
A Numerical Simulations

In this section we present simulation results for performance of gradient descent over f(U). We
consider measurements yi = hAi,X

⇤i, where Ai are i.i.d Gaussian with each entry distributed as
N (0, 1/m). X⇤ is a 100⇥ 100 rank r random p.s.d matrix with kX⇤kF = 1. r is varied from 1 to
20 in the experiments.

We consider both standard gradient descent and noisy gradient descent (4) with step size 1

kUk2
. We

add noise of magnitude 1e� 4 for the noisy gradient updates. Each method is run until convergence
(max of 200 iterations). Let the output of gradient descent be b

U . A run of this experiment is
considered success if the final error k bU b

U

> �X

⇤kF  1e� 2. Each experiment is repeated for 20
times and average probability of success is computed.

We repeat the above procedure starting from both random initialization and SVD initialization. For
SVD initialization, the initial point is set to be the rank r approximation of

Pm
i=1

yiAi as suggested
by Jain et al. [15]. In figure 2 we have the plots for the cases discussed above. All of them have phase
transition around number of samples m = 2 · n · r. This is in agreement with the results in Section 3.
f(U) has no local minima once m � 2 · n · r and random initialization has same performance as
SVD initialization.

In figure 3, the left two plots show error k b
U

b
U

>�X

⇤kF/kX⇤kF behaves with varying rank and number
of samples for random and SVD initializations. The rightmost plot shows the phase transition for
rank 10 case for all the methods. Again we notice no significant difference between these methods.
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Figure 2: This figure plots the success probability for increasing number of samples m and various
values of rank r. The plots on the top are for gradient descent, left for random initialization and
the right for SVD initialization. Similarly the bottom plots are for the noisy gradient descent. We
notice no significant difference between all these settings. They all have phase transition around
m = 2 · n · r.
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Figure 3: This figure plots the error kbU b
U

>�X

⇤kF/kX⇤kF for increasing number of samples m. The left
plot is for gradient descent with random initialization, center plot corresponds to SVD initialization.
Again we notice no difference in error for these two settings. The rightmost figure shows phase
transition of low rank recovery for all the different settings when X

⇤ is rank 10.

B Proof for the exact case

Lemma (4.3). Let U be a first order critical point of f(U). Then for any r ⇥ r orthonormal matrix
R and �j = �eje

>
j ( � = U �U

⇤R),
rX

j=1

vec (�j)
> ⇥

r2f(U)

⇤
vec (�j) =

mX

i=1

(

rX

j=1

4

⌦
Ai,U�

>
j

↵
2 � 2

D
Ai,UU

> �U

⇤
U

⇤>
E
2

),

Proof of Lemma 4.3. For any matrix Z, taking directional second derivative of the function f(U)

with respect to Z we get:

vec (Z)

> ⇥
r2f(U)

⇤
vec (Z) = vec (Z)

>
lim

t!0


rf (U + t(Z))�rf(U)

t

�

= 2

mX

i=1


2

⌦
Ai,UZ

>↵2
+

D
Ai,UU

> �U

⇤
U

⇤>
E ⌦

Ai,ZZ

>↵
�

Setting Z = �j = (U �U

⇤R)eje
>
j and using the first order optimality condition on U , we get,

vec
�
(U �U

⇤R)eje
>
j

�> ⇥
r2f(U)

⇤
vec

�
(U �U

⇤R)eje
>
j

�

=

mX

i=1

4

⌦
Ai,U�

>
j

↵
2

+ 2

D
Ai,UU

> �U

⇤
U

⇤>
E ⌦

Ai,�j�
>
j

↵

(i)
=

mX

i=1

4

⌦
Ai,Ueje

>
j �

>
j

↵
2

+ 2

D
Ai,UU

> �U

⇤
U

⇤>
E ⌦

Ai,U
⇤eje

>
j (U

⇤eje
>
j )

>↵

(ii)
=

mX

i=1

4

⌦
Ai,Ueje

>
j �

>
j

↵
2 � 2

D
Ai,UU

> �U

⇤
U

⇤>
ED

Ai,Ueje
>
j U

> �U

⇤eje
>
j U

⇤>
E
.

(i) and (ii) follow from the first order optimality condition (6),
mX

i=1

⌦
Ai,UU

>↵
Ueje

>
j =

mX

i=1

D
Ai,U

⇤
U

⇤>
E
Ueje

>
j ,

for j = 1 · · · r. Finally taking sum over j from 1 to r gives the result.

Lemma (4.4). Let U and U

⇤ be two n⇥ r matrices, and Q is an orthonormal matrix that spans the
column space of U . Then there exists an r ⇥ r orthonormal matrix R such that for any first order
stationary point U of f(U), the following holds:

rX

j=1

kUeje
>
j (U �U

⇤R)

>k2F  1

8

kUU

> �U

⇤
U

⇤>k2F +

34

8

k(UU

> �U

⇤
U

⇤>
)QQ>k2F .
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Proof of Lemma 4.4. To prove this we will expand terms on the both sides in terms of U and � =

U�U

⇤R and then compare. First notice the following properties of R that minimizes kU⇤R�UkF .
Let LSP> be the SVD of U⇤>

U . Then, R = LP>. Hence, R>
U

⇤>
U = PSP>

= U

>
U

⇤R is a
PSD matrix. This implies, U>

� = U

>
U �U

>
U

⇤R = U

>
U �R>

U

⇤>
U = �

>
U .

Let columns of U be orthogonal, else we can multiply U by an orthonormal matrix and UR will
satisfy this. Since UR is also local minimum, and UU

>
= URR>

U

>, results for UR will also hold
for U . Let Q be the orthonormal matrix that spans the column space of U and Q?Q

>
? = I �QQ>.

Similarly let Qj span Ueje
>
j . Note that Qj are orthonormal since columns of U are orthogonal.

Hence,
k(U �U

⇤R)eje
>
j U

>k2F = kUeje
>
j U

> �QjQ
>
j U

⇤Reje
>
j U

> �Qj?Q
>
j?U

⇤Reje
>
j U

>k2F
= kUeje

>
j U

> �QjQ
>
j U

⇤Reje
>
j U

>k2F + kQj?Q
>
j?U

⇤Reje
>
j U

>k2F


kUeje

>
j U

> �QjQ
>
j U

⇤Reje
>
j (QjQ

>
j U

⇤R)

>k2F
2(

p
2� 1)

+ kQj?Q
>
j?U

⇤Reje
>
j U

>k2F . (9)

The last inequality follows from Lemma F.1 and the fact that e>j U>
U

⇤Rej � 0, 8j as U>
U

⇤R
is PSD. Now we will bound the second term in the above equation. The main idea here is to split
this term into error between the subspaces of X,X⇤ and then error between their singular values,
since both of them are bounded by distance kX �X

⇤QQ>kF . Let Q⇤ be an orthonormal matrix
that spans the column space of X⇤. Also let X = Q⌃

2

UQ
>.

kQj?Q
>
j?U

⇤Reje
>
j U

>k2F = trace(e>j R
>
U

⇤>Qj?Q
>
j?U

⇤Reje
>
j U

>
Uej)

= trace

⇣
e>j R

>
U

⇤>Qj?Q
>
j?U

⇤Rej

h
e>j U

>
Uej � e>j R

>
U

⇤>QjQ
>
j QjQ

>
j U

⇤Rej

+e>j R
>
U

⇤>QjQ
>
j U

⇤Rej

i⌘

(i)
 1

8

(e>j R
>
U

⇤>Qj?Q
>
j?U

⇤Rej)
2

| {z }
term1

+2 (e>j U
>
Uej � e>j R

>
U

⇤>QjQ
>
j U

⇤Rej)
2

| {z }
term2

+ (Qj?Q
>
j?U

⇤Reje
>
j (QjQ

>
j U

⇤R)

>
)

2

| {z }
term3

. (10)

where (i) follows from Cauchy-Schwarz inequality.

We will use the following inequality through the rest of the proof. So we state it first for any matrix
T .

rX

j=1

(e>j T
>
T ej)

2 
rX

j=1

rX

k=1

(e>j T
>
T ek)

2

=

rX

j=1

e>j T
>

"
rX

k=1

T eke
>
k T

>

#
T ej =

rX

j=1

e>j T
>
TT

>
T ej

= kT>
T k2F = kTT

>k2F . (11)

Now we will bound each of the terms in equation .
Term 1: Let, T = Qj?Q

>
j?U

⇤R. Then applying inequaltiy from equation (11) we get,
rX

j=1

(e>j R
>
U

⇤>Qj?Q
>
j?U

⇤Rej)
2

=

rX

j=1

(e>j T
>
T ej)

2

 kT>
T k2F = kR>

U

⇤>Q?Q
>
?U

⇤Rk2F . (12)
Further,

kR>
U

⇤>Q?Q
>
?U

⇤Rk2F = trace(U

⇤>Q?Q
>
?U

⇤
U

⇤>Q?Q
>
?U

⇤
)

= trace(Q?Q
>
?X

⇤Q?Q
>
?X

⇤
)

 kQ?Q
>
?X

⇤k2F  kX �X

⇤k2F . (13)
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Term 2:

(e>j U
>
Uej � e>j R

>
U

⇤>QjQ
>
j U

⇤Rej)
2

= (e>j U
>
Uej)

2

+ (e>j R
>
U

⇤>QjQ
>
j U

⇤Rej)
2 � 2e>j U

>
Ueje

>
j R

>
U

⇤>QjQ
>
j U

⇤Rej

= kUeje
>
j U

>k2F + kQjQ
>
j U

⇤Reje
>
j R

>
U

⇤>QjQ
>
j k2F � 2 trace(e>j U

>
Ueje

>
j R

>
U

⇤>QjQ
>
j U

⇤Rej)

(i)
= kUeje

>
j U

>k2F + kQjQ
>
j U

⇤Reje
>
j R

>
U

⇤>QjQ
>
j k2F � 2 trace(e>j R

>
U

⇤>
Ueje

>
j U

>
U

⇤Rej)

= kUeje
>
j U

> �QjQ
>
j U

⇤Reje
>
j R

>
U

⇤>QjQ
>
j k2F . (14)

(i) follows from e>j U
>
Uej = kUjk2F and kUjk2FQjQ

>
j = Ueje

>
j U

>. Now from orthogonality
of Qj we have,

rX

j=1

kUeje
>
j U

>�QjQ
>
j U

⇤Reje
>
j R

>
U

⇤>QjQ
>
j k2F  kUU

>�QQ>
U

⇤
U

⇤>QQ>k2F . (15)

Term 3: Finally we bound the last term in equation (10) similar to the first term, which gives,
rX

j=1

(Qj?Q
>
j?U

⇤Reje
>
j (QjQ

>
j U

⇤R)

>
)

2  kUU

> �U

⇤
U

⇤>QQ>k2F .

Substituting the above equations (12), (13), (14) and (15) in (9) and (10) gives the result.

C Proof for the Noisy Case

In this section we present the proof characterizing the local minima of problem (2). Recall y =

A(X

⇤
) +w, where X

⇤ is a rank-r matrix and w is i.i.d. N (0,�2

w).

We consider local optimum that satisfies first and second order optimality conditions of problem (2).
In particular U satisfies rf(U) = 0 and z>r2f(U)z � 0 for any z 2 Rn·r. Now we will see how
these two conditions constrain the error UU

> �U

⇤
U

⇤>.

C.1 First order optimality

First we will consider the first order condition, rf(U) = 0. For any stationary point U this implies

X

i

D
Ai,UU

> �U

⇤
U

⇤>
E
AiU =

mX

i=1

wiAiU . (16)

Now using the isometry property of Ai gives us the following result.
Lemma C.1. [First order condition] For any first order stationary point U of f(U), and A satisfying
the (4r, �)-RIP (3), the following holds:

k(UU

> �U

⇤
U

⇤>
)QQ>kF  �

���UU

> �U

⇤
U

⇤>
���
F
+ 2

r
(1 + �) log(n)

m
�w,

w.p. � 1� 1

n2 , where Q is an orthonormal matrix that spans the column space of U .

This lemma states that any stationary point of f(U) is close to a global optimum U

⇤ in the subspace
spanned by columns of U . Notice that the error along the orthogonal direction kX⇤Q?Q

>
?kF can

still be large making the distance between X and X

⇤ arbitrarily big.

Proof of Lemma C.1. Let U = QR, for some orthonormal Q. Consider any matrix of the form
ZQR†>. The first order optimality condition then implies,

mX

i=1

D
Ai,UU

> �U

⇤
U

⇤>
E ⌦

Ai,UR†Q>
Z

>↵
=

mX

i=1

wiAiUR†Q>
Z

>.

13



The above equation together with Restricted Isometry Property(equation (5)) gives us the following
inequality:

���
D
UU

> �U

⇤
U

⇤>, QQ>
Z

>
E���  �

���UU

> �U

⇤
U

⇤>
���
F

��QQ>
Z

>��
F
+2

r
(1 + �) log(n)

m
�wkZ>kF ,

by Cauchy Schwarz inequality and Lemma F.2. Note that for any matrix A,
⌦
A, QQ>

Z

↵
=⌦

AQQ>,Z
↵
. Furthermore, for any matrix A, sup{Z:kZkF1} hA,Zi = kAkF . Hence the above

inequality implies the lemma statement.

C.2 Second order optimality

We will now consider the second order condition to show that the error along Q?Q
>
? is indeed

bounded well. Let r2f(U) be the hessian of the objective function. Note that this is an n · r ⇥ n · r
matrix. Fortunately for our result we need to only evaluate the Hessian along the direction vec(U �
U

⇤R) for some orthonormal matrix R.

Lemma C.2. [Hessian computation] Let U be a first order critical point of f(U). Then for any
r ⇥ r orthonormal matrix R and � = U �U

⇤R,

rX

j=1

vec (�j)
> ⇥

r2f(U)

⇤
vec (�j)

=

mX

i=1

0

@
rX

j=1

4

⌦
Ai,U�

>
j

↵
2 � 2

D
Ai,UU

> �U

⇤
U

⇤>
E
2

� 2wi hAi,X �X

⇤i

1

A ,

Proof of Lemma C.2. For any matrix Z, taking directional second derivative of the function f(U)

with respect to Z we get:

vec (Z)

> ⇥
r2f(U)

⇤
vec (Z) = vec (Z)

>
lim

t!0


rf (U + t(Z))�rf(U)

t

�

= 2

mX

i=1


2

⌦
Ai,UZ

>↵2
+

⇣D
Ai,UU

> �U

⇤
U

⇤>
E
� wi

⌘ ⌦
Ai,ZZ

>↵
�

Setting Z = �j = (U �U

⇤R)eje
>
j and using the first order optimality condition on U , we get,

vec
�
(U �U

⇤R)eje
>
j

�> ⇥
r2f(U)

⇤
vec

�
(U �U

⇤R)eje
>
j

�

=

mX

i=1

4

⌦
Ai,U�

>
j

↵
2

+ 2(

D
Ai,UU

> �U

⇤
U

⇤>
E
� wi)

⌦
Ai,�j�

>
j

↵

=

mX

i=1

4

⌦
Ai,Ueje

>
j �

>
j

↵
2

+ 2(

D
Ai,UU

> �U

⇤
U

⇤>
E
� wi)

⌦
Ai,U

⇤eje
>
j (U

⇤eje
>
j )

>↵

=

mX

i=1

4

⌦
Ai,Ueje

>
j �

>
j

↵
2 � 2

D
Ai,UU

> �U

⇤
U

⇤>
ED

Ai,Ueje
>
j U

> �U

⇤eje
>
j U

⇤>
E

� 2wi

D
Ai,Ueje

>
j U

> �U

⇤eje
>
j U

⇤>
E
. (17)

where the last equality is again by the first order optimality condition (16).

Hence from second order optimality of U we get,
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Corollary C.1. [Second order optimality] Let U be a local minimum of f(U) . For any r ⇥ r
orthonormal matrix R, w.p. � 1� 1

n2 ,

1

2

mX

i=1

D
Ai,UU

> �U

⇤
U

⇤>
E
2


mX

i=1

rX

j=1

⌦
Ai,U�

>
j

↵
2

+

p
log(n)�wkA(X �X

⇤
)k

2


mX

i=1

rX

j=1

⌦
Ai,U�

>
j

↵
2

+ 5 log(n)�2

w +

1

20

mX

i=1

hAi,X �X

⇤i2

Further for A satisfying (2r, �) -RIP (equation (3)) we have,

1� �

2(1 + �)
kUU

> �U

⇤
U

⇤>k2F 
rX

j=1

kU�

>
j k2F +

1

20

kX �X

⇤k2F +

5 log(n)

m(1 + �)
�2

w. (18)

Hence from the above optimality conditions we get the proof of Theorem 4.1.

Proof of Theorem 3.1. Assuming UU

> 6= U

⇤
U

⇤>, from Lemma 4.4 and Corollary C.1 we get,
with probability � 1� 2

n2 ,
✓

1� �

2(1 + �)

◆
kUU

> �U

⇤
U

⇤>k2F

 1

8

kX �X

⇤k2F +

34

8

kX �X

⇤QQ>k2F +

1

20

kX �X

⇤k2F +

5 log(n)

m(1 + �)
�2

w

(i)


✓
1

8

+

1

20

◆
kX �X

⇤k2F +

34

8

✓
2�2kX �X

⇤k2F + 8

(1 + �) log(n)

m
�2

w

◆
+

5 log(n)

m(1 + �)
�2

w.

(i) follows from Lemma C.1. The above inequality implies,

✓
1� �

2(1 + �)
� 1

8

� 1

20

� 34

4

�2
◆
kUU

> �U

⇤
U

⇤>k2F  34

(1 + �) log(n)

m
�2

w +

5 log(n)

m(1 + �)
�2

w.

If �  1

10

, the above inequality reduces to kUU

> �U

⇤
U

⇤>kF  c
q

log(n)
m �w, for some constant

c  17, w.p � 1� 2

n2 .

D Proof for the High Rank Case

In this section we will present the proof for the inexact case, where rank(X

⇤
) � r. Recall that

measurements are y = A(X

⇤
).

Let SVD of X⇤ be Q⇤
⌃

⇤Q⇤>. With slight abuse of notation we use X

⇤
jr+1:(j+1)r to denote the jth

rank r block Q⇤
jr+1:(j+1)r⌃

⇤
jr+1:(j+1)rQ

⇤
jr+1:(j+1)r

>, where Q⇤
jr+1:(j+1)r denotes the restriction of

Q to columns jr + 1 to (j + 1)r.

D.1 First order optimality

First we will consider the first order condition, rf(U) = 0. For any stationary point U this implies
X

i

D
Ai,UU

> �U

⇤
U

⇤>
E
AiU = 0. (19)

Now using the isometry property of Ai gives us the following result.
Lemma D.1. [First order condition] For any first order stationary point U of f(U), and {Ai}
satisfying the (4r, �)-RIP (3), the following holds:

kX �QQ>
X

⇤
r

kF  � kX �X

⇤
r

kF + k(X⇤ �X

⇤
r

)QQ>kF + �kX⇤ �X

⇤
r

k⇤.
where Q is an orthonormal matrix that spans the column space of U .
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This lemma states that any stationary point of f(U) is close to a global optimum U

⇤ in the subspace
spanned by columns of U . Notice that the error along the orthogonal direction kX⇤Q?Q

>
?kF can

still be large making the distance between X and X

⇤ arbitrarily big.

Proof of Lemma D.1. Let U = QR, for some orthonormal Q. Consider any matrix of the form
ZQR†>. The first order optimality condition then implies,

mX

i=1

hAi,X �X

⇤
r

i
⌦
Ai,UR†Q>

Z

>↵
=

mX

i=1

hAi,X
⇤ �X

⇤
r

i
⌦
Ai,UR†Q>

Z

>↵ .

Note that X �X

⇤
r

is atmost rank-2r. Hence, the above equation together with Restricted Isometry
Property(equation (5)) gives us the following inequality:

��⌦
X �X

⇤
r

, QQ>
Z

>↵���� kX �X

⇤
r

kF
��QQ>

Z

>��
F

 1

m

mX

i=1

*
Ai,

X

j

X

⇤
jr+1:(j+1)r

+
⌦
Ai, QQ>

Z

>↵


X

j

D
X

⇤
jr+1:(j+1)r, QQ>

Z

>
E
+ �kX⇤

jr+1:(j+1)rkF

 k(X⇤ �X

⇤
r

)QQ>kF + �kX⇤ �X

⇤
r

k⇤.

The last inequality follows from
P

j kX⇤
jr+1:(j+1)rkF  kX⇤ �X

⇤
r

k⇤. The above inequalities are
true for any Z.

Further note that for any matrix A,
⌦
A, QQ>

Z

↵
=

⌦
AQQ>,Z

↵
. Furthermore, for any matrix A,

sup{Z:kZkF1} hA,Zi = kAkF . Hence the above inequality implies the Lemma.

D.2 Second order optimality

We will now consider the second order condition to show that the error along Q?Q
>
? is indeed

bounded well. Let r2f(U) be the hessian of the objective function. Note that this is an n · r ⇥ n · r
matrix. Fortunately for our result we need to only evaluate the Hessian along the direction vec(U �
U

⇤R) for some orthonormal matrix R.

Lemma D.2. [Hessian computation] Let U be a first order critical point of f(U). Then for any
n⇥ r matrix Z,

vec (Z)

> ⇥
r2f(U)

⇤
vec (Z) =

mX

i=1

4

⌦
Ai,UZ

>↵2
+ 2

D
Ai,UU

> �U

⇤
U

⇤>
E ⌦

Ai,ZZ

>↵ ,

Further let U be a local minimum of f(U) and A satisfying (2r, �) -RIP (equation (3)). Then,

(1� 3�)kX �X

⇤
r

k2F  4(1 + �)

rX

j=1

kU�

>
j k2F + kX⇤ �X

⇤
r

k2F + �kX⇤ �X

⇤
r

k2⇤.

Proof of Lemma D.2. For any matrix Z, taking directional second derivative of the function f(U)

with respect to Z we get:

vec (Z)

> ⇥
r2f(U)

⇤
vec (Z) = vec (Z)

>
lim

t!0


rf (U + t(Z))�rf(U)

t

�

= 2

mX

i=1


2

⌦
Ai,UZ

>↵2
+

D
Ai,UU

> �U

⇤
U

⇤>
E ⌦

Ai,ZZ

>↵
�
.
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Setting Z = �j = (U �U

⇤R)eje
>
j we get,

rX

j=1

vec
�
(U �U

⇤R)eje
>
j

�> ⇥
r2f(U)

⇤
vec

�
(U �U

⇤R)eje
>
j

�

=

mX

i=1

(

rX

j=1

4

⌦
Ai,Ueje

>
j (U �U

⇤
r

R)

>↵2

+ 2

rX

j=1

D
Ai,UU

> �U

⇤
U

⇤>
E ⌦

Ai, (U �U

⇤
r

R)eje
>
j (U �U

⇤
r

R)

>↵
)

(i)
=

mX

i=1

(

rX

j=1

4

⌦
Ai,U�

>
j

↵
2

+ 2

D
Ai,UU

> �U

⇤
U

⇤>
E ⌦

Ai,U
⇤
r

R(U

⇤
r

R)

> �X

↵
).

(i) is by the first order optimality condition (19).

Hence from second order optimality of U we get,
mX

i=1

4

rX

j=1

⌦
Ai,U�

>
j

↵
2 �

mX

i=1

2 hAi,X �X

⇤i hAi,X �X

⇤
r

i . (20)

1

m

mX

i=1

hAi,X �X

⇤i hAi,X �X

⇤
r

i = 1

m

mX

i=1

hAi,X �X

⇤
r

i2 + hAi,X
⇤
r

�X

⇤i hAi,X �X

⇤
r

i

(i)
� (1� �)kX �X

⇤
r

k2F � 1

m

mX

i=1

0

@
X

j=1

D
Ai,X

⇤
jr+1:(j+1)r

E
1

A hAi,X �X

⇤
r

i

(ii)
� (1� �)kX �X

⇤
r

k2F �
X

j=1

D
X �X

⇤
r

,X⇤
jr+1:(j+1)r

E
� �

X

j=1

kX �X

⇤
r

kF kX⇤
jr+1:(j+1)rkF

= (1� �)kX �X

⇤
r

k2F � hX �X

⇤
r

,X⇤ �X

⇤
r

i � �
X

j=1

kX �X

⇤
r

kF kX⇤
jr+1:(j+1)rkF

� (1� �)kX �X

⇤
r

k2F � 1

2

kX �X

⇤
r

k2F � 1

2

kX⇤ �X

⇤
r

k2F � �
X

j=1

kX �X

⇤
r

kF kX⇤
jr+1:(j+1)rkF

(iii)
� (1� �)kX �X

⇤
r

k2F � 1

2

kX �X

⇤
r

k2F � 1

2

kX⇤ �X

⇤
r

k2F � �
1

2

�
kX �X

⇤
r

k2F + kX⇤ �X

⇤
r

k2⇤
�

=

1� 3�

2

kX �X

⇤
r

k2F � 1

2

kX⇤ �X

⇤
r

k2F � �

2

kX⇤ �X

⇤
r

k2⇤. (21)

(i) is from using RIP and splitting X

⇤ � X

⇤
r

into rank-r components X

⇤ � X

⇤
r

=Pn/r�1

j=1

X

⇤
jr+1:(j+1)r. (ii) follows from using RIP (5). (iii) follows from

P
j kX⇤

jr+1:(j+1)rkF 
kX⇤ �X

⇤
r

k⇤.

The Lemma now follows by combining equations (20), (21) and using RIP (3).

Hence from the above optimality conditions we get the proof of Theorem 3.4.

Proof of Theorem 3.4. Assuming UU

> 6= U

⇤
r

U

⇤
r

>, from Lemma 4.4 we know,
rX

j=1

kU�

>
j k2F  1

8

kUU

> �U

⇤
r

U

⇤
r

>k2F +

34

8

k(UU

> �U

⇤
r

U

⇤
r

>
)QQ>k2F , (22)

for some orthonormal R. Hence combining equations (22),with Lemma D.2 we get,
1� 3�

2

kX �X

⇤
r

k2F  1

2

kX⇤ �X

⇤
r

k2F +

�

2

kX⇤ �X

⇤
r

k2⇤

+ 2(1 + �)

✓
1

8

kX �X

⇤
r

k2F +

34

8

k(X �X

⇤
r

)QQ>k2F
◆
.
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This implies,
1� 7�

4

kX �X

⇤
r

k2F  1

2

kX⇤ �X

⇤
r

k2F +

�

2

kX⇤ �X

⇤
r

k2⇤ + (1 + �)
17

2

k(X �X

⇤
r

)QQ>k2F .
(23)

Finally from Lemma D.1 we know,

kX �X

⇤
r

QQ>k2F 
�
� kX �X

⇤
r

kF + k(X⇤ �X

⇤
r

)QQ>kF + �kX⇤ �X

⇤
r

k⇤
�
2

 11

10

k(X⇤ �X

⇤
r

)QQ>k2F + 22�2 kX �X

⇤
r

k2F + 22�2kX⇤ �X

⇤
r

k2⇤.
(24)

The last inequality follows from just using 2ab  a2 + b2.

Combining equations (23) and (24) gives,
✓
1� 7�

4

� 17 ⇤ 22(1 + �)�2

2

◆
kX �X

⇤
r

k2F  1

2

kX⇤ �X

⇤
r

k2F +

✓
�

2

+

17 ⇤ 22�2

2

◆
kX⇤ �X

⇤
r

k2⇤

+ (1 + �)
17 ⇤ 11
20

k(X⇤ �X

⇤
r

)QQ>k2F

Substituting � =

1

100

gives,

kX �X

⇤
r

k2F  5

2

kX⇤ �X

⇤
r

k2F + 12�kX⇤ �X

⇤
r

k2⇤ + 10k(X⇤ �X

⇤
r

)QQ>k2F .

 13kX⇤ �X

⇤
r

k2F + 12�kX⇤ �X

⇤
r

k2⇤.

E Proofs for Section 3

In this section we present the proofs for the strict saddle theorem (Theorem 3.2) and the convergence
guarantees (Theorem 3.3). The proofs use the Lemmas developed in Section 4 and the supporting
Lemmas from Section F.

Proof of Theorem 3.2. From Lemma 4.3 we know that
rX

j=1

vec (�j)
>

1

m
r2f(U)

�
vec (�j)

=

1

m

mX

i=1

(

rX

j=1

4

⌦
Ai,U�

>
j

↵
2 � 2

D
Ai,UU

> �U

⇤
U

⇤>
E
2

 4(1 + �)

rX

j=1

kU�

>
j k2F � 2(1� �)kUU

> �U

⇤
U

⇤>k2F , (25)

where the last inequality follows from the RIP (3). Now applying Lemma 4.4 in equation (25) we get,
rX

j=1

vec (�j)
>

1

m
r2f(U)

�
vec (�j)

 (1 + �)

✓
1

2

kUU

> �U

⇤
U

⇤>k2F + 17k(UU

> �U

⇤
U
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)QQ>k2F

◆
� 2(1� �)kUU

> �U

⇤
U

⇤>k2F

= 17(1 + �)k(UU

> �U

⇤
U

⇤>
)QQ>k2F � (3� 5�)

2

kUU

> �U

⇤
U

⇤>k2F
(i)



17(1 + �)�2 � (3� 5�)

2

� ���UU

> �U

⇤
U

⇤>
���
2

F

(ii)
 �1 ·

���UU

> �U

⇤
U

⇤>
���
2

F
. (26)
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(i) follows from Lemma 4.2. (ii) follows from �  1/10. Now notice that from lemma F.1

kX �X

⇤k2F � 2(

p
2� 1)k(U �U

⇤R)(U

⇤R)

>k2F
� 2(

p
2� 1)�r(X

⇤
)kU �U

⇤Rk2F . (27)

Finally notice that �j = �eje
>
j have orthogonal columns. Hence,

�
min


1

m
r2

(f(U ,V ))

�
 1

kU �U

⇤Rk2F

rX

j=1

vec (�j)
>

1

m
r2f(U)

�
vec (�j)

(i)
 �1

kU �U

⇤Rk2F

���UU

> �U

⇤
U

⇤>
���
2

F

(ii)
 �2(

p
2� 1)�r(X

⇤
)kU �U

⇤Rk2F
kU �U

⇤Rk2F

 �4

5

�r(X
⇤
).

(i) follows from equation (26). (ii) follows from equation (27).

Proof of Theorem 3.3. To prove this theorem we use Theorem 6 of Ge et al. [10]. We need to show
that f(U) satisfies, 1) strict saddle property, 2) local strong convexity, 3) f is bounded, smooth and
has Lipschitz Hessian.

The boundedness assumption easily follows from assuming we are optimizing over a bounded domain
b such that, kU⇤kF  b. Note that we can have any reasonable upper bound on the optimum and we
can easily estimate this from

P
i y

2

i which is � (1� �)kX⇤k2F for the noiseless case.

Finally all the calculations below are for scaled version of f(x) by 1

m . Note that this does not change
the number of iterations as both smoothness and strong convexity parameters are scaled by the same
constant.

Smoothness constant �: Recall that smoothness of f is bounded by maximum eigenvalue of Hessian
over the domain. Hence, � = max

Z:kZkF1

Z

>r2f(U)Z. We have computed this projection of
Hessian in Lemma C.2. Hence,

� = 2 max

Z:kZk2
F1

mX
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
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⌦
Ai,UZ

>↵2
+

D
Ai,UU

> �U

⇤
U

⇤>
E ⌦

Ai,ZZ
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�

(i)
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Z:kZk2
F1

2

�
2(1 + �)kUk2F kZk2F + (1 + �)kX �X

⇤kF kZZ

>kF
�

 4(1 + �)b2 + (1 + �)2b  5b2 + 3b.

(i) follows from the RIP.

⇢- Lipschitz Hessian: Now we will compute the Lipschitz constant of Hessian of f(U). We will first
bound the spectral norm of difference of Hessian at two points U , V in terms of kU � V kF along
orthogonal direction Zi and combine them to get bound on ⇢.. Given two n⇥ r matrices U ,V ,

⌦
r2f(U)�r2f(V ),ZZ

>↵

 2 max

Z:kZk2
F1

mX
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Ai,UZ

>↵2
+

D
Ai,UU
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⇤
U

⇤>
E ⌦

Ai,ZZ

>↵
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�
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⌦
Ai,V Z
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D
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⇤
U
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E ⌦

Ai,ZZ

>↵
�

 4(1 + �)(kUZ

>k2F � kV Z

>k2F ) + 2(1 + �)kUU

>
V V

>kF kZZ

>kF
 4(1 + �)kZk2F (kU � V k2F + 2kUkF kU � V kF ) + 2(1 + �)kUU

>
V V

>kF
 kZk2F kU � V kF (8(1 + �)b+ 4(1 + �)b)

= kZk2F kU � V kF (12(1 + �)b) . (28)

19



Hence, using the variational characterization of the Frobenius norm, the Hessian Lipschitz con-
stant is bounded by max {Zi}

P
i

⌦
r2f(U)�r2f(V ),ZiZ

>
i

↵
, where Zi are orthogonal withP

i kZik2F  1. Hence from equation (28) we get ⇢ = O(b).

Strict saddle property: So far we have shown regularity properties of f(U). Now we will discuss
the strict saddle property. Theorem 3.2 shows that �

min

⇥
r2

(f(U))

⇤
 �2

5

�r(X
⇤
). To use results

of [10] we need to show this property over an ✏ neighborhood of any saddle point U . For this
first recall by smoothness, krf(U) � rf(V )kF  �kU � V kF . Therefore rf(V )  ✏, when
kU � V kF  ✏

� . Further we know the Hessian spectral norm is ⇢ Lipschitz from equation (28).
Hence, for any direction Z,

Z

> �
r2

(f(V ))�r2

(f(U))

�
Z

>  ⇢kU � V kF  ⇢
✏

�
.

In particular choosing Z to be the projection direction, U �U

⇤ implies from Theorem 3.2,

Z

> �
r2

(f(V ))

�
Z

>  �2

5

�r(X
⇤
) + ⇢

✏

�
.

Hence for all V in the bowl of radius ✏ around U , where ✏  �
5⇢�r(X

⇤
),

�
min

⇥
r2

(f(V ))

⇤
 �1

5

�r(X
⇤
). (29)

Local strong convexity: Finally we need to show that the function is ↵ strongly convex in a neighbor-
hood ✓ around the optimum U

⇤R, for any orthonormal R. This easily follows from existing local
convergence results for this problem. For example, Lemma 6.1 of Bhojanapalli et al. [2] states that,
for kU �U

⇤RkF  �r(X
⇤
)

200�1(X
⇤
)

�r(U
⇤R),

hrf(U),U �U

⇤Ri � 2

3

⌘krf(U)k2F +

27

200

�r(U
⇤R)

2kU �U

⇤Rk2F . (30)

for � =

1

10

and some step size ⌘ / 1

kX⇤k2
. Hence f(U) is locally strong convex with ↵ =

27

200

�r(U
⇤R)

2 in the neighborhood of radius ✓ =

�r(X
⇤
)

200�1(X
⇤
)

�r(U
⇤R) around the optimum.

Substituting these parameters in the Theorem 6 of Ge et al. [10] gives the result.

F Supporting Lemmas

In this section we present the supporting results used in the proofs above.

The following lemma relates the error k(U � Y )U

>kF with kUU

> � Y Y

>kF under some
conditions on U and Y . This is a generalization of Lemma 5.4 in [26] and the proof follows
similarly.

Lemma F.1. Let U and Y be two n ⇥ r matrices. Further let U>
Y = Y

>
U be a PSD matrix.

Then,

k(U � Y )U

>k2F  1

2(

p
2� 1)

kUU

> � Y Y

>k2F .

Proof. To prove this we will expand terms on the both sides in terms of U and � = U �Y and then
compare.
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>k2F = k(U�
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>
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>
�

⌘

(iii)
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U

>
U � (2�

p
2)U

>
�

i
�

>
�

⌘

= 2 trace

⇣h
(

p
2� 1)U

>
U + (2�

p
2)U

>
Y

i
�

>
�

⌘

(iv)
� 2 trace

⇣
(

p
2� 1)U

>
U�

>
�

⌘
.

(i) follows from the following properties of trace: trace(AB) = trace(BA) and trace(A) =

trace(A

>
). (ii) follows from completing the squares. (iii) follows from trace(A

2

) � 0. (iv)
follows from the hypothesis of the lemma (U>

Y is PSD) and trace(AB) � 0 for PSD matrices A
and B.

Finally notice that k(U � Y )U

>k2F = trace(U

>
U�

>
�). This completes the proof.

We recall the standard Gaussian random variable concentration here.
Lemma F.2. Let wi ⇡ N (0,�w), then

mX

i=1

wixi  2

p
log(n)�wkxk,

with probability � 1� 1

n2 .

Proof. Recall E [etwi
] = e�

2
wt2/2. Then by Markov’s inequality, P (

Pm
i=1

wixi � ckxk) 
e�

2
wkxk2t2/2

etckxk  e�c2/2�2
w , by setting t = c

�2
wkxk . Choosing c = 2

p
log(n)�w completes the proof.
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