
A Appendix458

A.1 Scenarios for Parallel Mentoring with Multiple Proxies459

A.1.1 Method460

In the primary paper, we mainly focus on a scenario with three proxies. Here, we extend our method461

to incorporate M proxies. We revisit the two essential modules.462

Voting-based pairwise supervision. We train M (M ≥ 3) parallel proxies, f1
θ(·), f2

θ(·), · · · , fM
θ (·),463

each initialized differently, on the static dataset. Their mean is utilized as the final prediction:464

fθ(·) =
1

M
(f1

θ(·) + f2
θ(·) + · · · fM

θ (·)). (10)

We generate the pairwise comparison labels ŷ1, ŷ2, · · · , and ŷM for each proxy in the same way.465

We extend the subsequent majority voting part and derive the pairwise consensus labels ŷV via an466

element-wise majority voting:467

ŷV
ij = majority_voting(ŷ1

ij , ŷ
2
ij , · · · , ŷM

ij ). (11)

Here, i and j are the indexes of the neighborhood samples.468

Adaptive soft-labeling. This module remains the same as it is designed for an individual proxy. We469

carry out fine-tuning and soft-labeling via bi-level optimization to adaptively mentor the proxy.470

Setting on M . In Eq.(11), M can be any positive number greater than 2 as a decision may not be471

reached with just two proxies. In this study, we consider M as an odd number to ensure a decisive472

outcome in the voting process. Cases with an even number of proxies can be handled by adopting473

strategies like maintaining the original labels and skipping the fine-tuning step when the proxies474

are evenly split in their labels. However, we do not delve into these cases for brevity. We examine475

scenarios with M equal to 3, 5, 7, 9, and 11.476

A.1.2 Experiments477

We conduct experiments on the Ant task and the TFB8 task. The performance ratio comparing the478

performance of parallel mentoring to that of tri-mentoring, is computed as a function of M (the479

number of proxies). The results are displayed in Figure 6.480

(1) Our observations indicate that as the number of proxies (M ) increases, the performance ratios for481

both tasks initially improve, eventually reaching a plateau. This behavior suggests that an increased482

number of proxies enhances the robustness of the ensemble due to the increased diversity. However,483

this impact lessens as the number of proxies increases further, with the ensemble’s robustness484

plateauing after a certain point. (2) Somewhat unexpectedly, the performance with M = 7 shows a485

slight dip on the Ant task. A possible explanation for this could be the dynamics of the voting system.486

When we have M = 3, some voting happens when two proxies agree but conflict with the third.487

However, when M increases to 7, voting may occur when four proxies align with one another but488

dissent with the remaining three. Such a scenario can make consensus labels less reliable, potentially489

explaining the poor performance of the M = 7 case on the Ant task. (3) Finally, it’s important to490

note that adding more proxies also amplifies computational complexity. This increase could become491

a restricting factor when trying to scale the method to include a larger number of proxies.492

A.2 Additional Results on 50th Percentile Scores493

In the main paper, we presented the 100th percentile scores. Here, we offer supplementary results494

on the 50th percentile scores, which have been previously utilized in the design-bench work [1], to495

further validate the efficacy of tri-mentoring. Continuous task results can be found in Table 4 while496

discrete task results and ranking statistics are shown in Table 5. A review of Table 5 reveals that497

tri-mentoring achieves the highest ranking, demonstrating its effectiveness in this context.498

A.3 Accuracy of Pairwise Consensus Labels499

In addition to the performance results presented in the main paper, we also examine the accuracy500

of the optimized consensus labels ŷS′
. This analysis further substantiates the effectiveness of our501
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Figure 6: Ratio of performance with M prox-
ies to performance with M = 3 proxies.
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Figure 7: Ratio of performance with standard
deviation δ to performance with δ = 0.10.

Table 4: Results (median normalized score) on continuous tasks.
Method Superconductor Ant Morphology D’Kitty Morphology Hopper Controller
D(best) 0.399 0.565 0.884 1.000
BO-qEI 0.300± 0.015 0.567± 0.000 0.883± 0.000 0.343± 0.010

CMA-ES 0.379± 0.003 −0.045± 0.004 0.684± 0.016 −0.033± 0.005
REINFORCE 0.463± 0.016 0.138± 0.032 0.356± 0.131 −0.064± 0.003

CbAS 0.111± 0.017 0.384± 0.016 0.753± 0.008 0.015± 0.002
Auto.CbAS 0.131± 0.010 0.364± 0.014 0.736± 0.025 0.019± 0.008

MIN 0.336± 0.016 0.618± 0.040 0.887± 0.004 0.352± 0.058
Grad 0.339± 0.015 0.564± 0.014 0.877± 0.005 0.384± 0.004
DE 0.333± 0.004 0.570± 0.011 0.875± 0.004 0.385± 0.007
GB 0.373± 0.013 0.550± 0.021 0.869± 0.009 0.374± 0.008

COMs 0.316± 0.022 0.568± 0.002 0.883± 0.002 0.346± 0.009
ROMA 0.368± 0.019 0.475± 0.036 0.856± 0.008 0.388± 0.007
NEMO 0.322± 0.008 0.593± 0.000 0.885± 0.000 0.361± 0.001
IOM 0.348± 0.022 0.516± 0.037 0.876± 0.007 0.368± 0.008
BDI 0.412± 0.000 0.474± 0.000 0.855± 0.000 0.408± 0.000

tri-mentoring 0.355± 0.003 0.606± 0.007 0.886± 0.001 0.391± 0.004

Table 5: Results (median normalized score) on discrete tasks & ranking on all tasks.
Method TF Bind 8 TF Bind 10 NAS Rank Mean Rank Median
D(best) 0.439 0.467 0.436
BO-qEI 0.439± 0.000 0.467± 0.000 0.544± 0.099 8.0/15 8/15

CMA-ES 0.537± 0.014 0.484± 0.014 0.591± 0.102 8.0/15 5/15
REINFORCE 0.462± 0.021 0.475± 0.008 −1.895± 0.000 10.6/15 14/15

CbAS 0.428± 0.010 0.463± 0.007 0.292± 0.027 12.7/15 12/15
Auto.CbAS 0.419± 0.007 0.461± 0.007 0.217± 0.005 13.3/15 13/15

MIN 0.421± 0.015 0.468± 0.006 0.433± 0.000 7.7/15 9/15
Grad 0.532± 0.017 0.529± 0.027 0.443± 0.126 6.1/15 6/15
DE 0.581± 0.034 0.534± 0.014 0.474± 0.085 5.4/15 4/15
GB 0.503± 0.054 0.455± 0.020 0.559± 0.090 7.3/15 6/15

COMs 0.439± 0.000 0.466± 0.002 0.529± 0.003 7.9/15 8/15
ROMA 0.548± 0.017 0.516± 0.020 0.529± 0.008 5.7/15 5/15
NEMO 0.439± 0.018 0.456± 0.015 0.568± 0.021 7.0/15 8/15

IOM 0.437± 0.010 0.475± 0.010 −0.083± 0.012 9.0/15 7/15
BDI 0.439± 0.000 0.476± 0.000 0.517± 0.000 6.6/15 7/15

tri-mentoring 0.609± 0.021 0.527± 0.008 0.516± 0.028 3.4/15 2/15
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method. For the D’Kitty and TFB8 tasks, we utilize the ground-truth function to determine the502

ground-truth pairwise labels. This enables us to assess the accuracy of ŷS′
. For easier accuracy503

computation, these labels are converted into one-hot labels.504

(1) Recall that the pairwise comparison labels of a single proxy serve as its ranking supervision505

signals. In our analysis, we found that for a single proxy, 13.45% of pairwise comparison labels for506

the D’Kitty task and 8.38% for the TFB8 task differ from the optimized consensus labels ŷS′
. This507

reveals the extent to which our method modifies the original labels. (2) Further analysis shows that, of508

the conflicting optimized labels, 62.91% are accurate for D’Kitty and 63.16% are accurate for TFB8.509

These results reinforce the overall efficacy of our method. (3) When we remove the voting-based510

pairwise supervision module, we note a decrease in accuracy from 62.91% to 52.21% for D’Kitty511

and from 63.16% to 55.63% for TFB8. Similarly, omitting the adaptive soft-labeling module leads512

to a drop in accuracy from 62.91% to 57.16% for D’Kitty and from 63.16% to 60.86% for TFB8.513

These experiments underscore the crucial role of both modules in preserving the label accuracy.514

A.4 Additional Analysis on Sensitivity to the Standard Deviation Hyperparameter515

We further delve into how the standard deviation hyperparameter δ in neighborhood sampling, impacts516

the performance of our method. We experiment with δ values of 0.05, 0.10, 0.15, 0.20, and 0.25,517

with 0.10 being the default value employed in this paper. The results are normalized by dividing them518

by the result obtained for δ = 0.10. As demonstrated in Figure 7, tri-mentoring exhibits remarkable519

robustness to variations in δ for both the continuous Ant and the discrete TFB8 tasks.520

A.5 Broader Impacts521

Our work could potentially expedite the development of new materials, biomedical innovations,522

or robotics technologies, leading to significant advancements in these areas. However, as with all523

powerful tools, there are potential risks if misused. One potential negative impact could be the misuse524

of this technology in designing objects or entities for harmful purposes. For instance, in the wrong525

hands, the ability to optimize designs could be used to create more efficient weapons or harmful526

biological agents. Therefore, it is crucial to implement appropriate safeguards and regulations on the527

use of such technology, particularly in sensitive areas.528

A.6 Limitations529

Despite the promising results demonstrated by our method, its performance is largely dependent on530

the accuracy of the design encoding. For tasks of high complexity, such as Neural Architecture Search531

(NAS) - which represents each design as a 64-length sequence of 5-category one-hot vectors - the532

performance of tri-mentoring is somewhat limited. This shortfall could be due to the default encoding533

technique of design-bench [1], which may fail to adequately capture the sequential and hierarchical534

nature of neural architectures, leading to ineffective gradient updates. This challenge suggests that,535

while our method provides a general framework for offline model-based optimization, task-specific536

techniques might be necessary for effective design encoding, especially in the context of complex537

tasks. Potential future research could explore ways of integrating problem-specific knowledge into538

the design encoding process to address these complexities more effectively.539
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