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Abstract

When stimulated with complex action potential sequences synapses exhibit spike
timing-dependent plasticity (STDP) with modulated pre- and postsynaptic contri-
butions to long-term synaptic modifications. In order to investigate the functional
consequences of these contribution dynamics (CD) we propose a minimal model
formulated in terms of differential equations. We find that our model reproduces
data from to recent experimental studies with a small number of biophysically in-
terpretable parameters. The model allows to investigate the susceptibility of STDP
to arbitrary time courses of pre- and postsynaptic activities, i.e. its nonlinear filter
properties. We demonstrate this for the simple example of small periodic mod-
ulations of pre- and postsynaptic firing rates for which our model can be solved.
It predicts synaptic strengthening for synchronous rate modulations. Modifica-
tions are dominant in the theta frequency range, a result which underlines the
well known relevance of theta activities in hippocampus and cortex for learning.
We also find emphasis of specific baseline spike rates and suppression for high
background rates. The latter suggests a mechanism of network activity regulation
inherent in STDP. Furthermore, our novel formulation provides a general frame-
work for investigating the joint dynamics of neuronal activity and the CD of STDP
in both spike-based as well as rate-based neuronal network models.

1 Introduction

During the past decade the effects of exact spike timing on the change of synaptic connectivity have
been studied extensively. In vitro studies have shown that the induction of long-term potentiation
(LTP) requires the presynaptic input to a cell to precede the postsynaptic output and vice versa
for long-term depression (LTD) (see [1, 2, 3]). This phenomenon has been termed spike timing-
dependent plasticity (STDP) and emphasizes the importance of a causal order in neuronal signaling.
Thereby it extends pure Hebbian learning, which requires only the coincidence of pre- and postsy-
naptic activity. Consequently, experiments have shown an asymmetric exponential dependence on
the timing of spike pairs and a molecular mechanism mostly dependent on the influx of Ca2+ (see
[4, 5] for reviews). Further, when induced with more complex spike trains, synaptic modification
shows nonlinearities ([6, 7, 8]) indicating the influence of short-term plasticity.

Theoretical approaches to STDP cover studies using the asymmetric pair-based STDP window as
a lookup table, more biophysical models based on synaptic and neuronal variables, and sophisti-
cated kinetic models (for a review see [9]). Recently, the experimentally observed influence of the
postsynaptic membrane potential (e.g. [10]) has also been taken into account ([11]).

Our approach is based on differential Hebbian learning ([12, 13]), which generates asymmetric
timing windows similar to STDP ([14]) depending on the shape of the back-propagating action
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potential ([15]). We extend it with a mechanism for activating learning by an increase in postsynaptic
activity, because both the induction of LTP and LTD require [Ca2+] to exceed a threshold ([16]).
Moreover, we include a mechanism for adaptive suppression on both synaptic sides, similar to the
model in [7]. Finally, we for simplicity assume that both the presynaptic and the postsynaptic
side function as low-pass filters; a spike leaves a fast increasing and exponentially decaying trace.
Together, we propose a set of differential equations, which captures the contribution dynamics (CD)
of pre- and postsynaptic activities to STDP, thereby describing synaptic plasticity as a filter.

Our framework reproduces experimental findings from two recent in vitro studies in the visual cor-
tex and the hippocampus in most details. Furthermore, it proves to be particularly suitable for the
analysis of the susceptibility of STDP to pre- and postsynaptic rate modulations. This is demon-
strated by an analysis of synaptic changes depending on oscillatory modulations of baseline firing
rates.

2 Formulation of the model

We use a variant of the classical differential Hebbian learning assuming a change of synaptic con-
nectivity w, which is dependent on the presynaptic activity trace ypre and the temporal derivative of
the postsynaptic activity trace ypost:

ẇ(t) = cw ypre(t)ẏpost(t) . (1)

cw denotes a constant learning rate. An illustration of this learning rule for pairs of spikes is given
in Figure 1B. For simplicity, we assume these activity traces to be abstract low-pass filtered versions
of neuronal activity x in the presynaptic and postsynaptic cells, e.g. the concentration of Ca2+ or
the amount of bound glutamate:

ẏpre(t) = upre(t) · xpre(t)−
ypre(t)

τpre
(2)

ẏpost(t) = upost(t)z(t) · xpost(t)−
ypost(t)

τpost
. (3)

The dynamics of the y’s are characterized by their respective time constants τpre and τpost. The
contribution of each spike is regulated by a suppressing attenuation factor u pre- and postsynapti-
cally. On the postsynaptical side an additional activation factor z ”enables” the synapse to learn.
The dynamics of u and z are discussed below. x represents neuronal activity which can be either a
time-continuous firing rate or spike trains given by series of δ pulses

xpre, post(t) =
∑

i

δ(t− tipre, post) , (4)

which allows analytical investigations of the properties of our model. Note that formally x(t) has
then to be taken as x(t + 0). An illustrating overview over the different parts of the model with
sample trajectories is shown in Figure 1A.

We define the relative change of synaptic connectivity after after a period T from Equation (1) as

∆w =
w(t0 + T )

w(t0)
− 1 =

cw
w(t0)

∫

T

ypreẏpost dt . (5)

The dependence on the initial synaptic strength w(t0) as observed in [3, 8] shall not be discussed
here, but can easily be achieved by making the learning rate cw in Equation (1) w-dependent. Here,
w(t0) is chosen to be 1.

Ignoring attenuation and activation, a single pair of spikes at temporal distance ∆t analytically yields
the typical STDP window (see Figure 2A and 3A):

∆w(∆t) =

{
cw

(
1− τpre

τpre+τpost

)
e−∆t/τpre for ∆t > 0

cw · τpre

τpre+τpost
e−∆t/τpost for ∆t < 0

(6)
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Figure 1: Schematic illustration of differential Hebbian learning with contribution dynamics. A:
Pre- and postsynaptic activity (x, second column) is modulated (attenuated with u, activated with z,
first column) and filtered (y, third column) before it contributes to differential Hebbian learning (w,
fourth column). B: Spike pair example for differential Hebbian learning. Left: a presynaptic spike
trace (ypre) preceding a postsynaptic spike trace (ypost, dotted line) yields a synaptic strengthening
due to the initially positive postsynaptic contribution (ẏpost, solid line), which is always stronger
than the following negative part. Right: for the reverse timing the positive presynaptic contribution
is only multiplied with the negative postsynaptic trace (right). Areas contributing to learning are
shaded.

The importance of adaptive suppressing mechanisms for synaptic plasticity has experimentally been
shown by Froemke and colleagues ([7, 6]). Therefore, we down-regulate the contribution of the
spikes to the activity traces y in Equation (2) and (3) with an attenuation factor u on both pre- and
postsynaptic sides:

u̇pre =
1

τ rec
pre

(1− upre)− cpreuprexpre (7)

u̇post =
1

τ rec
post

(1− upost)− cpost(upost − u0)xpost . (8)

This should be understood as an abstract representation of for instance the depletion of transmitters
in the presynaptic bouton ([17]) or the frequency-dependent spike attenuation in dendritic spines
([18]), respectively. These recover with their time constants τ rec and are bound between u0 and 1.
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For the presynaptic side we assume in the following upre
0 = 0, so we abbreviate u0 = upost

0 . The
constants cpre, post ∈ [0, 1] denote the impact a spike has on the relaxed synapse.

In several experiments it has been shown that a single spike is not sufficient to induce synaptic
modification ([10, 8]). Therefore, we introduce a spike-induced postsynaptic activation factor z

ż = cactxpostz − α(z − z0)2 , (9)

which enhances the contribution of a postsynaptic spike to the postsynaptic trace, e.g. by the removal
of the Mg2+ block from postsynaptic NMDA receptors ([19, 5]). The nonlinear positive feedback
is introduced to describe strong enhancing effects as for instance autocatalytic mechanisms, which
have been suggested to play a role in learning on several time-scales ([20, 21]). The activation
z decays hyperbolically to a lower bound z0 and the contribution of a spike is weighted with the
constant cact.

3 Comparison to experiments

In order to evaluate our model we implemented experimental stimulation protocols from in vitro
studies on synapses of the visual cortex ([7]) and the hippocampus ([8]) of rats. In both studies,
simple pairs of spikes and more complex spike trains were artificially elicited in the presynaptic and
the postsynaptic cell and the induced change of synaptic connectivity was recorded.

Froemke and colleagues ([7]) focused on the effects of spike bursts on synaptic modification in the
visual cortex. In addition to the classical STDP pairing protocol – a presynaptic spike preceding
or following a postsynaptic spike after a specific time ∆t – four other experimental protocols (see
Figure 2B to E) were performed: (1) 5-5 bursts with five spikes of a certain frequency on both
synaptic sides, where the postsynaptic side follows the presynaptic side, (2) presynaptic 100 Hz
bursts with n spikes following one postsynaptic spike (post-n-pre), (3) presynaptic 100 Hz bursts
with different numbers of spikes followed by one postsynaptic spike (n-pre-post) and (4) a post-pre
pair with varying number of following postsynaptic spikes (post-pre-n-post).
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Figure 2: Differential Hebbian learning with CD reproduces synaptic modification induced with
STDP spike patterns in visual cortex. Data taken from [7], personal communication. A: experi-
mental fit and model prediction with Equation (6) of pair-based STDP. B: dependence of synaptic
modifications on the frequency of 5-5 bursts with presynaptic spikes following postsynaptic spikes
by 6 ms. C, D and E: synaptic modification induced by post-n-pre, n-pre-post and post-pre-n-post
100 Hz spike trains.
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Figure 3: Differential Hebbian learning with CD reproduces synaptic modification induced with
STDP spike patterns in hippocampus. Data taken from [8] as reported in [22]. A: experimental
fit and model prediction with Equation (6) of pair-based STDP. B: quadruplet protocol. C and D:
post-pre-post and pre-post-pre triplet protocol for different interspike intervals.

Table 1: Parameters and evaluation results for the data sets from visual cortex ([7]) and hippocampus
([8]). E: normalized mean-square error, S: ratio of correctly predicted signs of synaptic modifica-
tion.

cpre cpost cact τ rec
pre [s] τ rec

post [s] α u0 z0 E S

Visual cortex 0.9 1 1.5 2 0.2 1 0.01 1 4.04 18/18

Hippocampus 0.6 0.4 3.5 0.5 0.5 1 0.7 0.2 2.16 10/11

In the hippocampal study of Wang et al. ([8]) synaptic modification induced by triplets (pre-post-pre
and post-pre-post) and quadruplets (pre-post-post-pre and post-pre-pre-post) of spikes was measured
while the respective interspike intervals were varied. (see Figure 3B to D).

As a first step we took the time constants from the experimentally measured pair-based STDP win-
dows as our low-pass filter time constants (see Equation 6). They remained constant for each data
set: (1) τpre = 13.5 ms and τpost = 42.8 ms for [7], (2) τpre = 16.8 ms and τpost = 33.7 ms for [8]
(taken from [23] since not present in the study). Next, we chose the learning rate cw in Equation (6)
to fit the synaptic change for the pairing protocol: (1) cw = 1.56 for the visual cortex data, (2)
cw = 0.99 for the hippocampal data set. The remaining parameters were estimated manually within
biologically plausible ranges and are shown in Table 1. The model was then applied to the more
complex stimulation protocols by solving the differential equations semi-analytically, i.e. separately
for every spike and the following interspike interval. As measure for the prediction error of our
model we used the normalized mean-square error E

E =
1

N

N∑

i=1

(∆wexp
i −∆wmod

i

σi

)2

, (10)

where ∆wexp
i and ∆wmod

i are the experimentally measured and the predicted modifications of synap-
tic strength in the ith experiment; N is the number of data points (N = 18 for the visual cortex data
set, N = 11 for the hippocampal data set). σi is the standard error of the mean of the experimental
data. Additionally we counted the number of correctly predicted signs S of synaptic modification,
i.e. induced depression or potentiation. The prediction error for both data sets is shown in Table 1.

5



1 3 7 20 50 100

1 3 7 20 50 100

1 3 7 20 50 100

1 3 7 20 50 100

1 3 7 20 50 100

1 3 7 20 50 100

Modulation frequency f [Hz]

Ph
as

e 
sh

ift
 ∆

ϕ

�

0

-�

�/2

-�/2

�

0

-�

�/2

-�/2

�

0

-�

�/2

-�/2

�

0

-�

�/2

-�/2

�

0

-�

�/2

-�/2

�

0

-�

�/2

-�/2

Cortex Hippocampus
x0 = 1�Hz

x0 = 5�Hz

x0 = 10�Hz

x0 = 1�Hz

x0 = 5�Hz

x0 = 30�Hz -1

1

 ∆
W

 (a
.u

.)

0

 

Figure 4: Synaptic change depending on frequency f and phase shift ∆φ of pre- and postsynaptic
rate modulations for different baseline rates x0. The color codes are identical within each column
and in arbitrary units. Note the strong suppression with increasing baseline rate for cortical synapses
which is due to strong attenuation effects of pre- and postsynaptic contributions. It is weaker for
hippocampal synapses because we found the postsynaptic attenuation to be bounded (u0 = 0.7).

4 Phase, frequency and baseline rate dependence of STDP with contribution
dynamics

As shown in the previous section our model can reproduce the experimental findings of synaptic
weight changes in response to spike sequences surprisingly well and yields better fits than former
studies (e.g. [22]). The proposed framework, however, is not restricted to spike sequences but al-
lows to investigate synaptic changes depending on arbitrary pre- and postsynaptic activities. For
instance it could be used for investigations of the plasticity effects in simulations with inhomoge-
neous Poisson processes. Taking x(t) to be firing rates of Poissonian spike trains our account of
STDP represents a useful approximation for the expected changes of synaptic strength depending
on the time courses of xpre and xpost (compare e.g. [24]). Therefore our model can serve also as
building block in rate based network models for investigation of the joint dynamics of neuronal
activities and synaptic weights.

Here, we demonstrate the benefit of our approach for determining the filter properties of STDP
subject to CD, i.e. we use the equations together with the parameters from the experiments for
determining the dependency of weight changes on frequency, relative phase ∆φ and baseline rates
of modulated pre- and postsynaptic firing rates. While for substantial modulations of firing rates
the nonlinearities are difficult to be treated analytically, for small periodical modulations around a
baseline rate x0 the corresponding synaptic changes can be calculated analytically. This is done by
considering

xpre(t) = x0 + ε cos(2πft) and xpost(t) = x0 + ε cos(2πft−∆φ) , (11)

which for small ε < x0 allows linearization of all equations from which one obtains ∆W =
∆w/(Tεpreεpost), where T = 1/f = 2π/ω is the period of the respective oscillations. Neglect-
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ing transients this finally yields the expected weight changes per unit time. Though lengthy the
calculations are straightforward and presented in the supplementary material. We here show only
the exact result for the case of constant u = 1 and z = 1:

∆W =
ωτpreτpost

√
ω2(τpost − τpre)2 + (1 + ω2τpreτpost)2

2(1 + τ2
preω

2)(1 + τ2
postω

2)
·sin
(

∆φ+arctan
ω(τpost − τpre)

1 + ω2τpreτpost

)
(12)

The analytical results for the case with CD are shown graphically in Figure 4 using the parameters
from cortex and hippocampus, respectively (see Tab. 1). These plots contain the main findings:
(1) rate modulations in the theta frequency range (' 7Hz) lead to strongest synaptic changes, (2)
also for phase-zero synchronous rate modulations weight changes are positive, (3) in hippocampus
maximal weight change magnitudes occur at baseline rates around 5 Hz, and (4) for high baseline
rates weight changes become suppressed (∼ 1/x0 for the hippocampus, ∼ 1/x2

0 for the visual
cortex). Numerical simulations with finite rate modulations were found to confirm these analytical
predictions surprisingly well. Also for the nonlinear regime and Poissionian spike trains deviations
remained moderate.

5 Discussion

STDP has been proposed to represent a fundamental mechanism underlying learning and many
models explored its computational role (examples are [25, 26, 27]). In contrast, research targeting
the computational roles of dynamical phenomena inherent in STDP are in the beginning (see [9]).
Here, we here formulated a minimal, yet biologically plausible model including the dynamics of how
neuronal activity contributes to STDP. We found that our model reproduces the synaptic changes in
response to spike sequences in experiments in cortex and hippocampus with high accuracy.

Using the corresponding parameters our model predicts weight changes depending on temporal
structures in the pre- and postsynaptic activities including spike sequences and varying firing rates.
When applied to pre- and postsynaptic rate modulations our approach quantifies synaptic changes
depending on frequency and phase shifts between pre- and postsynaptic activities. A rigorous per-
turbation analysis of our model reveals that the dynamical filter properties of STDP make weight
changes sensitively dependent on combinations of specific features of pre- and postsynaptic signals.

In particular, our analysis indicates that both cortical as well as hippocampal STDP is most suscep-
tible for modulations in the theta frequency range. It predicts the dependency of synaptic changes
on pre- and postsynaptic phase relations of rate modulations. These results are in line with experi-
mental results on the relation of theta rhythms and learning. For instance in hippocampus it is well
established that theta oscillations are relevant for learning (for a recent paper see [28]). Furthermore,
spike activities in hippocampus exhibit specific phase relations with the theta rhythm (for a review
see [29]). Also, it has been found that during learning cortex and hippocampus tend to synchronize
with particular phase relations that depend on the novelty of the item to be learned ([30]). The results
presented here underline these findings and make testable predictions for the corresponding synaptic
changes.

Also, we find potentiation for zero phase differences and strong attenuation of weight changes at
large baseline rates which is particularly strong for cortical synapses. This finding suggests a mech-
anism for restricting weight changes with high activity levels and that STDP is de facto switched off
when large firing rates are required for the execution of a function as opposed to learning phases;
during the latter baseline rates should be rather low, which is particularly relevant in cortex. While
for cortical synapses our analysis predicts that very low baseline activities are contributing most to
weight changes, in hippocampus synaptic modifications peak at baseline firing rates x0 around 5 Hz,
which suggests that x0 can control learning.

Our study suggests that the filter properties of STDP originating from the dynamics of pre- and
postsynaptic activity contributions are in fact exploited for learning in the brain. In particular, shifts
in baseline rates, as well as the frequency and the respective phases of pre- and postsynaptic rate
modulations induced by theta oscillations could be tuned to match the values that make STDP most
susceptible for synaptic modifications. A fascinating possibility thereby is that these features could
be used to control the learning rate which would represent a novel mechanism in addition to other
control signals as e.g. neuromodulators.
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