG02-87ER25047 and the National Science Foundation grant
DMS-1620022. Martin Takáč was supported by National Science Foundation grant CCF-1618717.

8

References
[1] A. Agarwal, O. Chapelle, M. Dudík, and J. Langford. A reliable effective terascale linear learning system.

The Journal of Machine Learning Research, 15(1):1111–1133, 2014.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods, volume 23.
Prentice hall Englewood Cliffs, NJ, 1989.

[3] R. Bollapragada, R. Byrd, and J. Nocedal. Exact and inexact subsampled newton methods for optimization.
arXiv preprint arXiv:1609.08502, 2016.

[4] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. arXiv
preprint arXiv:1606.04838, 2016.

[5] L. Bottou and Y. LeCun. Large scale online learning. In NIPS, pages 217–224, 2004.

[6] O. Bousquet and L. Bottou. The tradeoffs of large scale learning. In NIPS, pages 161–168, 2008.

[7] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal. On the use of stochastic Hessian information in
optimization methods for machine learning. SIAM Journal on Optimization, 21(3):977–995, 2011.

[8] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-newton method for large-scale
optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016.

[9] W. Chen, Z. Wang, and J. Zhou. Large-scale L-BFGS using MapReduce. In NIPS, pages 1332–1340, 2014.

[10] Y.-H. Dai. Convergence properties of the BFGS algoritm. SIAM Journal on Optimization, 13(3):693–701,
2002.

[11] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q. V. Le, et al.
Large scale distributed deep networks. In NIPS, pages 1223–1231, 2012.

[12] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support for
non-strongly convex composite objectives. In NIPS, pages 1646–1654, 2014.

[13] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Book in preparation for MIT Press, 2016.

[14] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In
NIPS, pages 315–323, 2013.

[15] D.-H. Li and M. Fukushima. On the global convergence of the BFGS method for nonconvex unconstrained
optimization problems. SIAM Journal on Optimization, 11(4):1054–1064, 2001.

[16] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan. Perturbed iterate
analysis for asynchronous stochastic optimization. arXiv preprint arXiv:1507.06970, 2015.

[17] W. F. Mascarenhas. The BFGS method with exact line searches fails for non-convex objective functions.
Mathematical Programming, 99(1):49–61, 2004.

[18] A. Nedić and D. Bertsekas. Convergence rate of incremental subgradient algorithms. In Stochastic
Optimization: Algorithms and Applications, pages 223–264. Springer, 2001.

[19] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng. On optimization methods for deep
learning. In ICML, pages 265–272, 2011.

[20] J. Nocedal and S. Wright. Numerical Optimization. Springer New York, 2 edition, 1999.

[21] M. J. Powell. Some global convergence properties of a variable metric algorithm for minimization without
exact line searches. Nonlinear programming, 9(1):53–72, 1976.

[22] B. Recht, C. Re, S. Wright, and F. Niu. HOGWILD!: A lock-free approach to parallelizing stochastic
gradient descent. In NIPS, pages 693–701, 2011.

[23] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics,
pages 400–407, 1951.

[24] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient.
Mathematical Programming, page 1–30, 2016.

[25] N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-Newton method for online convex optimization.
In AISTATS, pages 436–443, 2007.

[26] M. Takáč, A. Bijral, P. Richtárik, and N. Srebro. Mini-batch primal and dual methods for SVMs. In ICML,
pages 1022–1030, 2013.

[27] Y. Zhang and X. Lin. DiSCO: Distributed optimization for self-concordant empirical loss. In ICML, pages
362–370, 2015.

9

A Proofs and Technical Results

A.1 Assumptions

We first restate the Assumptions that we use in the Convergence Analysis section (Section 3).
Assumption A and B are used in the strongly convex and nonconvex cases, respectively.

Assumptions A

1. F is twice continuously differentiable.

2. There exist positive constants λ̂ and Λ̂ such that

λ̂I � ∇2FO(w) � Λ̂I, (A.6)

for all w ∈ Rd and all sets O ⊂ {1, 2, . . . , n}.
3. There is a constant γ such that

ES
[
‖∇FS(w)‖

]2 ≤ γ2, (A.7)

for all w ∈ Rd and all batches S ⊂ {1, 2, . . . , n}.
4. The samples S are drawn independently and ∇FS(w) is an unbiased estimator of the true

gradient∇F (w) for all w ∈ Rd, i.e.,

E
[
∇FS(w)

]
= ∇F (w). (A.8)

Note that Assumption A.2 implies that the entire Hessian∇2F (w) also satisfies

λI � ∇2F (w) � ΛI, ∀w ∈ Rd, (A.9)

for some constants λ,Λ > 0.

Assumptions B

1. F is twice continuously differentiable.
2. The gradients of F are Λ-Lipschitz continuous and the gradients of FO are ΛO-Lipschitz

continuous for all w ∈ Rd and all sets O ⊂ {1, 2, . . . , n}.
3. The function F (w) is bounded below by a scalar F̂ .
4. There exist constants γ ≥ 0 and η > 0 such that

ES
[
‖∇FS(w)‖

]2 ≤ γ2 + η‖∇F (w)‖2, (A.10)

for all w ∈ Rd and all batches S ⊂ {1, 2, . . . , n}.
5. The samples S are drawn independently and ∇FS(w) is an unbiased estimator of the true

gradient∇F (w) for all w ∈ Rd, i.e.,

E
[
∇FS(w)

]
= ∇F (w). (A.11)

A.2 Proof of Lemma 3.1 (Strongly Convex Case)

The following Lemma shows that the eigenvalues of the matrices generated by the multi-batch
L-BFGS method are bounded above and away from zero if F is strongly convex.
Lemma 3.1. If Assumptions A.1-A.2 above hold, there exist constants 0 < µ1 ≤ µ2 such that the
Hessian approximations {Hk} generated by the multi-batch L-BFGS method (Algorithm 1) satisfy

µ1I � Hk � µ2I, for k = 0, 1, 2, . . .

Proof. Instead of analyzing the inverse Hessian approximation Hk, we study the direct Hessian
approximation Bk = H−1

k . In this case, the limited memory quasi-Newton updating formula is given
as follows

10

1. Set B(0)
k =

yTk yk
sTk yk

I and m̃ = min{k,m}; where m is the memory in L-BFGS.

2. For i = 0, ..., m̃− 1 set j = k − m̃+ 1 + i and compute

B
(i+1)
k = B

(i)
k −

B
(i)
k sjs

T
j B

(i)
k

sTj B
(i)
k sj

+
yjy

T
j

yTj sj
.

3. Set Bk+1 = B
(m̃)
k .

The curvature pairs sk and yk are updated via the following formulae

yk+1 = gOk

k+1 − gOk

k , sk = wk+1 − wk. (A.12)

A consequence of Assumption A.2 is that the eigenvalues of any sub-sampled Hessian (|O| samples)
are bounded above and away from zero. Utilizing this fact, the convexity of component functions and
the definitions (A.12), we have

yTk sk ≥
1

Λ̂
‖yk‖2 ⇒ ‖yk‖2

yTk sk
≤ Λ̂. (A.13)

On the other hand, strong convexity of the sub-sampled functions, the consequence of Assumption
A.2 and definitions (A.12), provide a lower bound,

yTk sk ≤
1

λ̂
‖yk‖2 ⇒ ‖yk‖2

yTk sk
≥ λ̂. (A.14)

Combining the upper and lower bounds (A.13) and (A.14)

λ̂ ≤ ‖yk‖
2

yTk sk
≤ Λ̂. (A.15)

The above proves that the eigenvalues of the matrices B(0)
k =

yTk yk
sTk yk

I at the start of the L-BFGS
update cycles are bounded above and away from zero, for all k. We now use a Trace-Determinant
argument to show that the eigenvalues of Bk are bounded above and away from zero.

Let Tr(B) and det(B) denote the trace and determinant of matrix B, respectively, and set ji =
k − m̃+ i. The trace of the matrix Bk+1 can be expressed as,

Tr(Bk+1) = Tr(B
(0)
k)− Tr

m̃∑
i=1

(B(i)
k sjis

T
ji
B

(i)
k

sTjiB
(i)
k sji

)
+ Tr

m̃∑
i=1

yjiy
T
ji

yTjisji

≤ Tr(B(0)
k) +

m̃∑
i=1

‖yji‖2
yTjisji

≤ Tr(B(0)
k) + m̃Λ̂

≤ C1, (A.16)
for some positive constant C1, where the inequalities above are due to (A.15), and the fact that the
eigenvalues of the initial L-BFGS matrix B(0)

k are bounded above and away from zero.

Using a result due to Powell [21], the determinant of the matrix Bk+1 generated by the multi-batch
L-BFGS method can be expressed as,

det(Bk+1) = det(B
(0)
k)

m̃∏
i=1

yTjisji

sTjiB
(i−1)
k sji

= det(B
(0)
k)

m̃∏
i=1

yTjisji
sTjisji

sTjisji

sTjiB
(i−1)
k sji

≥ det(B
(0)
k)
(λ̂
C1

)m̃
≥ C2, (A.17)

11

for some positive constant C2, where the above inequalities are due to the fact that the largest
eigenvalue of B(i)

k is less than C1 and Assumption A.2.

The trace (A.16) and determinant (A.17) inequalities derived above imply that largest eigenvalues of
all matrices Bk are bounded above, uniformly, and that the smallest eigenvalues of all matrices Bk
are bounded away from zero, uniformly.

A.3 Proof of Theorem 3.2 (Strongly Convex Case)

Utilizing the result from Lemma 3.1, we now prove a linear convergence result to a neighborhood of
the optimal solution, for the case where Assumptions A hold.

Theorem 3.2. Suppose that Assumptions A.1-A.4 above hold, and let F ? = F (w?), where w? is the
minimizer of F . Let {wk} be the iterates generated by the multi-batch L-BFGS method (Algorithm 1)
with

αk = α ∈ (0,
1

2µ1λ
),

starting from w0. Then for all k ≥ 0,

E[F (wk)− F ?] ≤ (1− 2αµ1λ)k[F (w0)− F ?] + [1− (1− αµ1λ)k]
αµ2

2γ
2Λ

4µ1λ

k→∞−−−−→ αµ2
2γ

2Λ

4µ1λ
.

Proof. We have that

F (wk+1) = F (wk − αHk∇FSk(wk))

≤ F (wk) +∇F (wk)T (−αHk∇FSk(wk)) +
Λ

2
‖αHk∇FSk(wk)‖2

≤ F (wk)− α∇F (wk)THk∇FSk(wk) +
α2µ2

2Λ

2
‖∇FSk(wk)‖2, (A.18)

where the first inequality arises due to (A.9), and the second inequality arises as a consequence of
Lemma 3.1.

Taking the expectation (over Sk) of equation (A.18)

ESk
[F (wk+1)] ≤ F (wk)− α∇F (wk)THk∇F (wk) +

α2µ2
2Λ

2
ESk

[
‖∇FSk(wk)‖

]2
≤ F (wk)− αµ1‖∇F (wk)‖2 +

α2µ2
2γ

2Λ

2
, (A.19)

where in the first inequality we make use of Assumption A.5, and the second inequality arises due to
Lemma 3.1 and Assumption A.4.

Since F is λ-strongly convex, we can use the following relationship between the norm of the gradient
squared, and the distance of the k-th iterate from the optimal solution.

2λ[F (wk)− F ?] ≤ ‖∇F (wk)‖2.
Using the above with (A.19),

ESk
[F (wk+1)] ≤ F (wk)− αµ1‖∇F (wk)‖2 +

α2µ2
2γ

2Λ

2

≤ F (wk)− 2αµ1λ[F (wk)− F ?] +
α2µ2

2γ
2Λ

2
. (A.20)

Let

φk = E[F (wk)− F ?], (A.21)

12

where the expectation is over all batches S0, S1, ..., Sk−1 and all history starting with w0. Thus
(A.20) can be expressed as,

φk+1 ≤ (1− 2αµ1λ)φk +
α2µ2

2γ
2Λ

2
, (A.22)

from which we deduce that in order to reduce the value with respect to the previous function value,
the step length needs to be in the range

α ∈
(

0,
1

2µ1λ

)
.

Subtracting αµ2
2γ

2Λ
4µ1λ

from either side of (A.22) yields

φk+1 −
αµ2

2γ
2Λ

4µ1λ
≤ (1− 2αµ1λ)φk +

α2µ2
2γ

2Λ

2
− αµ2

2γ
2Λ

4µ1λ

= (1− 2αµ1λ)
[
φk −

αµ2
2γ

2Λ

4µ1λ

]
. (A.23)

Recursive application of (A.23) yields

φk −
αµ2

2γ
2Λ

4µ1λ
≤ (1− 2αµ1λ)k

[
φ0 −

αµ2
2γ

2Λ

4µ1λ

]
,

and thus,

φk ≤ (1− 2αµ1λ)kφ0 +
[
1− (1− αµ1λ)k

]αµ2
2γ

2Λ

4µ1λ
. (A.24)

Finally using the definition of φk (A.21) with the above expression yields the desired result,

E
[
F (wk)− F ?

]
≤
(

1− 2αµ1λ
)k[

F (w0)− F ?
]

+
[
1− (1− αµ1λ)k

]αµ2
2γ

2Λ

4µ1λ
.

A.4 Proof of Lemma 3.3 (Nonconvex Case)

The following Lemma shows that the eigenvalues of the matrices generated by the multi-batch
L-BFGS method are bounded above and away from zero (nonconvex case).
Lemma 3.3. Suppose that Assumptions B.1-B.2 hold and let ε > 0 be given. Let {Hk} be the Hessian
approximations generated by the multi-batch L-BFGS method (Algorithm 1), with the modification
that the Hessian approximation Hk update is performed only when

yTk sk ≥ ε‖sk‖2, (A.25)

else Hk+1 = Hk. Then, there exist constants 0 < µ1 ≤ µ2 such that

µ1I � Hk � µ2I, for k = 0, 1, 2, . . .

Proof. Similar to the proof of Lemma 3.1, we study the direct Hessian approximation Bk = H−1
k .

The curvature pairs sk and yk are updated via the following formulae

yk+1 = gOk

k+1 − gOk

k , sk = wk+1 − wk. (A.26)

The skipping mechanism (A.25) provides both an upper and lower bound on the quantity ‖yk‖
2

yTk sk
,

which in turn ensures that the initial L-BFGS Hessian approximation is bounded above and away
from zero. The lower bound is attained by repeated application of Cauchy’s inequality to condition
(A.25). We have from (A.25) that

ε‖sk‖2 ≤ yTk sk ≤ ‖yk‖‖sk‖,

13

and therefore

‖sk‖ ≤
1

ε
‖yk‖.

It follows that

sTk yk ≤ ‖sk‖‖yk‖ ≤
1

ε
‖yk‖2

and hence

‖yk‖2
sTk yk

≥ ε. (A.27)

The upper bound is attained by the Lipschitz continuity of sample gradients,

yTk sk ≥ ε‖sk‖2

≥ ε‖yk‖
2

Λ2
Ok

,

Re-arranging the above expression yields the desired upper bound,

‖yk‖2
sTk yk

≤ Λ2
Ok

ε
. (A.28)

Combining (A.27) and (A.28),

ε ≤ ‖yk‖
2

yTk sk
≤ Λ2

Ok

ε
.

The above proves that the eigenvalues of the matrices B(0)
k =

yTk yk
sTk yk

I at the start of the L-BFGS
update cycles are bounded above and away from zero, for all k. The rest of the proof follows the
same trace-determinant argument as in the proof of Lemma 3.1, the only difference being that the last
inequality in A.17 comes as a result of the cautious update strategy.

A.5 Proof of Theorem 3.4 (Nonconvex Case)

Utilizing the result from Lemma 3.3, we can now establish the following result about the behavior of
the gradient norm for the multi-batch L-BFGS method with a cautious update strategy.

Theorem 3.4. Suppose that Assumptions B.1-B.5 above hold. Let {wk} be the iterates generated by
the multi-batch L-BFGS method (Algorithm 1) with

αk = α ∈ (0,
µ1

µ2
2ηΛ

),

where w0 is the starting point. Also, suppose that if

yTk sk < ε‖sk‖2,

for some ε > 0, the inverse L-BFGS Hessian approximation is skipped, Hk+1 = Hk. Then, for all
k ≥ 0,

E
[1

L

L−1∑
k=0

‖∇F (wk)‖2
]
≤ αµ2

2γ
2Λ

µ1
+

2[F (w0)− F̂]

αµ1L

L→∞−−−−→ αµ2
2γ

2Λ

µ1
.

14

Proof. Starting with (A.19),

ESk
[F (wk+1)] ≤ F (wk)− αµ1‖∇F (wk)‖2 +

α2µ2
2Λ

2
ESk

[
‖∇FSk(wk)‖

]2
≤ F (wk)− αµ1‖∇F (wk)‖2 +

α2µ2
2Λ

2
(γ2 + η‖∇F (w)‖2)

= F (wk)− α
(
µ1 −

αµ2
2ηΛ

2

)
‖∇F (wk)‖2 +

α2µ2
2γ

2Λ

2

≤ F (wk)− αµ1

2
‖∇F (wk)‖2 +

α2µ2
2γ

2Λ

2
,

where the second inequality holds due to Assumption B.4, and the fourth inequality is obtained by
using the upper bound on the step length. Taking an expectation over all batches S0, S1, ..., Sk−1 and
all history starting with w0 yields

φk+1 − φk ≤ −
αµ1

2
E‖∇F (wk)‖2 +

α2µ2
2γ

2Λ

2
, (A.29)

where φk = E[F (wk)]. Summing (A.29) over the first L− 1 iterations

L−1∑
k=0

[φk+1 − φk] ≤ −αµ1

2

L−1∑
k=0

E‖∇F (wk)‖2 +

L−1∑
k=0

α2µ2
2γ

2Λ

2

= −αµ1

2
E
[L−1∑
k=0

‖∇F (wk)‖2
]

+
α2µ2

2γ
2ΛL

2
. (A.30)

The left-hand-side of the above inequality is a telescoping sum

L−1∑
k=0

[φk+1 − φk] = φL − φ0

= E[F (wL)]− F (w0)

≥ F̂ − F (w0).

Substituting the above expression into (A.30) and re-arranging terms

E
[L−1∑
k=0

‖∇F (wk)‖2
]
≤ αµ2

2γ
2ΛL

µ1
+

2[F (w0)− F̂]

αµ1
.

Dividing the above equation by L completes the proof.

15

B Extended Numerical Experiments - Real Datasets

In this Section, we present further numerical results, on the datasets listed in Table 1, in both the
multi-batch and fault-tolerant settings. Note, that some of the datasets are too small, and thus, there is
no reason to run them on a distributed platform; however, we include them as they are part of the
standard benchmarking datasets.

Notation. Let n denote the number of training samples in a given dataset, d the dimension of the
parameter vector w, and K the number of MPI processes used. The parameter r denotes the fraction
of samples in the dataset used to define the gradient, i.e., r = |S|

n . The parameter o denotes the length
of overlap between consecutive samples, and is defined as a fraction of the number of samples in a
given batch S, i.e., o = |O|

|S| .

Table 1: Datasets together with basic statistics. All datasets are available at https://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Dataset n d Size (MB) K
ijcnn (test) 91,701 22 14 4
cov 581,012 54 68 4
news20 19,996 1,355,191 134 4
rcvtest 677,399 47,236 1,152 16
url 2,396,130 3,231,961 2,108 16
kdda 8,407,752 20,216,830 2,546 16
kddb 19,264,097 29,890,095 4,894 16
webspam 350,000 16,609,143 23,866 16
splice-site 50,000,000 11,725,480 260,705 16

We focus on logistic regression classification; the objective function is given by

min
w∈Rd

F (w) =
1

n

n∑
i=1

log(1 + e−y
i(wT xi)) +

σ

2
‖w‖2,

where (xi, yi)ni=1 denote the training examples and σ = 1
n is the regularization parameter.

B.1 Multi-batch L-BFGS Implementation

For the experiments in this section (Figures 5-13), we run four methods:

• (Robust L-BFGS) robust multi-batch L-BFGS (Algorithm 1),
• (L-BFGS) multi-batch L-BFGS without enforcing sample consistency; gradient differences

are computed using different samples, i.e., yk = g
Sk+1

k+1 − gSk

k ,
• (Gradient Descent) multi-batch gradient descent; obtained by setting Hk = I in Algorithm

1,
• (SGD) serial SGD; at every iteration one sample is used to compute the gradient.

In Figures 5-13 we show the evolution of ‖∇F (w)‖ for different step lengths α, and for various
batch (|S| = r · n) and overlap (|O| = o · |S|) sizes. Each Figure (5-13) consists of 10 plots that
illustrate the performance of the methods with the following parameters:

• Top 3 plots: α = 1, o = 20% and r = 1%, 5%, 10%

• Middle 3 plots: α = 0.1, o = 20% and r = 1%, 5%, 10%

• Bottom 4 plots: α = 1, r = 1% and o = 5%, 10%, 20%, 30%

As is expected for quasi-Newton methods, robust L-BFGS performs best with a step-size α = 1, for
the most part.

16

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

ijcnn1 α = 1 r= 1% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

ijcnn1 α = 1 r= 5% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

ijcnn1 α = 1 r= 10% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

ijcnn1 α = 0.1 r= 1% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

ijcnn1 α = 0.1 r= 5% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

ijcnn1 α = 0.1 r= 10% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

ijcnn1 α = 1 r= 1% K = 4 o=5%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

ijcnn1 α = 1 r= 1% K = 4 o=10%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

ijcnn1 α = 1 r= 1% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

ijcnn1 α = 1 r= 1% K = 4 o=30%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

Figure 5: ijcnn1 dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without
enforcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part:
we used α ∈ {1, 0.1}, r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and
o ∈ {5%, 10%, 20%, 30%}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 4 MPI processes.

17

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

Epochs

‖∇
F

(w
)‖

cov α = 1 r= 1% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

Epochs

‖∇
F

(w
)‖

cov α = 1 r= 5% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

Epochs

‖∇
F

(w
)‖

cov α = 1 r= 10% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

cov α = 0.1 r= 1% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

Epochs

‖∇
F

(w
)‖

cov α = 0.1 r= 5% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

cov α = 0.1 r= 10% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−10

10
−5

10
0

10
5

Epochs

‖∇
F

(w
)‖

cov α = 1 r= 1% K = 4 o=5%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

Epochs

‖∇
F

(w
)‖

cov α = 1 r= 1% K = 4 o=10%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

Epochs

‖∇
F

(w
)‖

cov α = 1 r= 1% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−10

10
−5

10
0

10
5

Epochs

‖∇
F

(w
)‖

cov α = 1 r= 1% K = 4 o=30%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

Figure 6: cov dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without
enforcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part:
we used α ∈ {1, 0.1}, r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and
o ∈ {5%, 10%, 20%, 30%}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 4 MPI processes.

18

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

news20 α = 1 r= 1% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

news20 α = 1 r= 5% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

news20 α = 1 r= 10% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

news20 α = 0.1 r= 1% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

news20 α = 0.1 r= 5% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

news20 α = 0.1 r= 10% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

news20 α = 1 r= 1% K = 4 o=5%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

news20 α = 1 r= 1% K = 4 o=10%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

news20 α = 1 r= 1% K = 4 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

news20 α = 1 r= 1% K = 4 o=30%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

Figure 7: news20 dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without
enforcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part:
we used α ∈ {1, 0.1}, r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and
o ∈ {5%, 10%, 20%, 30%}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 4 MPI processes.

19

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

rcvtest α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

rcvtest α = 1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

rcvtest α = 1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

rcvtest α = 0.1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

rcvtest α = 0.1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

rcvtest α = 0.1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

rcvtest α = 1 r= 1% K = 16 o=5%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

rcvtest α = 1 r= 1% K = 16 o=10%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

rcvtest α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

rcvtest α = 1 r= 1% K = 16 o=30%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

Figure 8: rcvtest dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without
enforcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part:
we used α ∈ {1, 0.1}, r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and
o ∈ {5%, 10%, 20%, 30%}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 16 MPI processes.

20

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

url α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

url α = 1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

url α = 1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

url α = 0.1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

url α = 0.1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

url α = 0.1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

url α = 1 r= 1% K = 16 o=5%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

url α = 1 r= 1% K = 16 o=10%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

url α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

url α = 1 r= 1% K = 16 o=30%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

Figure 9: url dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without
enforcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part:
we used α ∈ {1, 0.1}, r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and
o ∈ {5%, 10%, 20%, 30%}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 16 MPI processes.

21

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kdda α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kdda α = 1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kdda α = 1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

Epochs

‖∇
F

(w
)‖

kdda α = 0.1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kdda α = 0.1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kdda α = 0.1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kdda α = 1 r= 1% K = 16 o=5%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kdda α = 1 r= 1% K = 16 o=10%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kdda α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kdda α = 1 r= 1% K = 16 o=30%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

Figure 10: kdda dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without
enforcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part:
we used α ∈ {1, 0.1}, r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and
o ∈ {5%, 10%, 20%, 30%}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 16 MPI processes.

22

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kddb α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

Epochs

‖∇
F

(w
)‖

kddb α = 1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

Epochs

‖∇
F

(w
)‖

kddb α = 1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

kddb α = 0.1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kddb α = 0.1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kddb α = 0.1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

Epochs

‖∇
F

(w
)‖

kddb α = 1 r= 1% K = 16 o=5%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kddb α = 1 r= 1% K = 16 o=10%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kddb α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epochs

‖∇
F

(w
)‖

kddb α = 1 r= 1% K = 16 o=30%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

Figure 11: kddb dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without
enforcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part:
we used α ∈ {1, 0.1}, r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and
o ∈ {5%, 10%, 20%, 30%}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 16 MPI processes.

23

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

webspam α = 0.1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

webspam α = 0.1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

webspam α = 0.1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 1% K = 16 o=5%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 1% K = 16 o=10%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

10
4

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

webspam α = 1 r= 1% K = 16 o=30%

Robust L−BFGS

L−BFGS
Gradient Descent

SGD

Figure 12: webspam dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS
without enforcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD.
Top part: we used α ∈ {1, 0.1}, r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1,
r = 1% and o ∈ {5%, 10%, 20%, 30%}. Solid lines show average performance, and dashed lines
show worst and best performance, over 10 runs (per algorithm). K = 16 MPI processes.

24

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

splice α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS

Gradient Descent

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

splice α = 1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS

Gradient Descent

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

splice α = 1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS

Gradient Descent

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

splice α = 0.1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS

Gradient Descent

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

splice α = 0.1 r= 5% K = 16 o=20%

Robust L−BFGS

L−BFGS

Gradient Descent

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

Epochs

‖∇
F

(w
)‖

splice α = 0.1 r= 10% K = 16 o=20%

Robust L−BFGS

L−BFGS

Gradient Descent

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

splice α = 1 r= 1% K = 16 o=5%

Robust L−BFGS

L−BFGS

Gradient Descent

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

splice α = 1 r= 1% K = 16 o=10%

Robust L−BFGS

L−BFGS

Gradient Descent

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

splice α = 1 r= 1% K = 16 o=20%

Robust L−BFGS

L−BFGS

Gradient Descent

0 0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

Epochs

‖∇
F

(w
)‖

splice α = 1 r= 1% K = 16 o=30%

Robust L−BFGS

L−BFGS

Gradient Descent

Figure 13: splice-cite dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS
without enforcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD.
Top part: we used α ∈ {1, 0.1}, r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1,
r = 1% and o ∈ {5%, 10%, 20%, 30%}. Solid lines show average performance, and dashed lines
show worst and best performance, over 10 runs (per algorithm). K = 16 MPI processes. (No Serial
SGD experiments due to memory limitations of our cluster.)

25

B.2 Fault-tolerant L-BFGS Implementation

If we run a distributed algorithm, for example on a shared computer cluster, then we may experience
delays. Such delays can be caused by other processes running on the same compute node, node
failures and for other reasons. As a result, given a computational (time) budget, these delays may
cause nodes to fail to return a value. To illustrate this behavior, and to motivate the robust fault-tolerant
L-BFGS method, we run a simple benchmark MPI code on two different environments:

• Amazon EC2 – Amazon EC2 is a cloud system provided by Amazon. It is expected that
if load balancing is done properly, the execution time will have small noise; however, the
network and communication can still be an issue. (4 MPI processes)

• Shared Cluster – In our shared cluster, multiple jobs run on each node, with some jobs
being more demanding than others. Even though each node has 16 cores, the amount of
resources each job can utilize changes over time. In terms of communication, we have a
GigaBit network. (11 MPI processes, running on 11 nodes)

We run a simple code on the cloud/cluster, with MPI communication. We generate two matrices
A,B ∈ Rn×n, then synchronize all MPI processes and compute C = A ·B using the GSL C-BLAS
library. The time is measured and recorded as computational time. After the matrix product is
computed, the result is sent to the master/root node using asynchronous communication, and the time
required is recorded. The process is repeated 3000 times.

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

E
la

p
s
e
d
 T

im
e
 [
s
]

n

Computational − Amazon EC2

Max
Min
Average
10% quantile
90% quantile

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
la

p
s
e
d
 T

im
e
 [
s
]

n

Communication − Amazon EC2

Max
Min

Average
10% quantile
90% quantile

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

E
la

p
s
e
d
 T

im
e
 [
s
]

n

Computational − Shared Cluster

Max
Min
Average
10% quantile
90% quantile

10
2

10
3

10
−6

10
−4

10
−2

10
0

10
2

E
la

p
s
e
d
 T

im
e
 [
s
]

n

Communication − Shared Cluster

Max
Min

Average
10% quantile
90% quantile

Figure 14: Distribution of Computation and Communication Time for Amazon EC2 and Shared
Cluster. Figures show worst and best time, average time and 10% and 90% quantiles. Amazon Cloud
EC: In the experiment: 4 MPI processes; Shared Cluster: 11 MPI processes.

The results of the experiment described above are captured in Figure 14. As expected, on the Amazon
EC2 cloud, the matrix-matrix multiplication takes roughly the same time for all replications and the
noise in communication is relatively small. In this example the cost of communication is negligible
when compared to the cost of computation. On our shared cluster, one cannot guarantee that all
resources are exclusively used for a specific process, and thus, the computation and communication
time is considerably more stochastic and unbalanced. For some cases the difference between the
minimum and maximum computation (communication) time varies by an order of magnitude or more.
Hence, on such a platform a fault-tolerant algorithm that only uses information from nodes that return
an update within a preallocated budget is a natural choice.

26

In Figures 15-19 we show a comparison of the proposed robust multi-batch L-BFGS method and
the multi-batch L-BFGS method that does not enforce sample consistency (L-BFGS). In these
experiments, p denotes the probability that a single node (MPI process) will not return a gradient
evaluated on local data within a given time budget. We illustrate the performance of the methods for
α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We observe that the robust implementation is not affected
much by the failure probability p.

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

rcvtest α = 0.1 p= 0.1 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

Iterations/Epochs

‖∇
F

(w
)‖

rcvtest α = 0.1 p= 0.2 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

Iterations/Epochs

‖∇
F

(w
)‖

rcvtest α = 0.1 p= 0.3 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations/Epochs

‖∇
F

(w
)‖

rcvtest α = 0.1 p= 0.4 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

Iterations/Epochs

‖∇
F

(w
)‖

rcvtest α = 0.1 p= 0.5 K = 16

Robust L−BFGS

L−BFGS

Figure 15: rcvtest dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults.
We used α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed
lines show worst and best performance, over 10 runs (per algorithm). K = 16 MPI processes.

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

webspam α = 0.1 p= 0.1 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations/Epochs

‖∇
F

(w
)‖

webspam α = 0.1 p= 0.2 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations/Epochs

‖∇
F

(w
)‖

webspam α = 0.1 p= 0.3 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

10
2

Iterations/Epochs

‖∇
F

(w
)‖

webspam α = 0.1 p= 0.4 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations/Epochs

‖∇
F

(w
)‖

webspam α = 0.1 p= 0.5 K = 16

Robust L−BFGS

L−BFGS

Figure 16: webspam dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults.
We used α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed
lines show worst and best performance, over 10 runs (per algorithm). K = 16 MPI processes.

27

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

kdda α = 0.1 p= 0.1 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

kdda α = 0.1 p= 0.2 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−8

10
−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

kdda α = 0.1 p= 0.3 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−8

10
−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

kdda α = 0.1 p= 0.4 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−8

10
−6

10
−4

10
−2

10
0

Iterations/Epochs
‖∇

F
(w

)‖

kdda α = 0.1 p= 0.5 K = 16

Robust L−BFGS

L−BFGS

Figure 17: kdda dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We
used α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed
lines show worst and best performance, over 10 runs (per algorithm). K = 16 MPI processes.

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

kddb α = 0.1 p= 0.1 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

kddb α = 0.1 p= 0.2 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

kddb α = 0.1 p= 0.3 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

kddb α = 0.1 p= 0.4 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations/Epochs

‖∇
F

(w
)‖

kddb α = 0.1 p= 0.5 K = 16

Robust L−BFGS

L−BFGS

Figure 18: kddb dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We
used α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed
lines show worst and best performance, over 10 runs (per algorithm). K = 16 MPI processes.

28

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations/Epochs

‖∇
F

(w
)‖

url α = 0.1 p= 0.1 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations/Epochs

‖∇
F

(w
)‖

url α = 0.1 p= 0.2 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations/Epochs
‖∇

F
(w

)‖

url α = 0.1 p= 0.3 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations/Epochs

‖∇
F

(w
)‖

url α = 0.1 p= 0.4 K = 16

Robust L−BFGS

L−BFGS

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations/Epochs

‖∇
F

(w
)‖

url α = 0.1 p= 0.5 K = 16

Robust L−BFGS

L−BFGS

Figure 19: url dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We
used α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed
lines show worst and best performance, over 10 runs (per algorithm). K = 16 MPI processes.

29

C Scaling of Robust Multi-Batch L-BFGS Implementation

In this Section, we study the strong and weak scaling properties of the robust multi-batch L-BFGS
method on an artificial dataset. For various values of r and K, we measure the time needed to
compute a gradient (Gradient) and the time needed to compute and communicate the gradient
(Gradient+C), as well as, the time needed to compute the L-BFGS direction (L-BFGS) and the
associated communication overhead (L-BFGS+C).

C.1 Strong Scaling

Figure 20 depicts the strong scaling properties of our proposed algorithm. We generate a dataset with
n = 107 samples and d = 104 dimensions, where each sample has 160 randomly chosen non-zero
elements (dataset size 24GB). We run our code for different values of r (different batch sizes Sk),
with K = 1, 2, . . . , 128 number of MPI processes.

One can observe that the compute time for the gradient and the L-BFGS direction decreases as
K is increased. However, when communication time is considered, the combined cost increases
slightly as K is increased. Notice that for large K, even when r = 10% (i.e., 10% of all samples
processed in one iteration, ∼18MB of data), the amount of local work is not sufficient to overcome
the communication cost.

10
1

10
2

10
−6

10
−4

10
−2

10
0

r = 0.04%

Number of MPI processes − K

E
la

p
s
e
d
 T

im
e
 [
s
]

Strong Scaling

r = 0.08%
r = 0.16%
r = 0.32%
r = 0.63%
r = 1.25%
r = 2.50%
r = 5.00%
r = 10.00% Gradient

Gradient+C
L−BFGS

L−BFGS+C

Figure 20: Strong scaling of robust multi-batch L-BFGS on a problem with artificial data; n = 107

and d = 104. Each sample has 160 non-zero elements. +C indicates that we include communication
time to the gradient computation and L-BFGS update computation.

C.2 Weak Scaling - Fixed Problem Dimension, Increasing Data Size

In order to illustrate the weak scaling properties of the algorithm, we generate a data-matrix X ∈
R107×104

, and run it on a shared cluster with K = 1, 2, 4, 8, . . . , 128 MPI processes. For a given
number of MPI processes (K), each sample contains 10 · K non-zero elements. Effectively, the
dimension of the problem is fixed, but sparsity of the data is decreased as more MPI processes are
used. The size of the input data is 1.5 ·K GB (i.e., 1.5GB per MPI process).

The compute time for the gradient is almost constant, this is because the amount of work per MPI
process (rank) is almost identical; see Figure 21. On the other hand, because we are using a Vector-
Free L-BFGS implementation [9] for computing the L-BFGS direction, the amount of time needed
for each node to compute the L-BFGS direction is decreasing as K is increased. However, increasing
K does lead to larger communication overhead, which can be observed in Figure 21. For K = 128
(192GB of data) and r = 10%, almost 20GB of data are processed per iteration in less than 0.1
seconds, which implies that one epoch would take around 1 second.

30

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

r = 0.04%

Number of MPI processes − K

E
la

p
s
e
d
 T

im
e
 [
s
]

Weak Scaling − Fix problem dimensions

r = 0.08%
r = 0.16%
r = 0.32%
r = 0.63%
r = 1.25%
r = 2.50%
r = 5.00%
r = 10.00%

Gradient

Gradient+C

L−BFGS

L−BFGS+C

Figure 21: Weak scaling of robust multi-batch L-BFGS on a problem with artificial data; n = 107

and d = 104. Each sample has 10 · K non-zero elements. +C indicates that we also include
communication time to the gradient computation and L-BFGS update computation.

C.3 Increasing Problem Dimension, Fixed Data Size and K

In this experiment, we investigate the effect of a change in the dimension d of the problem on the
performance of the algorithm. We fix the size of data (29GB) and the number of MPI processes
(K = 8). We generate data with n = 107 samples, where each sample has 200 non-zero elements.
Figure 22 shows that increasing the dimension d has a mild effect on the computation time of the
gradient, while the effect on the time needed to compute the L-BFGS direction is more apparent.
However, if communication time is taken into consideration, the time required for the gradient
computation and the L-BFGS direction computation increase as d is increased.

0 1 2 3 4 5 6 7

x 10
4

10
−6

10
−4

10
−2

10
0

r = 0.04%

d

E
la

p
s
e
d
 T

im
e
 [
s
]

K=8, Incresing d

r = 0.08%
r = 0.16%
r = 0.32%
r = 0.63%
r = 1.25%
r = 2.50%
r = 5.00%
r = 10.00%

Gradient

Gradient+C
L−BFGS

L−BFGS+C

Figure 22: Scaling of robust multi-batch L-BFGS on a problem with artificial data; n = 107 samples,
with increasing d and K = 8 MPI processes. Each sample had 200 non-zero elements. +C
indicates that we also include communication time to the gradient computation and L-BFGS update
computation.

31

	Introduction
	The Multi-Batch Quasi-Newton Method
	Specification of the Method
	Sample Generation

	Convergence Analysis
	Strongly Convex case
	Nonconvex case

	Numerical Results
	Conclusion
	Proofs and Technical Results
	Assumptions
	Proof of Lemma 3.1 (Strongly Convex Case)
	Proof of Theorem 3.2 (Strongly Convex Case)
	Proof of Lemma 3.3 (Nonconvex Case)
	Proof of Theorem 3.4 (Nonconvex Case)

	Extended Numerical Experiments - Real Datasets
	Multi-batch L-BFGS Implementation
	Fault-tolerant L-BFGS Implementation

	Scaling of Robust Multi-Batch L-BFGS Implementation
	Strong Scaling
	Weak Scaling - Fixed Problem Dimension, Increasing Data Size
	Increasing Problem Dimension, Fixed Data Size and K

