Supplementary Information

A Time and space complexity

Under a reasonable class of content addressable memory architectures A, SAM is optimal in time and space
complexity.

Definition 1. Let M be a collection of real vectors mi, ma, ..., mn of fixed dimension d. Let A be the set of
all content addressable memory data structures that store M and can return at least one word m; such that
D(q,m;) < ¢(1+ €) for a given L? norm D, query vector q, and € > 0; provided such a memory m. exists
with D(q, m.) = c.

Existing lower bounds [14, 1] assert that for any data structure a € A, a requires Q(log N) time and Q(N)
space to perform a read operation. The SAM memory architecture proposed in this paper is contained within A
as it computes the approximate nearest neighbors problem in fixed dimensions [15]. As we will show, SAM
requires O(log V) time to query and maintain the ANN, O(1) to perform all subsequent sparse read, write,
and error gradient calculations. It requires O(N) space to initialize the memory and O(1) to store intermediate
sparse tensors. We thus conclude it is optimal in asymptotic time and space complexity.

A.1 Initialization

Upon initialization, SAM consumes O (V) space and time to instantiate the memory and the memory Jacobian.
Furthermore, it requires O(N) time and space to initialize auxiliary data structures which index the memory,
such as the approximate nearest neighbor which provides a content-structured view of the memory, and the least
accessed ring, which maintains the temporal ordering in which memory words are accessed. These initializations
represent an unavoidable one-off cost that does not recur per step of training, and ultimately has little effect on
training speed. For the remainder of the analysis we will concentrate on the space and time cost per training step.

A.2 Read

Recall the sparse read operation,

Fo=Y_y (s:)Mi(ss) . ©)

As K is chosen to be a fixed constant, it is clear we can compute (7) in O(1) time. During the backward pass,
we see the gradients are sparse with only K non-zero terms,

8~LR(i):{ M, (i) 2& ifi € {s1,52,...,5K}
owy

0 otherwise.

and

0L (i) = @f(i)g—é ifi € {s1,s2,...,8K}
OM; 0 otherwise.

where O is a vector of M zeros. Thus they can both be computed in constant time by skipping the computation
of zeros. Furthermore by using an efficient sparse matrix format to store these matrices and vectors, such as the
CSR, we can represent them using at most 3K values. Since the read word 7 and its respective error gradient is
the size of a single word in memory (M elements), the overall space complexity is O(1) per time step for the
read.

A.3 Write

Recall the write operation,

M+ M1 —E .+ Ay, , 3

where A, = w}” al is the add matrix, Ey = M,_1 ® Ry is the erase matrix, and R; = IY 17 is defined to be
the erase weight matrix. We chose the write weights to be an interpolation between the least recently accessed
location and the previously read locations,

wf = ar (dfs + (1 -1 . ©

10

For sparse reads where wi = @] is a sparse vector with /& non-zeros, the write weights w;" is also sparse with

K + 1 non-zeros: 1 for the least recenthy accessed location and K for the previously read locations. Thus the
sparse-dense outer product Ay = w;" a; can be performed in O(1) time as K is a fixed constant.

Since R; = IY17 can be represented as a sparse matrix with one single non-zero, the erase matrix E; can
also. As A¢ and E¢ are sparse matrices we can then add them component-wise to the dense M¢_1 in O(1)
time. By analogous arguments the backward pass can be computed in O(1) time and each sparse matrix can be
represented in O(1) space.

We avoid caching the modified memory, and thus duplicating it, by applying the write directly to the memory.
To restore its prior state during the backward pass, which is crucial to gradient calculations at earlier time
steps, we roll the memory it back by reverting the sparse modifications with an additional O(1) time overhead
(Supplementary Figure 5).

The location of the least recently accessed memory can be maintained in O(1) time by constructing a circular
linked list that tracks the indices of words in memory, and preserves a strict ordering of relative temporal access.
The first element in the ring is the least recently accessed word in memory, and the last element in the ring is
the most recently modified. We keep a “head” pointer to the first element in the ring. When a memory word is
randomly accessed, we can push its respective index to the back of the ring in O(1) time by redirecting a small
number of pointers. When we wish to pop the least recently accessed memory (and write to it) we move the
head to the next element in the ring in O(1) time.

Time ¢ Time ¢+ 1 M

Yt—1
Forwards

Backwards

Figure 5: A schematic of the memory efficient backpropagation through time. Each circle represents
an instance of the SAM core at a given time step. The grey box marks the dense memory. Each core
holds a reference to the single instance of the memory, and this is represented by the solid connecting
line above each core. We see during the forward pass, the memory’s contents are modified sparsely,
represented by the solid horizontal lines. Instead of caching the changing memory state, we store
only the sparse modifications — represented by the dashed white boxes. During the backward pass,
we “revert” the cached modifications to restore the memory to its prior state, which is crucial for
correct gradient calculations.

11

A.4 Content-based addressing

As discussed in Section 3.5 we can calculate the content-based attention, or read weights w;?, in O(log N) time
using an approximate nearest neighbor index that views the memory. We keep the ANN index synchronized
with the memory by passing it through the network as a non-differentiable member of the network’s state (so we
do not pass gradients for it), and we update the index upon each write or erase to memory in O(log N) time.
Maintaining and querying the ANN index represents the most expensive part of the network, which is reasonable
as content-based addressing is inherently expensive [14, 1].

For the backward pass computation, specifically calculating g—qﬁ and aaT/th with respect to w¥, we can once

again compute these using sparse matrix operations in O(1) time. This is because the K non-zero locations
have been determined during the forward pass.

Thus to conclude, SAM consumes in total O(1) space for both the forward and backward step during training,
O(log N) time per forward step, and O(1) per backward step.

B Control flow

Y, M

t

: o)
External

Memory

Figure 6: Schematic showing how the controller interfaces with the external memory in our experi-
ments. The controller (LSTM) output A, is used (through a linear projection, p;) to read and write to
the memory. The result of the read operation r; is combined with h; to produce output y;, as well as
being feed into the controller at the next timestep (r;—1).

C Training details

Here we provide additional details on the training regime used for our experiments used in Figure 2.

To avoid bias in our results, we chose the learning rate that worked best for DAM (and not SAM). We tried
learning rates {1075, 5 x 107°,107°,5 x 10~%,107*} and found that DAM trained best with 10~°. We also
tried values of K {4, 8,16} and found no significant difference in performance across the values. We used 100
hidden units for the LSTM (including the controller LSTMs), a minibatch of 8, 8 asynchronous workers to speed
up training, and RMSProp [19] to optimize the controller. We used 4 memory access heads and configured
SAM to read from only K = 4 locations per head.

D Sparse Differentiable Neural Computer

Recently [8] proposed a novel MANN the Differentiable Neural Computer (DNC). The two innovations proposed
by this model are a new approach to tracking memory freeness (dynamic memory allocation) and a mechanism for
associating memories together (temporal memory linkage). We demonstrate here that the approaches enumerated
in the paper can be adapted to new models by outlining a sparse version of this model, the Sparse Differentiable
Neural Computer (SDNC), which learns with similar data efficiency while retaining the computational advantages
of sparsity.

D.1 Architecture

For brevity, we will only explain the sparse implementations of these two items, for the full model details refer
to the original paper. The mechanism for sparse memory reads and writes was implemented identically to SAM.

12

It is possible to implement a scalable version of the dynamic memory allocation system of the DNC avoiding any
O(N) operations by using a heap. However, because it is practical to run the SDNC with many more memory
words, reusing memory is less crucial so we did not implement this and used the same usage tracking as in SAM.

The temporal memory linkage in the DNC is a system for associating and recalling memory locations which were
written in a temporal order, for exa Igllrjl\g storing and retrieving a list. In the DNC this is done by maintaining a
temporal linkage matrix L; € [0, 1] L[4, j] represents the degree to which location ¢ was written to after
location j. This matrix is updated by tracking the precedence weighting p:, where p:(7) represents the degree to
which location ¢ was written to.

po=20 (10)
1_Zwt) Pe— 1+ w)

The memory linkage is updated according to the following recurrence

Lo=0 (12)

(o0 i=j
Lt(”)—{ (1wl (i) — wl G)Le1(ird) + 0l ()per(G) i # (13)
(14)

The temporal linkage L; can be used to compute read weights following the temporal links either forward

fi = Lewi_y 15)
or backward

bi = Liwi, (16)
The read head then uses a 3-way softmax to select between a content-based read or following the forward or

backward weighting.

Naively, the link matrix requires O(N?) memory and computation although [8] proposes a method to reduce the
computational cost to O(N log N) and O(NN) memory cost.

In order to maintain the scaling properties of the SAM, we wish to avoid any computational dependence on V.
We do this by maintaining two sparse matrices N, P, € [0, 1]N XL} that approximate L; and L respectively.
We store these matrices in Compressed Sparse Row format. They are defined by the following updates:

No =0 a7
Py=0 (18)
Ne(i, 5) = (1= wi" (8)) Ne<1 (6, §) + w]" (i) pe-1(5) (19)
Py(i,j) = (1= wi" () Peoa (i, §) + wi" (5) pe-1(3) (20)

Additionally, p; is, as with the other weight vectors maintained as a sparse vector with at most K, non-zero
entries. This means that the outer product of w;p7_; has at most K% non-zero entries. In addition to the updates
specified above, we also constrain each row of the matrices N and P to have at most Kr, non-zero entries —
this constraint can be applied in O(K?) because at most K1, rows change in the matrix.

Once these matrices are applied the read weights following the temporal links can be computed similar to before:

ftr = Ntw:—l (21)
b: = thLl (22)

Note, the number of locations we read from, K, does not have to equal the number of outward and inward links
we preserve, K. We typically choose K1, = 8 as this is still very fast to compute (100us in total to calculate
N, Pe, pe, fi,b; on asingle CPU thread) and we see no learning benefit with larger K,. In order to compute
the gradients, N; and P need to be stored. This could be done by maintaining a sparse record of the updates
applied and reversing them, similar to that performed with the memory as described in Section 3.4. However, for
implementation simplicity we did not pass gradients through the temporal linkage matrices.

D.2 Results

We benchmarked the speed and memory performance of the SDNC versus a naive DNC implementation (details
of setup in Supplementary E). The results are displayed in Figure 7. Here, the computational benefits of sparsity
are more pronounced due to the expensive (quadratic time and space) temporal transition table operations in the
DNC. We were only able to run comparative benchmarks up to N = 2048, as the DNC quickly exceeded the
machine’s physical memory for larger values; however even at this modest memory size we see a speed increase

13

of ~ 440x and physical memory reduction of ~ 240x. Note, unlike the SAM memory benchmark in Section
4 we plot the total memory consumption, i.e. the memory overhead of the initial start state plus the memory
overhead of unrolling the core over a sequence. This is because the SDNC and DNC do not have identical start
states. The sparse temporal transition matrices N, Pg € [0, 1] * MK} consume much less memory than the

corresponding Lo € [0,1]V " in the DNC.

10GiB
5.5GiB
—— SDNC 2.55s —— SDNC
— 1| — DNC 1| — DNC
) i
g
Iy =
o
E 10 £ 100MiB
[5]
= = 23MiB
= 10! 10MiB //
4.42ms
e O —

10° 1MiB —
! 10? 10° 10*

10 10° 10° 10* 10
Number of memory slots (N) Number of memory slots (N)

(a) b)

Figure 7: Performance benchmarks between the DNC and SDNC for small to medium memory sizes.
Here the SDNC uses a linear KNN. (a) Wall-clock time of a single forward and backward pass. (b)
Total memory usage (including initialization) when trained over sequence of 10 time steps.

In order to compare the models on an interesting task we ran the DNC and SDNC on the Babi task (this task is
described more fully in the main text). The results are described in Supplementary G and demonstrate the SDNC
is capable of learning competitively. In particular, it achieves the best report result on the Babi task.

E Benchmarking details

Each model contained an LSTM controller with 100 hidden units, an external memory containing /N slots of
memory, with word size 32 and 4 access heads. For speed benchmarks, a minibatch size of 8 was used to ensure
fair comparison - as many dense operations (e.g. matrix multiplication) can be batched efficiently. For memory

benchmarks, the minibatch size was set to 1.

We used Torch7 [5] to implement SAM, DAM, NTM, DNC and SDNC. Eigen v3 [9] was used for the fast sparse
tensor operations, using the provided CSC and CSR formats. All benchmarks were run on a Linux desktop
running Ubuntu 14.04.1 with 32GiB of RAM and an Intel Xeon E5-1650 3.20GHz processor with power scaling

disabled.

F Generalization on associative recall

—— SAM Linear
SAM ANN

N WA
oS o O

Loss (bits)

A
10" 10° 10° 10° 10
Difficulty Level

—
oS O

5

Figure 8: We tested the generalization of SAM on the associative recall task. We train each model
up to a difficulty level, which corresponds to the task’s sequence length, of 10, 000, and evaluate on
longer sequences. The SAM models (with and without ANN) are able to perform much better than

chance (48 bits) on sequences of length 200, 000.

14

G Babi results

See the main text for a description of the Babi task and its relevance. Here we report the best and mean results
for all of the models on this task.

The task was encoded using straightforward 1-hot word encodings for both the input and output. We trained a
single model on all of the tasks, and used the 10,000 examples per task version of the training set (a small subset
of which we used as a validation set for selecting the best run and hyperparameters). Previous work has reported
best results (Supplementary table 1), which with only 15 runs is a noisy comparison, so we additionally report
the mean and variance for all runs with the best selected hyperparameters (Supplementary table 2).

15

(N1 S1ONWRIA) pue-03-pua Surured] ‘yoeordde 1o s spqeredwod A[oaIIp a1ow ‘pue (S JIONWIA)
SOLIOWAW JO UOISIAIOdNS YIIm [JOq ‘SI0MIAU ATOWSUI (IIM UOSLIEdUIOd Papnour oA, AN [SB) T INq [[& SUIAJOS ‘S$900e ATowaw pasiazadnsun yirm se) SIY) Uo J[NSax
payodar 1s9q 9y} saAdIyoR DNS 'SISS00e A1owaw J1ay) Jo uolsiatadns Aue jnoyiim ‘sysel 9y Jo g Inq (e ssed NV pue INVS yog "seoinosar Jururen [enbo
Arorewrrxoxdde poATedar s)se) [y "Sysel [[e uo Ajurof pajse) pue pauren sem [opowl Y, “sel Iqeq Y} uo (J3s UOHePI[eA AQ USOUD) UNI 1S9q Y} JOJ SINSAIISAT, 1] 9[qeL,

9 e €1 e e I id LT (%6 < "119) SYsB) paIeq
W) (S QLT Iy €'e 6°C ¢S 0'8¢ (%) Joxrg UedN
00 6'T¢ (A 00 10 00 10 6’1 suoneAnow s Judde (g
L°GL 1'¢ 8'¢ 9°¢C QT ¢l 1Y 7'9L Surpuy yred 6]
0’8 9'V¢ 9'¢ 1 €0 T°0 81T 7’8 Suruosear azs g
81V 00 L6¢ 091 09 0 L1¢ L1 Suruosea1 reuonisod :/ |
¢o 00 ¢'cS T°¢s 8¢S | 6'1G ¢'es uononpurt oIseq 9|
¢0 00 ¥'4¢ 00 00 00 10 £'67 uononpap JIseq G|
00 00 vy 1 4 8¢ T°0 ¢0 1°9¢ Suruosear awn 4|
00 00 0¢C 00 00 10 70 €9 Q0UQ19J2100 punodwod ¢
10 00 97 10 00 10 10 GG uonounfuod :g|
00 00 q¢'C 00 00 00 00 06 0UQIRJI0D JIseq [|
g0 00 9°L ¢0 00 ¢o 90 0've 93ps[mouy AIuyapur (|
00 00 0L 10 00 00 10 ¢'8T uonesau ddus @6
L'C 01 ¢9 70 00 ¢0 0'¢ 6°0¢ SJ9S/SISI] 8
99 S 0°cT 6'T 70 ¢o €'q SR Sununods :/,
10 00 9'6 00 00 00 00 9°LT suonsanb ouysak :9
19 €0 6T L0 70 €0 LT g'e suone[aI JUSWNSIR ¢ ¢
00 00 00 00 00 00 00 L0 SUOne[aI Juawnsie g iy
89 00 0°67 g0 ¢1 L0 g6 L'€G syoey Sunaoddns ¢ :¢
0T 00 €99 ¢0 0 90 e €28 syoey Sunaoddns 7 g
00 00 791 00 00 00 00 8'8¢ 108y Suntoddns | :1

ONN | SNIN | NLN | INVS | INVA | DNAS | ONd | INLST

16

‘sun G| Wolj pajeIauad are sonsnels ‘(39S uoneprea 9yl Surpiodde ussoyd) sieroweredrodAy Jo 198 159q Y} J0J SIOII 1S9} JO QOUBLIBA PUB UBSJA] 7 9[qRL

LT+G46I VEFTL VeEFTG I9T+T17 GC+C8 | 80FTLI (%6 < '119) syse) pafre]
LEF99¢ | 6SFATT P9F LS GCcF¥9 LY F8CT | S0FL8C (%) 1olrg ues|y

€0F07¢ 00F00 G0FT0 0'0F 00 ¢OFT0 VOFLT SUONEATIOW S JUdTE ()T
9VCF+809 | 8LCFLEE | VGG F+0€C | ¢VC+80E | 066F 6TV | ETFTVTL Surpuy yred ;6]

CTF0¢ 8TF0¢€ LTF8T T'TF9T gTF¢9€ 6'TF€L Suruosear azIs :g|
ETF+TO0V | 98+F7%0C | €0TF69T | 6GFTCI Ve+LLe | STF80OV Suruoseal feuonisod :/ |
1°¢+ 8¢S CTFI9€S | OTF8ES | €TF0€CS | 6TFOPS | V'TF8ES uononpur o1seq 9
69+0¢y | 8CETF+GG | L6TFCLT | €0TF9€ | 9GTFETE | ETF T8RP uononpsp d1seq ¢
T'¢+9%¢S | 9¢TF0GT | OSGTFGTT 6'CF+9G¢ 76F+90T | 9TF0LS Suruosear own |

€e+89 Ve+el ¢c+90 T0+T0 GCc+aT V'IF 16 | 9ua19jaI00 punodwiod :¢|
68 F LTT 6'LF6¢C VI9F T €0+¢c0 9TF+GT ETF0L uondunfuos :z|
¥'6Fcal 6'LF9%C §GeFal 0'0F 00 0EF60 | €EF6GT 9JUAIRJaI0d OIseq <[|
69 +9'G¢ ¢6F LG I'8+7¢€ ¢0F€0 6¢F+ce€ | 9TF0¢EE a3poymou Auyapur (O
VeEFILI L'9F8E g¢FT7c T0F00 ¢GF0€ GTFV6I uonesou ofdus :6
6°¢ + 98T ¢9I9F+9¢€ Va+Le V0O+G60 Iv+0¥ | VI+60¢ S$19S/S1S1] °Q
GETF LSBT 99F €L T9FG67 6'0F9T 6'GF €L T'TF¢81 Supunoo :/,
LCF 981 L'9F6€ €eF+61 ¢O0F+T10 06+8¢ | OT+88I suonsanb ouysak :9
CTFL¢C G0FO0T 7OFO0T €0F60 €0FET 60F67 suone[ar Juawn3Ie ¢ g
€0+7v0 ¢0+¢o0 T0+T1T0 T0+T1T0 T0F+T0 VO+L0 SUONE[aI JudWNSIe T
ETFV6V | OTcF+VIE | VATFEGT | LITFV6 | 8GTFL6C | V'IFO0€ES sjoej Sunsoddns ¢ :¢
ETF+0LG | TGCF+60€ | €6TFTCT | 9VIFTL | OTc+6€C | CTFTLG sjoey Sunsoddns 7 :7
ECTFGTE | 8CIFLTV | LOTF6C 0'0F+00 96¢F¢Cc ¢'TF+60€ 1oey Suntoddns 1 i

ININ NVS Wvd ONdS ONd INLST

17

	Introduction
	Background
	Attention and content-based addressing
	Memory Networks
	Neural Turing Machine

	Architecture
	Read
	Write
	Controller
	Efficient backpropagation through time
	Approximate nearest neighbors

	Results
	Speed and memory benchmarks
	Learning with sparse memory access
	Scaling with a curriculum
	Question answering on the Babi tasks
	Learning on real world data

	Discussion
	Time and space complexity
	Initialization
	Read
	Write
	Content-based addressing

	Control flow
	Training details
	Sparse Differentiable Neural Computer
	Architecture
	Results

	Benchmarking details
	Generalization on associative recall
	Babi results

