© © N O O A W N =

9

20
21
22
23

24
25
26
27

28
29
30
31

BiSLS/SPS: Auto-tune Step Sizes for
Stable Bi-level Optimization

Anonymous Author(s)
Affiliation
Address

email

Abstract

The popularity of bi-level optimization (BO) in deep learning has spurred a growing
interest in studying gradient-based BO algorithms. However, existing algorithms
involve two coupled learning rates that can be affected by approximation errors
when computing hypergradients, making careful fine-tuning necessary to ensure
fast convergence. To alleviate this issue, we investigate the use of recently proposed
adaptive step-size methods, namely stochastic line search (SLS) and stochastic
Polyak step size (SPS), for computing both the upper and lower-level learning rates.
First, we revisit the use of SLS and SPS in single-level optimization without the
additional interpolation condition that is typically assumed in prior works. For such
settings, we investigate new variants of SLS and SPS that improve upon existing
suggestions in the literature and are simpler to implement. Importantly, these two
variants can be seen as special instances of general family of methods with an
envelope-type step-size. This unified envelope strategy allows for the extension
of the algorithms and their convergence guarantees to BO settings. Finally, our
extensive experiments demonstrate that the new algorithms, which are available in
both SGD and Adam versions, can find large learning rates with minimal tuning
and converge faster than corresponding vanilla SGD or Adam BO algorithms that
require fine-tuning.

1 Introduction

Bi-level optimization has found its applications in various fields of machine learning, such as
hyperparameter optimization [14, [17, |30} 40|, adversarial training [S1]], data distillation [2} 53],
neural architecture search [28) [39]], neural-network pruning [52], and meta-learning [13} 37, [11]].
Specifically, it is used widely for problems that exhibit a hierarchical structure of the following form:

min F(z) = Eg[f(z,9"(2);¢)] sty (2) = argminEy[g(z, y; ¥)]. M
T yey

Here, the solution to the lower-level objective g becomes the input to the upper-level objective f, and
in (T) the upper-level variable z is fixed when optimizing the lower-level variable y. To solve such
bi-level problems using gradient-based methods requires computing the hypergradient of F', which
based on the chain rule is given as [[15]]:

VF(z) = Vaf(2,y"(2) + V3,9(z, 5" (@) [Vy,9(z,y" (@) Vy f2,y" (). @

In practice, the closed-form solution y* () is difficult to obtain, and one strategy is to run a few steps
of (stochastic) gradient descent on g w.r.t. y to get an approximation g, and use § in places of y*(z).
We denote the stochastic hypergradient based on g as h¢(z,) and the stochastic gradient of g w.r.t. y
as hgy. This leads to a general gradient-based framework for solving bi-level optimization [15} 19, 4].

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

32
33

34
35
36

37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

At each iteration k, run T (can be one or more) steps of SGD on y, i.e. yt+1 = ¢#t — Bh’g“t, then
run one step on x using the approximated hypergradient:

oF T =% —ahs (b yF), where yFtt =yMT. 3)
Based on this framework, a series of stochastic algorithms have been developed to achieve the optimal
or near-optimal rate of their deterministic counterparts [[7, [8]. These algorithms can be broadly
divided into single-loop (7' = 1) or double-loop (1" > 1) categories [23]].

Unlike minimizing the single-level
finite-sum (convex) problem

zeC

Validation Loss
Validation Loss

| XN
F(z) := min N Z filz), @
i=1

a=0001
a=00025
@=0005
10t | = a=0.01
@=0.05 (Diverge)
@=0.1 (Diverge)

[o 20 30) 50 [0 20 30 40 50
Upper Iterations Upper Iterations

where only one learning rate is in-
volved when using SGD, bi-level op-
timization involves tuning both the
lower and upper-level learning rates
(B and « respectively). This poses a
significant challenge due to the poten-
tial correlation between these learn-
ing rates [[19]. Thus, as observed in
Figure|l} algorithm divergence can occur when either «v or 3 is large. While there is considerable
literature on achieving faster rates in bi-level optimization [24} |5, [7, [8]], only a few studies have
focused on stabilizing its training and automating the tuning of « and 3. This work addresses the
question: Is it possible to utilize large o and /5 without manual tuning? In doing so, we explore the
use of stochastic adaptive-step size methods, namely stochastic Polyak step size (SPS) and stochastic
line search (SLS), which utilize gradient information to adjust the learning rate at each iteration
(44} 29]. These methods have been demonstrated to perform well in interpolation settings with strong
convergence guarantees [44} 29]. However, applying them to bi-level optimization (BO) introduces
significant challenges, as follows. @ BO requires tuning two correlated learning rates (for lower
and upper-level). @ The bias in the stochastic approximation of the hypergradient complicates the
practical performance and convergence analysis of SLS and SPS. ® Other algorithmic challenges
arise for both algorithms: For SLS, verifying the stochastic Armijo condition at the upper-level
involves evaluating the objective at a new (z, y*(x)) pair, while y*(z) is only approximately known;
For SPS, most existing variants guarantee good performance only in interpolating settings, which are
typically not satisfied for the upper-level objective in BO [22]. Before presenting our solutions to the
challenges above in Sec[2] we first review the most closely related literature.

Figure 1: Results based on hyper-representation learning task
(see Sec |4|for details). Validation loss against upper-level
iterations for different values of 3 (left, o = 0.005) and «
(right, 8 = 0.01). Unless carefully tuned, vanilla SGD-based
methods for BO are very unstable.

1.1 Related Work

Gradient-Based Bi-level Optimization Penalty or gradient-based approaches have been used for
solving bi-level optimization problems [10, 45} [21]]. Here we focus our discussions on stochastic
gradient-based methods as they are closely related to this work. For double-loop algorithms, an early
work (BSA) by Ghadimi and Wang [15] has derived the sample complexity of ¢ in achieving an
e-stationary point to be O(e~2), but require the number of lower-level steps to satisfy 7' ~ O(e1).
Using a warm start strategy (stocBiO), Ji et al. [22] removed this requirement on 7. However, to
achieve the same sample complexity, the batch size of stocBiO grows as O(e~!). Chen et al. [4]
removed both requirements on 7" and batch size by using the smoothness properties of y*(x) and
setting the step sizes « and /3 at the same scale. For single-loop algorithms, a pioneering work by
Hong et al. [19] gave a sample complexity of O(e~2-%), provided o and 3 are on two different scales
(TTSA). By making corrections to the y variable update (STABLE), Chen et al. [5] improved the
rate to O(e~2). However, extra matrix projections required by STABLE can incur high computation
cost [5, 4]]. By incorporating momentum into the updates of x and y (SUSTAIN), Khanduri et al.
[24] further improved the rate to O(¢~1-%) [6]. Besides these single or double-loop algorithms, a
series of works have drawn ideas from variance reduction to achieve faster convergence rates for
BO. For example, Yang et al. [49] designed the VRBO algorithm based on SPIDER [12]. Dagréou
et al. [[7, 18] designed the SABA and SRBA algorithms based on SAGA and SARAH respectively, and
demonstrate that they can achieve the optimal rate of O(e~!) [9}35]. Huang et al. [20] proposes to
use Adam-type step sizes in BO. However, it introduces three sequences of learning rates (o, Bk, 1k)

83
84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99

101
102
103
104
105
106
107
108

110

111

112
113
114
115
116
117
118

119
120
121
122

) —— DecsPs
10 oo SPSmax 100
— spsB

O starting point
X xj andx;
F* Minimum

~ '~ SPSB (2 samples)

\

| Yt

Objective value
S

0 50 150 200 0 200 400 600 800 1000

160 10t 10 05
Iterations Iterations Iterations

Figure 2: Experiments on quadratic functions adapted from [29]. The objective is the sum of two-
dimensional functions f; = 1(z — 27)" H;(x — x}), where H; is positive definite and i = 1,2 (see
Appendix B for more details). From left to right, we show: the objective value, distance to optimum,

step size, and iterate trajectories.

that require tuning, which limits its practical usage. To our knowledge, none of these works have
explicitly addressed the fundamental problem of how to select « and /3 in bi-level optimization. In
this work, we focus on the alternating SGD framework (T can be 1 or larger), and design efficient
algorithms that find large o and 8 without tuning, while ensuring the stability of training.

Adaptive Step Size Adaptive step-size such as Adam has found great success in modern machine
learning, and different variants have been proposed [25,138},147,131}132]. Here, we limit our discussions
on two adaptive step sizes that are most relevant to this work. The Armijo line search is a classic
way for finding step sizes for gradient descent [48]]. Vaswani et al. [44]] extends it to the stochastic
setting (SLS) and demonstrates that the algorithm works well with minimal tuning required under
interpolation, where model fits the data perfectly. Hence, the method is adaptive to local smoothness
of the objective, which is typically difficult to predict a priori. However, the theoretical guarantee
of SLS in the non-interpolating regime is lacking. In fact, the results in Figure 3] suggest that SLS
can perform poorly for convex losses when interpolation is not satisfied. Besides SLS, another
adaptive method derived from Polyak step size is proposed by Loizou et al. [29] with the name
stochastic Polyak step size (SPS). Loizou et al. [29] further places an upper bound on the step size
resulting in the SPS,,, variant. Similar to SLS, the algorithm performs well when the model is
over-parametrized. Without interpolation, the algorithm converges to a neighborhood of the solution
whose size depends on this upper bound.

In a later work, Orvieto et. al. [36] ma}(e the SPS Algorithm 1 BiSLS-Adam/SGD
converge to the exact solution by ensuring the step
size and its upper bound are both non-increasing Input: 2%, 4%, K, T, 8, a0, Bp,0, w, 7
(DecSPS). However, enforcing monotonicity may ~ Output: =

result in the step size being smaller than decaying- 1: for k=0,1,..., K —1do

step SGD and losing the adaptive features of SPS 2 yF0 ="

(see Figure 2} B). In this work, we propose new ~ 3: fort=0,1,...,7 —1do

versions of SLS and SPS that do not require mono- ~ 4: 557;6 < reset(S, Bp,0, 7, 0pt) B> see
tonicity and extend them into the alternating SGD Algorithm 2]

bi-level optimization framework (3). 5: B + linesearch based on (8) starting
from 3} .
. . . kt+1 _ kit _ k.t
2 Summary of Contributions 6: Y =Y Bhy”,
7: end for
. k+1 _ o,k T—1.5k _ k. skl _ o k+1
‘We discuss our main contributions in this section, 8: Y y L Ty Yy
9: o+ reset(a, ap 0, 17, Opt)

which is organized as follows. First, we discuss
our variants of SPS and SLS, and unify them
under the umbrella of “envelope-type step-size”.

10: while (T4) based on (&%, 1, a,)
does not hold. do

Then, we extend the envelope-type step size to the 1 - Q= axw P

bi-level setting. Finally, we discuss our bi-level 12: o= hfl(x YT or

line-search algorithms based on Adam and SGD. 13 & = ok — a A hy (2, Y)
14: yAk-H _ yk+1 _ Bhg(jky yk-i-l)

Converging SPSB and SLSB by Envelope Ap- 15 end while

proach We first propose simple variants of SLS 16 et =gk — bk

and SPS that converge in the non-interpolating 17: end for
setting while not requiring the step size to be monotonic. To this end, we introduce a new stochastic

123
124
125

126

127

128
129
130
131
132
133

134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154
155
156
157
158

160
161
162

Polyak step size (SPSB). For comparison, we also recall the step-sizees of SPS,,,x and DecSPS .
For all methods, the iterate updates are given as x+1 = Tr — V&V fi, (a:k) where 75 is sampled

uniformly from [n] = {1,...,n} at each iteration k. The step-sizes y;, are then defined as follows:
SPSmax [29): yx = min {L)_kz,%o} ©)
eIV fi, (29|
DecSPS [36]: v =% v = L min {f”“(i)iyc;c 1k—1} Vk>1 (6)
Ck IV fir (&)
SPSB (ours): i = min{Lg, Yo,k }s @)
ck|IV fir (24|
0
where f; = inf, fi(x), 5 = %min{%,coyb o} » ¢k is non-decreasing, 7y is non-

increasing, and [< f is any lower bound.

Unlike SPS;yax in which v is a ;
constant, our upper bound 7 is wl
non-increasing. Also, unlike Dec- |
SPS in which both the step size and
the upper bound are non increasing

Train Loss
Step Sizes

CO’Yb 0 €07b,0
min{ s, S22} < oy, < 2

[36, Lemma l]) we 51mphfy the re-
cursive structure and do not require Figure 3: Binary linear classification on w8a dataset using
the step-size to be monotonic. As logistic loss [3]. We choose o = 1000 for all algorithms;
we empirically observe in Figure 8, ¢ = 1 and & = 1 for SPS,,ax and SLS respectively; ¢, =
the step size of DecSPS is similar to /£ 11 for DecSPS ; ¢, = 1 and Yo = 2% for SPSB ;
that of decaying SGD and in factcan ~ _ Yb.0 VEFT Yb.0

be much smaller. Interestingly, the € ~ (_)'1 and .k = e for SLSB 5 . = 55 for
resulting performance of DecSPS is decaying-step SGD.

worse than SPS,,,,x despite SPS,,.x eventually becoming unstable once iterates get closer to the
neighborhood of a solution and the step-size naturally behaves erratically. This is not unexpected due
to small gradient norms (note division by gradient-norm in (3)) and dissimilarity between samples in
the non-interpolating scenario. Moreover, note that the adaptivity of SPS in the early stage seems
to be lost in DecSPS due to monotonicity of the latter. On the other hand, SPSB not only takes
advantage of the large SPS steps that leads to fast convergence, but also stays regularized due to the
non-increasing upper bound 7, ;. in (I9). These observations are further supported by the experiments
on quadratic functions given in Figure 2] where we observe the fast convergence of SPSB and the
instability of SPS,,ax . Motivated by the good practical performance of SPSB , we take a similar
approach for SLS. The SLS proposed and analyzed by Vaswani et al. [44] starts with 73 ¢ and in each
iteration k finds the largest v, < ;o that satisfies:

fin(@r =V fi,(r)) < fir(@r) — ¢l Vfir (@), 0<e< 1.)
To ensure its convergence without interpolation, we replace 7y, o with appropriate non-increasing
sequence v, . We name this variant of SLS as SLSB . Interestingly, the empirical performance and
step size of SLSB are similar to those of SPSB (see Figure 3. This can be explained by observing
that the step sizes of SPSB and SLSB share similar envelope structures, as follows (see Lemma [I]in
Appendix A):

0 1000 2000 3000 4000 5000 100 10! 10 10° 104
Iterations Iterations

SPSB : min{# <y = min{M }, 0<c
: 2CLmaX7ryb,k = Yk C”Vfik(xk)HQa’yb,k))
_2(1—¢) - Ju@®) =1 _
SLSB: min{— i} <y <min{——7—5 . Mr}, 0<c<l
L Al A
Therefore, we unify their analysis based on the following generic envelope-type step size:
Ve = min{max{yx, Y&}, Wk}, Y.k = min{w, v r},)

where w > 0, v,k is non-increasing, and 7y, satisfies v, := min{w, yo.x} < & < Yb.5. We show
that this envelope-type step size converges at a rate O(\/%) and O(%) for convex and strongly-convex
losses respectively.

163 Envelope Step Size for Bi-level Optimization (BiSPS) We extend the analysis of envelope-type
164 step size to the bi-level setting. The step sizes for upper and lower-level objectives of our general
165 envelope-type method are:

Upper: o, = min{max{al’bdk}, ang} hence ok < oy < Qp & (10)
g(@®, ™) — g y5n 1))
plIVyg(ak, yht 42

186 where y7, " is the minimizer of the function g(x’“7 1)), and i, ap . and By are three non-

167 increasing sequences. Note that 3, ;, is fixed over the lower-level iterations for a given k, therefore,
168 this is equivalent to running 7" steps of SPSy,,x to minimize the function g at each upper iteration k.
169 However, the decrease in the upper bound f3, ;; with & is crucial to guarantee the overall convergence
170 of the algorithm (see Theorem [3)). Starting from the general step-size rules in (I0), (LT}, our bi-level
171 extension of SPS, which we call BiSPS, follow by setting oy, in the form of SPS computed using
172 stochastic hypergradient hk. That is,

Lower: (), = min{

Bk} VR, (11)

k+1 *
ay = Sty 0) _l y*rie) Qg = A0 ap g = 20 (12)
AEE T VR T VR

173 where o0 < a0 and l;i(. YR+ is a lower bound for inf, f(z,y"**'; ¢). For computing h%, we
174 can take a similar approach as previous works [[15,119, 4] that use Neumann series setting

hk = vzf(xkvykJrl; ¢) - meg(il'

h‘z

N
H I — V2 ,ykJrl;wj))]Vyf(xk,ykJrl;d)),
) (13)

175 where NN is sampled uniformly from [N] and N is the total number of samples. For BiSPS, we use
176 the same sample for f(z*, y**1; ¢) and V £, (2%, y**+1; ¢) when evaluating &y, in (T2). Interestingly,
177 we also empirically observe that using independent samples for computing &y and h’; resulting
178 in similar performance as using the same sample. The optimal rate of SGD for non-convex bi-
179 level optimization is O(\}) without a growing batch size [4]. We show that BiSPS can obtain

180 the same rate (see Theorem [3) by taking the envelope-type step-size of the form (I0) and (TT).
181 We implement BiSPS according to ;

182 (T2)) and observe that it has better per- 0
183 formances over decaying-step SGD
184 with less variations across different
185 values of oy o (see FigureE]and note
186 that decaying-step SGD is of the form

Validation Loss
Validation Loss

187 ab,0) 102 1072
A4 k+1 o 250 500 750 1000 1250 1500 1750 2000 o 250 500 750 1000 1250 1500 1750 2000
Upper Iterations Upper Iterations

m— BISPS - @y =10.0 ==+ BISPS - ay o = 100.0 Decay SGD - a0 = 50.0
= BISPS - ay,0 = 50.0 Decay SGD - ay,0 = 10.0 Decay SGD - 0 = 100.0

188 Stochastic Line-Search Algorithms
189 for Bi-level Optimization The
190 challenge of extending SLS to bi- Figure 4: Results on data distillation experiments adapted
191 level optimization is rooted in the from Lorraine et al. [30] (see Sec[d]for details). We compare
192 term y*(x). In fact, we realize that BjSPS and decaying-step SGD for different values of ay g
13 some of the bi-level objectives are of where Hessian inverse in (2) is computed based on the Iden-
194 the form F(z) = f(y*(z)). That tity matrix (left) or Neumann series (right). The lower-level
195 is, f does not have an explicit de- learning rate is fixed at 10~

196 pendence on z, e.g. the data hyper-

197 cleaning task [22]. This implies that when SLS takes a potential step on x, the approximation of y* (z)
198 (i.e, y(x)) also needs to be updated, otherwise there is no change in function values. Moreover, the
199 use of approximation () and the stochastic estimation error in hypergradient would not gaurantee a
200 step size can be always found. To this end, we modify the Armijo line-search rule to be:

BiSLS-SGD: f(a" — ayhf, §* T (2" — aph})) < f(a®, 4" 1) — poe | WS |? + 6,

BiSLS-Adam: f(z" — a4} 1h'C T G akAglh’;)) < f(a®,y*) *POék”h’chQ 1+,
k
(14)

201
202

203

204
205

207
208
209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228

229

231
232

233
234

SGD B=5.0 a=0.0025

--=- SGD B=1.0 a=0.005

—— SGD B=05 a=0.005
Adam B= @=0.0001

---- Adam B=10 a=0.0005

—— Adam B=05 a=0.0005

—— BISLS-SGD (8,0 = 100.0, @, = 10.0)
BISLS-Adam (Bs,0 = 100.0, ap,0 = 10.0)

Upper Step Size
Lower Step Size

e,

40 50 [10 a0 50 0 500 1000 1500 2000 2500

20 30 20 30
Upper Iterations Upper Iterations Iterations

(a) Validation Loss (b) Upper-level step sizes (c) Lower-level step sizes

Figure 5: Results on hyper-representation learning task (see Sec E]for details). (a) Validation loss
against upper-level iterations for comparing BiSLS-Adam/SGD to fine-tuned Adam/SGD. (b)(c)
Upper (left) and lower-level (right) learning rates found by BiSLS-Adam. For the tuned Adam, the
optimal lower and upper-level learning rates are O(1) and O(10~*), respectively. BiSLS-Adam
outperforms tuned Adam/SGD with a starting point that is 5 orders of magnitude larger than the
optimal step size.

where p,§ > 0 and Ay is a positive definite matrix such that A? = Gj. Similar to the single-
level Adam case, the matrix Gy, in the bi-level setting is defined as G = (82Gr—1 + (1 —
B2) diag(h’} h’JiT)) /(1 — B5) [25,43]. Moreover, BiSLS-Adam takes the following steps for updating
the variable z: *+! = ¥ — oy A 'my, where m**+! = BymF — (1 — ﬂl)h’;. The details are given
in Algorithms [T] and[Z} We denote the search starting point for the upper-level as g, i at iteration
k, and denote it as 3} ;. at step ¢ within iteration £ for the lower-level. We remark the following
key benefits of resetting oy, and ﬂa i (by using Algorithm to larger values with reference to oy
and f3}, (respectively) at each step: (1) Avoid always searching from ay, o or 68)0, thus, reducing
computation cost, and, (2) preserving an overall non-increasing (not necessarily monotonic) trend for
ay,; and 55’ «» thus, improving training stability. We found different values of 7 all work well (see
Appendix B). The key algorithmic challenge we are facing is that during the backtracking process,
for any candidate oy, we need to compute ¥ := z* — akh’; and approximate y*(£*) with %1 (see
Algorithm). To limit the cost induced by this nested loop, we limit the number of steps to obtain

71 to be 1. Moreover, ¢ in plays the role of a safeguard that ensures a step size can be found.
We set it to be small to avoid finding unrealistically large learning rates while Algorithm 2 reset

tolerating some error in the hypergradient estimation (see Appendix B for
experiments on the sensitivity of §). In practice, we empirically find that InPut: p, ¢, 7 > 1,

simply setting § = 0 works well. In Figure[5a we observe that BiSLS-Adam opt
outperforms fine-tuned Adam or SGD. Surprisingly, its training is stable even O“tP“t: p

when the search starting point oy, o is 5 orders of magnitude larger than a fine- 1: if opt = 1 then
tuned learning rate ((’)(10_4)). Importantly, BiSLS-Adam finds large upper 2: p _H q

and lower-level learning rates in early phase (see Figure [5b} [5c) for different 3: else if opt = 2
values of ap ¢ and [y ¢ that span 3 orders of magnitudes. Interestingly, the then

learning rates naturally decay with training (also see Figure[6c|and [6d). In 4 pep
essence, BiSLS is a truly adaptive (no knowledge of initialization required) 5 flllS;l if opt = 3

and robust (different initialization works) method that finds large o and)
[without tuning. In the next section, we give the convergence results of the 6: dp' f<_ n-p
envelope-type step size. 7: end1

3 Convergence Results

3.1 Envelope-type step size for single-level optimization
We first state the assumptions, which are standard in the literature, that will be used for analyzing
single-level problems. Assumption|[I]is on the Lipschitz continuity of f and f; in Problem 4]

Assumption 1. The individual function f; is convex and L;-smooth such that ||V f;(x) — V f;(2')|| <
Li||lx — 2'||,Vi,Va € dom f and the overall function f is L-smooth. We denote Ly,ay = max; L.

235
236

237

238

239

240
241

242

243

244
245
246
247
248

249
250

251

252

253

254

255
256
257

258

259

261
262
263

264
265

267

268
269
270
271
272
273

274

Furthermore, we assume there exists [} such that If < f* := inf, f;(x),Vi, and f is lower bounded
by [* obtained by some x* such that f* = f(x*).

The following bounded gradient assumption is also used in the analysis of convex problems [41 33]].
Assumption 2. There exists G > 0 such that |V f;(z)||*> < G, Vi.

We first state the theorem for the envelop-type step size defined in (9) for convex functions.

Theorem 1. Suppose Assumption[l] 2 hold, each fZ is convex, C' = dom f, Yk lS lndependent of
the sample V f,(z%), and choose ~yy, 1, = \}YL

following rate,

_ 2 =2 |? 750 G? log(K)
T 2y kK 2y k1 K

. _ K
where 7 x_1 = min{w, %\/—FO} and 28 = L Y0 ak.

We were not able to give a convergence result that uses the same sample for computing the step size and

the gradient. However, we empirically observe that the performance is very similar when using either

one or two independent samples per iteration (see Figure[2]and Appendix B). When two 1ndependent

samples i; and j; are used per iteration, the first computes the gradient sample V f; ,c(k), and the
Fir @) =15

VT, @O Yok}

This type of assumption has been used in several other works for analyzing adaptive step sizes

[27, 144, 29]]. Under this assumption, we specialize the results of Theorem [I]to SPSB and SLSB ,

where v, k1 = min{ 5 L , \7%} and v, g1 = min{ 221_5) , 1’%} respectively. Concretely, for

other computes the step-size ~y;. For example, for SPSB this gives v, = min{

K > v oL7,.x SLSB and SPSB with v, , = \/W and ¢ = ¢ = 3 achieve the following rate:

K _ 2® =" | 7.0G?log(K))
E[f(z*) — f(z*)] < oV + v Next, we state the result for the envelop-type step

size when f is u-strongly convex.

Theorem 2. Suppose a p-strongly convex function f satisfying Assumptions[I|and[2] assume C is a
closed and convex set, and vy, is independent of the sample V fi,(xz*). Then an envelope-type step

size as in @) with v, = 755, V.0 > i and wp < 1 achieves the following rate
- * fiko —kopw *(2 2 2 ,0G* log K

E - < MR (ool - G?) 4 b0 08
@) = F)] < gt (e = o 4 20CP) + R

where T = K%ko ,[f kl x® and ko = max{1, [y0/w] — 1}.

We can again apply the result of Theorem [2| to SPSB and SLSB with v, 5, = ’Yi(i, Vb,0 = ﬁ,

w=1/Lyax,and ¢ = ¢ = % to get an explicit rate: E[f(Zx) — f(z*)] < 2(1?601@0) eLfi.iZHxO _
|7 +120G?) + %, where ko = max{1, [5,0Lmax| — 1}.

Remark 1. Under the envelop-type step size framework and the assumption of two independent
samples, SLSB and SPSB share the same convergence rates of (’)(\/—%) and O(+) as SGD with
decaying step-size for convex and strongly-convex losses respectively. This is not surprising because
of the structure of the envelope step-size in (9). Indeed, the proof is similar to the standard proof of
analogous rate for SGD with decaying step-size. Nonetheless, we include it here for completeness.

3.2 Envelope-type step size for bi-level optimization

We start with recalling standard assumptions in BO [22, [19, 15| 4]. We denote z = [z; y] and recall
the bi-level problem in (T)). The first assumption is on the lower-level objective g.

Assumption 3. The function g(x,y) is pg strongly convex in y for any given x. Moreover, Vg is
Lipschitz continuous: ||V g(z1,y1)—Vg(x2,y2)|| < Lgl|z1 —22|| (also assume that this holds true for
each sampled function g(x,y;))), and V?g is Lipschitz continuous: |V?g(z1,y1)—V2g(z2,12)| <
Lg||z1 — 2zl|. We further assume that ||[V2,g(x,y)|| < Cy, and the condition number is defined as

K= Lo,
Hg

275
276
277
278

279
280
281
282
283

284
285

293
294
295
296
297
298
299

300
301

302

303

304

305

306
307
308
309
310
311
312
313
314

315

316
317

Next, we state the assumptions on the upper objective f.

Assumption 4. The function f and its gradients are Lipschitz continuous. That is: || f(z1,y1) —
fxo,y2)l| < Lillz1 — 22|l and |V f(z1,y1) — Vf(x2,92)|| < Lyallz1 — 22| We also assume that
IVyf(z,y)l < Cy.

Furthermore, we make the following standard assumptions on the estimates of V f, Vg, and \V& g.

Assumption 5. The stochastic gradients are unbiased: TE4Vf(z,y;0)] = Vf(z,y),
Ey[Vy(z,y;9)] = Vg(z,y), and E,[V3g(x,y;¢)] = V2g(z,y). The variances of V f(x,y; ¢)
and V?g(x,y; 1)) are bounded: K[|V f(x,y;0) — Vf(z,y)|*] < UJ% and Ep[||V2g(x,y;) —

V2g(z,y)|?] < o

Finally, we introduce the bounded optimal function value assumption in (I3)), which is used specifi-
cally for analyzing step size of the form (IT)) in the bi-level setting:

Eylg(z,y"(x);0) — g(2,y5 i 0)] < 05, Va, (15)

E[|Vyg(z,y) — Vyg(z,y; 0)|I°] < 07,V y, (16)
where y*(z) = min, g(,y) and y; , = min, g(z, y;) for a given z (recall that at any iteration
k, the lower-level steps in BiSPS are SPS,,,x with an upper bound f; ;; furthermore, 3 , is non-
increasing w.r.t. upper iteration k). The one-variable analogous assumption of has been used
in the analysis of SPS,,.x [29]. Here, we extend it to a two-variable function. Unlike the bounded
variance assumption (I6), which needs to hold true for all = and y, we require to hold at y* ()

for any given x. As mentioned previously, the closed form solution y* () is difficult to obtain. Thus,
we define the following expression by replacing y* () with y in @2):

Vi(@,y) = Vaf(z,y)+ Viyg(ﬂs WIVa,9(@,y)] 'V, fz,y). (17)
A stochastic Neumann series in (I3)) appr0x1mates 7) with - and y being z* and /% *! (respectwely)

also recall that y/**! is an approximation of 3*(2*) by running T lower-level SGD steps to minimize
g w.rt. y for a fixed z%. Based on Assumptions @ and |5] we have the following results to
be used in the analysis [15]: |[VF(x1) — VF(z2)]] < Lp|z1 — z2|, [|ly*(z1) — y*(x2)] <
Ly|lz1 — x2|), and ||V f(z,y*(z)) — Vf(z,y)|]| < Lslly*(z) — y||. Furthermore, the bias in the
stochastic hypergradient in (ﬂ;]) (denoted as B) decays exponentially with N and its variance is
bounded, i.e. E[Hh’} - E[h’}]” 1< &sz (see Appendix A for details) [[19].

Now, we state our main theorem based on step size of the form (T0) and (TT).
Theorem 3. Suppose f and g satisfy Assumptionsl 4 and 5] l learning-rate upper bounds o,), =
2

«
j’j% and oy, = \/ﬁ with ap o and oy o satisfying m > ﬁ and a0 < apo. Further

assume that oy, is independent of the stochastic hypergradient h’}, and each sampled function
g(z,y;v) is convex. Then under the Assumption (I3) with p > 3, Cj, = min{5=—, Bpx}, T >
pLg ’

log (a0 L‘f+2)

“Tog(ion,Cr 1)’ and By, = Bv.0 BiSPS achieves the rate:

k1
= < K3 k2log K
< 4 o
Z [IVE ()] < Of NS + TR
Remark 2. We further give the convergence result under the bounded variance assumption (16)) in
Appendix A. Theorem 3| shows that BiSPS matches the optimal rate of SGD up to a logarithmic factor
without a growing batch size. We notice that the assumption (13) largely simplifies the expression on
T and does not require an explicit upper bound on 3y . As in the single-level case, whether using
one sample or two samples (which makes upper-level step-size independent of gradient) gives similar
empirical performances (see Appendix B). Note that the independence assumption is only needed
for the upper-level. Thus, the two-sample requirement of theorem does not apply to the lower-level
problem. This is useful from computational standpoint as typical bi-level algorithms run multiple
lower-level updates for each upper-level iteration.

). (18)

4 Additional Hyper-Representation and Data Distillation Experiments

Hyper-representation learning: The experiments are performed on MNIST dataset using LeNet
[26, 142]]. We use conjugate gradient method for solving system of equations when computing the

318
319
320
321
322
323
324
325
326
327
328
329
330

332

333

334
335
336
337
338
339
340
341
342
343
344

— BiSLSAdam £,.0= 100
— B

56D F=50 a=00025
- SGD f=10 a=0005

Validation Loss
Validation Loss
Validation Loss

Validation Accuracy

® Uppertterations * " Uppertterations * " Uppertterations * " Uppertterations
(a) Validation Loss (b) Validation Accuracy (c) Different a0 (d) Different 35,0
Figure 6: Validation loss (a) and accuracy (b) against iterations. (a) Comparisons between whether
to use or not use line-search at the upper or lower level; (b) Generalization performance of BiSLS-

Adam/SGD and fine-tuned Adam/SGD; (c) Validation loss against iterations for different values of
a0 (Bp,0 fixed at 100). (d) Same plot as (c) but for different values of 5, ¢ (o o fixed at 10).

2

w / 3
g G
< <
o o
h
107
= = (1%
Upper lterations Upper lterations
(a) Neumann (b) Identity (c) Distilled MNIST Images

Figure 7: (a)(b): Comparison between BiSLS-SGD and Adam/SGD for Data Distillation on MNIST
dataset. Validation loss plotted against iterations. (a) Hypergradient computed using Neumann series;
(b) Inverse Hessian in (2)) treated as the Identity [30] when computing the hypergradient; (c) Distilled
MNIST images after 3000 iterations of BiSLS-SGD.

hypergradient [17]. The upper and lower-level objectives are to optimize the embedding layers and the
classifier (i.e. the last layer of the neural net), respectively (see Appendix B for details). For constant-
step SGD and Adam, we tune the lower-level learning rate 8 € {10.0, 5.0, 1.0,0.5,0.1,0.05,0.01}.
For the upper-level learning rate, we tune o € {0.001,0.0025,0.005, 0.01, 0.05, 0.1} for SGD, and
a € {107°,5-1075,1074,5-107%,0.001,0.01} for Adam (recall that § in (T4) is set to 0). Based
on the results of Figure[6] we make the following key observations: @ line-search at the upper-level
is essential for achieving the optimal performance (Figure[6a); @ BiSLS-Adam/SGD not only
converges fast but also generalizes well (Figure [6b); ® BiSLS-Adam/SGD is highly robust to
search starting points o3 ¢ and 5 o (Figure|3_E|, 6d). It addresses the fundamental question of
how to tune « and S in bi-level optimization (see Appendix B for additional results on search cost).
Data distillation: The goal of data distillation is to generate a small set of synthetic data from an
original dataset that preserves the performance of a model when trained using the generated data
[46,[50]. We adapted the experiment set up from Lorraine et al. [30] to distill MNIST digits. We
present the results in Figure[7] where we observe that BiSLS-SGD converges significantly faster than
fine-tuned Adam or SGD, and generate realistic MNIST images (see Appendix B for more results).

5 Conclusion

In this work, we have given simple alternatives to SLS and SPS that show good empirical performance
in non-interpolating scenario without requiring the step size to be monotonic. We unify their analysis
based on a simplified envelope-type step size, and extend the analysis to the bi-level setting while
designing a SPS-based bi-level algorithm. In the end, we propose bi-level line-search algorithm
BiSLS-Adam/SGD that is empirically truly robust and adaptive to learning rate initialization. Our
work opens several possible future directions. Given the superior performance of BiSLS, we prioritize
an analysis of its convergence rates. The difficulty stems from: (a) the bias in hypergradient estimation;
(b) the dual updates in z and y*(z) (incurring nested loop structures); (c) the error in estimating y* (z).
On single-level optimization, we remark as an important direction to relax the two-sample assumption
on SPSB /SLSB . Ultimately, we hope to promote further research on bi-level optimization algorithms
with minimal tuning.

345

346

347
348
349

350

352
353

354
355

356
357

358
359

360
361

362
363

364
365

366
367

368
369

370
371

372
373

374

375
376
377

378
379

380
381

382
383

384
385

386

388
389

390
391

392
393

References
[1]1 Amir Beck. First-order methods in optimization. SIAM, 2017.

[2] Zalan Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for
continual learning and streaming. Advances in Neural Information Processing Systems, 33:
14879-14890, 2020.

[3] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1-27, 2011.

[4] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter analysis of alternating stochastic gradient
method for stochastic nested problems, 2021.

[5] Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for stochastic
bilevel optimization, 2022.

[6] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
sgd, 2020.

[7] Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms, 2022.

[8] Mathieu Dagréou, Thomas Moreau, Samuel Vaiter, and Pierre Ablin. A lower bound and a
near-optimal algorithm for bilevel empirical risk minimization, 2023.

[9] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives, 2014.

[10] James E Falk and Jiming Liu. On bilevel programming, part i: general nonlinear cases.
Mathematical Programming, 70:47-72, 1995.

[11] Chen Fan, Parikshit Ram, and Sijia Liu. Sign-maml: Efficient model-agnostic meta-learning by
signsgd, 2021.

[12] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path integrated differential estimator, 2018.

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks, 2017.

[14] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization, 2017.

[15] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming, 2018.

[16] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtarik. Sgd: General analysis and improved rates. In International conference on machine
learning, pages 5200-5209. PMLR, 2019.

[17] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation, 2020.

[18] Riccardo Grazzi, Massimiliano Pontil, and Saverio Salzo. Convergence properties of stochastic
hypergradients, 2021.

[19] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for
bilevel optimization: Complexity analysis and application to actor-critic, 2022.

[20] Feihu Huang, Junyi Li, and Shanggian Gao. Biadam: Fast adaptive bilevel optimization methods,
2023.

[21] Yo Ishizuka and Eitaro Aiyoshi. Double penalty method for bilevel optimization problems.
Annals of Operations Research, 34(1):73-88, 1992.

[22] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design, 2021.

[23] Kaiyi Ji, Mingrui Liu, Yingbin Liang, and Lei Ying. Will bilevel optimizers benefit from loops,
2022.

[24] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang.
A near-optimal algorithm for stochastic bilevel optimization via double-momentum, 2021.

10

394
395

396
397

398
399

400
401

402

404
405
406

407

408
409

410
411
412

413
414

415
416
417

418
419

420
421

422
423

424
425
426

427
428
429

430
431
432

433
434

435
436
437

438
439
440

441
442

443
444

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[27] Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with
adaptive stepsizes, 2019.

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search,
2019.

[29] Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence, 2021.

[30] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In International Conference on Artificial Intelligence and Statistics,
pages 1540-1552. PMLR, 2020.

[31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

[32] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate, 2019.

[33] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):
1574-1609, 2009.

[34] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

[35] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Taka¢. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. In International Conference on
Machine Learning, pages 2613-2621. PMLR, 2017.

[36] Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of sgd with stochastic
polyak stepsizes: Truly adaptive variants and convergence to exact solution, 2022.

[37] Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with
implicit gradients, 2019.

[38] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
arXiv preprint arXiv:1904.09237, 2019.

[39] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM
Computing Surveys (CSUR), 54(4):1-34, 2021.

[40] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1723-1732. PMLR, 2019.

[41] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient
solver for svm. In Proceedings of the 24th international conference on Machine learning, pages
807-814, 2007.

[42] Daouda Sow, Kaiyi Ji, and Yingbin Liang. On the convergence theory for hessian-free bilevel
algorithms, 2022.

[43] Sharan Vaswani, [ssam Laradji, Frederik Kunstner, Si Yi Meng, Mark Schmidt, and Simon
Lacoste-Julien. Adaptive gradient methods converge faster with over-parameterization (but you
should do a line-search). arXiv preprint arXiv:2006.06835, 2020.

[44] Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon
Lacoste-Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates,
2021.

[45] Luis Vicente, Gilles Savard, and Joaquim Jadice. Descent approaches for quadratic bilevel
programming. Journal of optimization theory and applications, 81(2):379-399, 1994.

[46] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation,
2020.

11

445
446

447

448
449

450
451

452
453
454

455
456

457
458

[47] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over
nonconvex landscapes, 2021.

[48] Jorge Nocedal Stephen J Wright. Numerical optimization, 2006.

[49] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization,
2021.

[50] Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review,
2023.

[51] Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Sijia Liu.
Revisiting and advancing fast adversarial training through the lens of bi-level optimization. In
International Conference on Machine Learning, pages 26693-26712. PMLR, 2022.

[52] Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi
Wang, and Sijia Liu. Advancing model pruning via bi-level optimization, 2023.

[53] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature
regression. arXiv preprint arXiv:2206.00719, 2022.

12

459
460
461

462

464
465

466

467
468

469

470
471

472
473

474

475

476
477

478

479

480

481
482

Notes: A few small typos have been revised in the main body. The > sign in (I4) is corrected to
<, and the missing A, ' for BiSLS-Adam in (T4) is added. In Theorem and the remark that
follows, the letter v is corrected to letter 5. In Assumption E], Ly is changed to Ly ;.

A Proofs of Theorems and Additional Convergence Results

A.1 Useful Lemmas

Lemmaﬂ]prowdes more details on the envelope structure of SPSB and SLSB given in (T0) and @
The lower bound in (T9) will also be used in Lemma (for bounding the term [|y/**+1 — ¢*(

Lemma 1. Under the Assumption[l} we have the following'

PSB : e — < = _——— 1
SPS mln{2 Lmax77b7k} < v, = min{ ||szk(xk)||2’% x 0<c, (19)
. 2(1—¢ _

SLSB : mln{g,’)/b k} < Yk < mln{”v(f)()||2”yb’k}7 O<e< 1. (20)

max 1k

Proof. The bounds in (T9) have been shown in [29] [36]]. For (20), the first part of the inequality has
been shown in [44]. For the second part, recall the Armijo condition (I4):

fio@e =V fi (1) < fir(wr) — €V i, (@)]?, 0<é< 1.
We can then rearrange this to obtain

o ilwr) = fi(wn — WV fin(wr)) _ fulow) = fi _ falow) — U,

Yo < = < = < =) 21

ellV fi (2%)]12 eV fi @)1~ ellV fi, (%)
where [} is any lower bound for f; . Also recall that 7 x. is the search starting point at iteration k,
hence @ holds for SLSB . O

Lemma[Z] gives the expressions for the constants Lr, L, and Ly. The proof can be found in [15}
Lem 2.2].

Lemma 2. Under Assumptions[3|and[} we have the following:
IVF(z1) = VF(z2)|| < Lpllzy — z2f],
ly" (1) = y*(@2) || < Lyllw1 — 22|,
IVf(z,y*(x) = V9l < Lelly*(z) — yll,

where
LitLg L L,L
Ly= Ly + =220 4 Z(Lg + Z22C) ~ O(r?)
Hg Hg Hg
L
Ly:iNO(“)
Hg
L,(L¢y+ L L L, L
LF:Lf,1+ g(f1 f) +71<LG+ g9 G)NO(HS)
Hg Hg Hg

Lemma 3]is on the bias and variance of the stochastic hypergradient in (I3]), which has the following
form [19]

2

N
Hj = Vel (@h, g 6) = Vayg (o, 5" w0) [H I = V3,9 g)]V f (@, 5 5 9).

(22)
Recall that the hypergradient surrogate defined in based on (2, y*+1) is
V@ gt) = Vo f (2", ") + Vi, (b yM [V, g (@ yMTIV fR gE . 23)
Given a filtration F, ,; up to and including z* and y**1, the bias of the stochastic hypergradient
is defined as B = Vf(a*,y**+1) — E[h%|F,], and the variance is defined as E[||V f (2", y**1) —

[hk 1712 Lemmahas been proven in [19] Lem 1.] (also see [4] Lem 5.]). Lemmasll andl
will be used in the proofs of Theorems [3]and [

13

483 Lemma 3. Under Assumptions and|5| the bias and variance of the stochastic hypergradient h’;
484 satisfy the following

Bias: |V 1(c*,y#+1) — S| A < 29 (1 — Ho)N vy

Hg Ly
Variance: E[||V f(z*, y* 1) — E[hlﬂ]:k]” | < 6%, Vk,
as5 where N is the total number of samples, and 6? = afc + [(J? +L3)(og +2L2) + J?Lg] %} ~ O(k?).

s8s Lemmald]is on the descent of the quantity V¥ := F(2*) — F(z*) + [[y* — y*(2*)||. It will be used
487 in the proofs of Theorem 3]and[4]

ass Lemma 4. Suppose F satisfies AssumptionsEl and@ sequences ov), =

a0

and o
\/H Lk = k1

489 with oy, o and oy o satisfying LF+714L2 > 2bo az . ° and oy 9 < o o. Further assume that oy, is independent

40 of h’]’% Then step sizes of the form (]E[) and (T1)) achieve the following:
E[|VF(z*)1?] + (e 1L} + 2E[ly" ! — y* (") [IP]+

L
sz’“> Ellly* - y* ()|, vk, 24)

a0t where VF = F(zF) — F(z*) + ||y*+ — y*(2%+1)||? and recall that F is the upper-level loss defined

492 Iin (]II)

a3 Proof. We denote E[h;|F,] = h%. By the L p-smoothness of the objective F:

E[V*1] < E[VF] - O‘l i3

apxB® 4+ (2L oG), +

L
F(a"1) < P(a¥) + (VF (), o — o) + S5l — k)2,

494 Take expectation conditioned on a filtration of past iterates J, ,; (up to and include z*, y**1):

E[P(e*1)|Fi] < F(z*) + B(VF(a*), 2 — o) | Fe] + 2[4+ — o)) 7,)
— Fa*) - Blau(VF(), 1) + 2R Ry ity e
) pa¥) - Elon| PV,) + LT e | BRI o
— ra#) - PP 2 - Bl ey, B0 0oy ey
LFE[aﬂ]:k] ||h ”2 LFE[ak|fk] 52

2 2 s

495 where (a) is by the assumption that . is independent of h%. Then expand the term ||V F(z*) — h% |2
496 as follows:

IVF(*) = Rf|* = [VE(®) = Vf(z*,y**) + V(2 y*) - B2
< 2|VF(a*) = Vf(* y"*)| + 2|V (2, y*) -)12
(v)
< 2L3yH =yt (@h)|? + 282,
a97 where (b) is by Lemma[2]and[3] Substituting this into the above:

BIFA)IF) < Fot) - SO ooty pe - BBl e, BRI e
Blos FUIL I — g (M) P + Elaf 72 + ZE0E T 52
< (et - ST - Sk + ZE e
s A = @O a5+ L 2

14

ags where (c) is by a; , < oy and ap ;> . Then take total expectations and subtract F'(x™*):

E[F(c"+!) - F(a")] < E[F(e*) - F(a")] - SEE[|VF(a")|?) - S4E

LFach

apy LAE[[[y* ! — y*(:ck>||21 + oy 1 B + g (25)

a90 Now define the potential function V¥ := F(2*) — F(z*) + ||y**! — y*(2**1)||? and expand the
so0 term ||yF T — y* (xFH1)]|2 as follows:

[yF —y* (@™))12 = (lyF T =yt (2F) + yt (2F) — yr (R)2
<2yt =y (@M)|1P + 2]y (=) =y (&* Y|P

(d) .
< 2yt =yt (@M)|)? + 2L |2 — 2|

=2|y**t — y* (@")|® + 2L5 ok |hF)12
=2y =y (@)1 + 2Lj0F IR — R + R,
so1 where (d) is by Lemma Take expectation conditioned on F, ,;:
Ellly* ™ =y (*) IP1F < 20" =y (@)1 + 2Lk [R5)? + 23067
<2yt — gy (@M)P + 2Lg2;ab,k||hf”2 + 2L32;ab,k0f-
s02 Then, take total expectations:
Eflly** —y* (@)|%) < 2E[[ly"* — y* (@")I1°] + 2L5 a3 E[|RF|%] + 2Ljat 157 (26)
s03 Now, based on the definition of V* and combining (23) and (26):

E[V**) < E[F(*) - F(a*)) - ZEE[[VF(")|P)

[”}; H] (o — Lpag’k — 4L§a§’k) + (Olb,kL?” + 2)E[||yk+1 - y*(xk)HQ]"‘
B + (2L202, + LF; o)62

< E[F(*) — F(*)] - SSEE[IVE @) 2] + (ann LF +2)Elly " —y*)7+
aon B2 + (2202, + Lyod, 162

«
= E[V¥] — S E[|VF @] + (a0l + 2E[ly" "~y ()]*)+
Lrag,
aniB® + (2L507 + —52)5F — Ellly* —y* (")),
s04 where (e) is because LF%M% > = ;kl% > (Lp +4L})app =
2
505 (LF+4LZ):if1’. O

506 Lemmal 5|and Lemma|§| give two alternatives for boundmg the term ly*+t — y (2%)])%. Lemmalls
507 based on the assumption Ey [g(, y*(2); %) — g(2, ¥} ;1)) < o, V. The proof for its one-variable
s08 analogous assumption is given in Loizou et al. [29]. Here we follow a similar approach for the
509 two-variable function g(z,y). Lemma will be used in the proof of Theorem

sto Lemma 5. Suppose Assumptions[3|[B] and the bounded optimal function value assumption (13)) hold.
511 Further assume that each sampled function g(x, y; 1) is convex, then step size of the form|l I|achieves
512 the following:

E[ly* ™ = y* (@")”] < (1 = pgCr) "E[Iy* — y* (&™) I1°] + 28s,x T2,

513 where Cy = min{zﬁ7 Bo,k }-
9

15

B[Rk + 25 kg E[|2%]|2)+

st Proof. We denote h%* =V, g(z*,y%*;¢), and }',;,t be a filtration up to and including z* and y***
515 We have,

[y* =y (@))2 = [yt = Brehbt — y* (aF)]
= [ly*" — y* (@®)|? = 2B, (WP — yr(F), RET) + BR IR

(a) * £ 6 £
< g™ =y @I = 28eely™ =y (@)) + gl) — gty 45)

I — g @) = 2B (6™ — 5 (@),) + 2B o, 5P 0) — gy i)
I =yt)P — 2Bl — (),

2Br.lg(x*, y*'5) — g(a* (mk),w g(a®, y (2%);) — g(a®, vl 5)]
I g @+ 2a R — g P + gl) — gy (o

28,e[g(x", y* (2*);) — g(=*, yhn 3 9)]

(c)
< ™ =y @I+ 2= (™ =y ("), hg ") + 92",y) — gty (@))]+
28 klg (=", y* («");) — g(2*, vl 3 0],
st where (a) is by Lemma (1} (b) is by choosing p > %, and, (c) is by individual convexity of
517 g(z,y;9) such that —(y*" — y*(a), 1) + g(2F, " ¢) — g(2F,y*(2¥);4) < 0 and recalling
st that C), = min{z}'%L7 Bok} < Br. by Lemmalﬂ Take expectation conditioned on]-',;t and note that

sio E[REY|F,] = Vyg(ab, y"+h), Elg(a*, yot)| F] = g(2®, %), and E[g(z*, y*(a*);9)] =
s20 g(ak,y*(aF)):
[y — y* (@) 12 Fr] < ly™t =y (@)]? + 2Ck[— (™" — y* (%), Vyg (2", 55+ 1))+
g(a®,y*t) — g(z*, y*(a¥))] + 2By k0. 27)

521 Now, based on the strong convexity of g w.r.t. ¥,
* * H
—(W" =y (@), Vgt g) + 9",y — gty (@) < THYE -t @)
522 we can further obtain (by taking total expectations of (27) and using strong-convexity):

E[lly™ " — y* (@) 1] < (1 = pgCR)E[lly™* — y* (@)I*] + 2Bb k07

523 Solve this recursively from ¢ = O tot = 1" — 1 (recall T is the total number of lower-level steps,
s Y0 = yF and yF 1 = oPT):

E[lly* " — y* (") 1”] < (1 = 1gCr) "Ellly" — y* (") |*] + 280 10 Z (1= 1gCr)’
7=0

< (1= pgCr) Ellly* — y* (")I17] + 285 4T
525 O

s26 Lemma [6] is based on the standard bounded variance assumption E,[[|V,g(z,y*(z);¢) —
527 Vyg(z,y*(x))|?] < o2, Va,y in the bi-level optimization literature [19, 4]. Lemma |§| will be
528 used in the proof of Theorem

s20 Lemma 6. Suppose Assumptions 3] [5]and the bounded variance assumption (L6) hold. Suppose that

53 p > max{# Ty “ﬁLg} Bro < mm{# Ty ’;Z:rLL - 1%qu }. Then step size of the form
ng+Lg
531 [[1]achieves the following: o
k . Bor 2ugL K owiok
E[lly"*! =y (@) P] < (2= = =L Bo1) "Ellly* — y* (") + T8} o,

Cy tg + Ly

532 where Cy = min{zﬁ7 Bo,k }-
9

16

533

534

535

536

537
538

539

540
541

542

543

544

545

546

547

548

Proof. Similar to the proof of Lemmal[3] we can start with

[yt — y* (@F) |2 = [[yht =y ()P = 2B (™" — y* (2%), RET) + BE || hE 2.
Divide both sides by S +

||yk’t+1 - y*(l“k)Hz Hyk’t —y (@) k,t kY 1kt k.t 2
= __2 U g% T 7h) _+_6k h 5 .
6ht 5ht <y Y () g > JH g H
Then use the facts that 35, + < By and By > Cj,

[yttt —

g (@))? [l -y (b)) A A
S -2 T x ah)+ AR5
Bok cn (Y™t =y (@), hgt) + By kIl

Next, take expectation conditioned on the Filtration F, ,; . up to and including x and y* !

1

* ! 1 * 4 *
mﬂf[llyk’t+1 — Y (@)|?|Fy] < aE[Ilyk’t =y (@) P Fre] = 20" =y (=), Vg (=, ™)

+ Bo.k Bl by’]
= —E[ly"" =y (@) P Fe) — 2008 =y (2F), Vg, yhh)
+ BupB[[[RE — Vg(at, ™) + Vg (ak, g |12 F)
< GBI -y @PIFL - 205 -y @), Vol)
(xk7yk¢)”%

where (a) is by the bounded variance assumption (T6). Based on strong-convexity of ¢ [34, Theorem
2.1.11], we have

1 i / 1 . 2ty L .
—E[|ly" ! —y* (@)] < @Ilyk’t —y* (@) - g -yt @)1

B,k g + Ly
- W k7 k,ty|2 k7 E,ty (12
#Q+Lgll g™yl (@, y™)
Multiply by B, in both sides, group terms, and take total expectations to reach
2ugL
ElllFt+1 — o* @7 _“Hgtg kit (kY2 2 2
[lly y* (@))% < (Ck o+ Ly Boe)Ellly™" =y (@%)[I°] + By oy
+ Bk (Bok —)va(xka yk’t)Hz

tg + Ly

b) Boe 2pgLg Byt w2 2 9
A) — + R
(Ck Mq-i-L B,)E[lly Y (@)[I°] + By oy

where in (b) we have chosen £ 1, < 50 < Vk. Solving this recursion similar to Lemma

Hg +L ’
we obtain:
B[y -y (@) 2] < (22— 2ale g TRy @)%+ TER 02 @8)
Ck pg + Lg b

In (28), we require ﬂ” ko 3ﬂiLJ5bk >0 (recall Cp = rmn{QpL , Bb k} < Brt < Bpk), this is
equivalent to C < “ Z +L ¢ In case of C}, = % L , we choose p > > (to avoid contradictions,

we also choose p > “9+Lg) In case of Cy, = By, we choose By i, < ﬁb 0 < ’;ZJFLQ

g+-g
We also require %—: - 5“j’rL9 Boe < 1. 1In case of C; = ppy, this is equivalent to

g

,:j-Lq By = 0, which is satisfied by all 8. In case of Cp = ﬁ, we choose By <
Bro < ——2—1—. Puting everything together, we have p > max{—~ - - 9+L9} and

s 2pLy— HgiLZ tg+Lg

HgtLg 1

Br.0 < min{ +L T " 2pLg— 2taza b =

Hg+Lg

17

549

550

551
552

553
554

555
556

557

558

559

560

561
562

563

564

565

566
567

A.2 Single-level Convex Proofs
A.2.1 Proof of Theorem [I]

The proof of Theorem T]is similar to the standard proof of decaying-step SGD (GD) that can be found
in e.g. Beck [1]]. Here, we give the proof for completeness.

2"+ = a*[|? = fla® — 2*[|? — 29 (2® — 2, Vfile®)) + 7NV fil®)]?
(a)
< lo® —a*|? = 2k (fi(2") = fi(a™) + IV Fil2®))?

()
< fla® =2t |? = 2m(fil2®) = fil@™)) + 13k GP

where (a) is by individual convexity of f;, and (b) is by Assumption[2] Take conditional expectation
and assume that y;, is independent of sample &

©)

Ef " — 2™ |?|2*] < [la* — 2*||* = 2B[y]a®)(£ (") = f(2")) + 95k G?
(@)
< llz® — 2|1 = 2y (f(2") = f(2*)) + 756G

where (c) is by independence of v, and 2*, and (d) is because Y,k < Y&, Vk. Take total expectation
and rearrange

20k Elf(2%) = f(27)] S Ellla" - 2*%) = Bllla"*" = 2*[*] + 7 , G?

Using the fact that v, k1 <, Vk € [K — 1] and set v, 1, = \/ﬁ’ we obtain
2y, k1 B[f(a") = f(2*)] <E[|lz" — %)) — E[Jla*T" — 2% + kvf 1G2
Summing over £ = 0 to Kk = K — 1 we obtain
K-1
[2° —z*|® — E[l2® —2*|*] | 5 51 1
2 E[f < — -
K= Z vl < K +70GK,;)14+1
2= 362 l0g(K)
- K K

Define z = % ZkK:_Ol «¥, apply Jensen’s inequality and rearrange

|2 — 2*|* | 15G*log(K)

Ky *
L R T ey G~y o

A.3 Proof of Theorem

The approach of Theorem|2|1s similar to [16 Theorem 3.2]. The crucial difference is that the step
size in [16, Theorem 3.2] is constant (v = , whereas for envelope-type step size
it is of the form:

Y = min{max{yr, Y} Wk}, Yk = minfw, v},
where 4y, can be (e.g. in the case of SPSB):

_ . f’bk (xk) - l;kk Yb,0 1
= min) w=—
[A L T .
The proof of Theorem suggests that the step size can be either C:CH’CV(T,)(1)’“"2 or dependlng on
their magnitudes for k < ko — 1 (kg = max{1, [vo/w] — 1}). After ko 1terat10ns the step size is

Ve = ,Zj_(i This finding is numerically confirmed by the experimental results in Section

18

see 1o proceed with the proof, we have:
lz*+ = 2% = [la* — eV fi(2*) — 27|

= [la® — 2*|* = 23 (V fi(e®), &® — &%) + RNV fil2")|?

(a)
< la® = 2| = 2V fila), 2 —) + 27 k1Y fi(2®)),
seo where (a) is because v, < 7, 1, Vk. Take conditional expectations

Ef 2 — 2" |?|2*] < a* — 27 |* = 2E[n|"[(V f(2*), &% — 2%) + 73 kBl V fi(2®) | |2*]
()
< Nla® = a*)? = pE[yela*]llz® — 2*||* — 2Elyila®)[f (") — £(2)] + 73 G?

2 k_ x(2 _
< 2" = 2*[]® — py

|a* — 2™ = 2y [f (2%) = f(27)] + 25 G

570 where (b) is by bounded gradients assumption and strong convexity of f. Take total expectation and
571 rearrange

(1 = py) E[[J2* — a|?] = E[fJa**" — 2|7 n Tk G?
T,k Yk

2E[f(«*) — f(z*)] <

sz Choose kg = max{l, [yo/w] — 1}, then for Vk s.t. k > ko, we have v, = min{w, v x} =
573 Yo,k = 77, Which means v, = Xy after ko steps. Within the first ko steps, the step size is
574y = min{w, 7k }. Hence, for k > ky we have

(1 — py) Efl|l2* — 2*[?] = Bff|la** — 2*[1°] | %G

2K (Ek — f(z*)] < +
[F() — fa)] < o L
575 Now, sum from k = kg to K — 1
K—1 K-1 K—1
1 —) Ell|2% — 2*[]?] — EfJJa* ! — 2*|?] Y0 G?
2 E[f(z®) — f(z*)] < (, + Jor
POLISEYEDY 1 >
=Rro0 —FR0 =FRo0
(29)
s76 For the first term in (29), call it A, we expand it as
K—1
T 1 Bz — 2*)7)
A= Y E[lz* -2 (— - —) + E|zg, — 2*P)(— —p) - ——————
ko1 Mk Vk—1 V1 ko V,K-1

K-1
cio k1 k R
< 3 Ellet o)= -) + Bl — o) -

k=ko+1

1)

@ *(12
< Ells, — o | itko.

577 where (d) is because vy > i, we have k;gl - 7% — 1 < 0,Yk and % — uu < pko. For the second
s78 term in (29), call it B, we have

K-1
"G 2 1 2 2
B = < 7@ dz = 7oG2[log(K) — log(ko + 1)] < 4G log K
bl =0 /ko %= [log(K) —log(ko + 1)] < 70G” log

579 Putting A and B together, we obtain

1 &k o ElllzRo — 2|2k ~0G? log(K)
Tk k:ZkUE[f(w) I S Ry T e R k) (30)

580 Within the first kg — 1 iterations, similarly to the above, we have
E[[la"*! —2*(|] < (1 = pyp)E[[|2* — 2*(1%] = 291 E[f (z*) — f(2™)] + 75, G?
< (1= pyp)Blllz* — 2*(1°] + 5 ,.G7.

19

ss1 For the first £ < ko — 1 iterations, 7; , = w where wp < 1; thus, we obtain the following
E[|z* = 2*(] < (1 —) E[||z* — 2*|*] + 73,G>.
s82 Solve this recursively,

ko—1

212
* N ., G
Ellz* — 2*[|?] < (1 — pe)[|2® — 2" + D (1 — po)ro 1(16171)2
k=0
ko—1 22
¥ %G
< (-l =P+ Y A
k=0
k 0 2 2 ~2 ko—1 1
<= oll2” = z*[* + %G / —— d
<(pw)" ||z — 2| Yo o 1 +2)? T
* 1
= (1=) fla® = 2" | + 456G (1 = =)
< (1 - /’Lw)kOHxO - x*”Q + ’Y(Q)GQ. (31)
ss3 Putting this into (30), we obtain
K—1
! Hkio vG?log K
Elf(2*) = f(2*)] < —229 k a2 2G4 oGl
Ry 2 B — 1) < g (empl ksl = I +936%) + G

— _ 1 K-1 k 5 - .
se4 Define T = - D ore ko £ then by Jensen’s inequality we have

70 G?log K

E[f(2x) — f(@*)] < /%){exp(—koﬂwﬂxo — PG Sy

= 2(K — ko
sss where kg = max{1, [o/w] — 1} and 7o > 1.
sss A.4 Bi-level Proofs

ss7 A.4.1 Proof of Theorem 3

sss Start with Lemma [t

ok «
E[VH <E[VH] - TE[HVF(SU’C)HZ] + (i L} + 2E[Iy* T — v () |*)+
LFOé2 _
ok B + (2Lj03, + —525)5F — Elly* — y" (@")|°)
sss We substitute the result of Lemmafor the expression E[|y*+1 — y*(2*)]?],

BV < BIVH - SEE[IVEEH)IP) + (00l +2)(1— 1yCh)T — [l — y* (@))+

L
2ab’k5b,kTL?U§ + 46b,kTU§ + Olb’kB2 + (2L§ + TF)OZg’ké'?

(a) al,k «
< E[V¥] - T]E[HVF(xk)HQ] + [(w oL +2)(1 = pgCr—1)" = 1E[ly* — y* (&")|*]+
L
2 2 2 2 2 Fy 2 ~2
2ab7kﬂb,kTLf0'g + 46b7kT0'g + Oéb7kB + (2Ly + 7)ab7kof
(b) a L -
< EVY = SR E(IVF (@) + 200,100k T Loy +4BuiToy + aniB® + 2Ly + =)o 467,

s00 where (a) is by ap0 > apk, Cx—1 < Cf, Vk, hence (a0L3)(1 — p1,Cx 1) > (e x L) (1 —

. . . log[a L2+2 .
sot pgCr)T (recall that C), = mln{ﬁ,ﬁhk} in Lemma ; (b)isby T > %, which

s92 implies that (ab,oLfc +2)(1 — puyCr—1)T < 1. Now, rearrange and use the fact that oy c—1 < ay .

ar k1 B[|VF(a")|°] < 2B[VF] = 2E[VFH] + 4w By kT LG 0 + 8By 1 Tos + 200, B% + (AL2 + Lp)ag .57

20

593

594

595

596

597

598

599

600

601

602

603

604

605

606

Then sum over k = 0to K — 1:

2170 ATI302 ' 02 B?
Ez:: [IVE(z]_al,K—lK—i_CVZKlKZabkﬁbk—i_ 7K2ﬁbk+ 7Kzabk+

(4L2 4+ Lp)63 "=

1
y 2
Ty RS o
K E bk
k=0

QL K—1

© 2V° N AT L0 a.00p,0 Kz_:l 1 N 870200 —~ 1 N
B CVl,K—lK Ozvi_lK — (k‘ + 1)1'5 Qy, K—lK k +1

N 2B%q Kz‘:l 1 (4L +Lp)5iad, Z
a1 K =~ \/m apx-1K k+ 1
) 2y N 8TL3c0'3ab’06b)0 n 8T(7£27,3b70 log(K)
am\/R Oél,o\/f? Oél,o\/f?

2B20¢b,0 (4L§ + LF)&J%Oé%’O IOg(K)
+)
a0 oV K

where we substituted oy j, = % and By = fi‘i in (c); (d) is based on Zi:ol W < 2,

Zk o k+1 < log(K), and ZkK;()l ﬁ < /K. Recall that in Lemma we have Lf ~ O(Kk?),

L, ~ O(k), and Lp ~ O(k3). Also recall that o), = \;:% and oy = \/W’
we choose o ~ apo ~ OK™3), T ~ O(k), and B9 ~ O(k™2). Then we can obtain

3 HQO
% kO E[|VF(x)||2]S0(\/“—?+%(K)).

INE

hence

A.4.2 Theorem 4 and its proof

Theorem 4. Suppose f and g satisfy Assumptionsl and. | and, learning-rate upper bounds oy,), =
2

«
;’j% and oy, = \/ﬁ with ap o and oy o satisfying m > ﬁ and a0 < apo. Further

assume that oy, is independent of the stochasnc hypergradlent h’C Then, under the Bounded-variance

Lg bgtLg
assumption in (16) with p > max{u T 4Lg b Bro < mln{u T, TaLs aprs L} and

ng+tlLg
T> log (5 ap,0L3+2)
Z — gL
min{— 10g(1—M:iLg Bb,ic—1),— log((2pLg —H:ﬂ_ﬁ;)Bb.0)}

, BiSPS achieves the following rate:

K> k2log K

VET TR

1 K—-1 B
= S EIIVFEH)|?) < 0=
k=0

Proof. Start with Lemma [4}

alk

BV <E[VH — YRRV + (0051 + 2E[l* — v @)+

LFOég kN~ *
apk B® 4+ (2L aj), + 5)57 — E[lly* — y*(2™)]].

We substitute the result of Lemmal6|for the expression E[[|y**! — y*(2*)|?],

E[V*1] < E[VF] - O‘l i)

BV ()] + [0l +2)C - 245 6,07~ 1Bl - @)+

Lr -
+ L?TUZO%ICBZ?J@ +2T0 87), + w1 B + 217 + 5 —-Jag k07

o L 5
“LEE(VF (M) + L3To 2oy 182, + 2T02 B2), + app B® + 202 + —2]ad .62,

E[V*] - 5

21

log (o, OL - +2) log(ozg7OL§v+2)

2} 21y L
_ log(lfuﬁb K_1) —log(2pLg— “gngL‘(;)Bu,0

‘7

07 where in (a) we have chosen 7' > max{ }. This ensures

log(a, L2 +2) . B,k 2
s owfﬂg — , Vk, which guarantees that (cv , L3 +2) (% — MMiL Bor)T—1<0.
HgTlg

609 Now, rearrange and use the fact that oy g1 < oy i,

608 thatT’ >

ar k1 B[|VF(2")|°] < 2B[VF] = 2B[V*HY] + 20 185, T L} 07 + 485 1 Top + 200, B% + (4L2 + Lp)aj .57
610 Sumoverk=0tok =K — 1:

1 K—IE VF VO 2TL2 2 K-—1 2 K—
gkz:;) [IVF(")1%] < P 1K . 1Kzabkﬁbk+ e kz Bt
4L —‘rLF
Zab
K — 1K Q) K— 1K

K
k=
) 2V 2TL302a000 v 1 4Ta2ﬂb0

a1 K + o k1K Z (k+1)3/2 ap k1K Z kJrl

2820y, Kz—:l 1 (4L +Lp) ofozgo Z
al,KflK =0 (]C + 1)0‘5 al K— 1K k + 1

(2) 210 2T L30}an05 N ATo} B log(K)

< =+
o -1 K apoVK apoVK
N 2B2Oéb,0 n (4L12} + LF)&JQ‘O%,O lOg(K)
a0 Oél,o\/f? ’

Xb,0

611 where in (b) we have substituted ab K= \/7 and By, = fm, and (c) is by Zk 0 k+1)3/2 <2,

612 Yy g < log(K),and Y1 Gz < VK. Similar to the proof of Theorem , we choose
o arp ~ o ~ Ok~ 3), T ~ O(k), and B0 ~ O(k~") to obtain & 1 M E[|VE(2?)|?] <

614 (’)(\/»Jr'i l\(;gf(K)). O

sis B Additional Experiment Results

616 This section is organized as follows. First, we discuss synthetic quadratics experiments. Second,
617 we provide more details on the sensitivity of the algorithms to the choices of ¢ in (I4), on the reset
e18 procedure, and on the search cost of BiSLS. Third, we compare the empirical performance of 1-sample
619 vs 2-samples implementations of our algorithms for single-level convex and bi-level optimization.
620 Some additional results for hyper-representation learning and data distillation experiments are also
621 presented. We run 5 independent runs for all our experiments.

622 B.1 Synthetic Quadratics

The experiments on quadratic functions are adapted from Loizou et al. [29]. The training objective is
as follows:

fla) = 5 (o —ai)THiw — %) + 3 (@~ 23)" Holaw —),

where H; (+ = 1, 2) are positive definite. The optimal solutions z] (¢ = 1, 2) are generated randomly
from a standard normal distribution. Specifically, H; is defined as follows:

H; = O" -Diag(log(1+ X)) -0, i=1,2,

623 where O and)\; are taken from the spectral decomposition of PT P, and P is generated from the
624 standard normal distribution. Figure [§]shows the convergence of various algorithms with different
625 starting points. Interestingly, both SPSB with either 1 sample or 2 samples (1 sample for computing
626 the gradient and the other for computing the step size) converge to the optimal solution (labelled with
627 a star).

22

628

629
630

632
633
634
635
636

637

638
639
640

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

656
657
658
659
660

2 O /,;;’:\ _____ -==0
o T
o =
—— DecsPs e
—— SPSB R
—— SPSB (2 samples) iy
> O Starting points -,\\'\'\\ X
01 % x; and x5 N
\
i\z Minimum \\
\\
\~
\\
~N
-2 he)
-2 0 2

X

Figure 8: Iterate trajectories of different starting points for the synthetic quadratic experiments.

B.2 Sensitivity of J, reset, and search cost

In this section, we discuss the effects of ¢ in (T4), n in Algorithm 2] and comment on the search cost
of the options in the Reset Algorithm[2] Recall that the line-search condition (§)) assumes that we can
find a largest vy, < 730 to satisfy it. However, in practice, we apply a backtracking procedure, i.e.
Yk = Yk * w,0 < w < 1, until 7, satisfies (). Therefore, the found learning rate is not guaranteed
to be the largest. Nonetheless, we assume that v is the largest to simplify our analysis given above
(similar arguments apply to line-search at both upper and lower-level in the bi-level optimization).
The experiments in this section are based on hyper-representation learning [42]]. In this case, the
objective of the induced bilevel-optimization problem can be written as:

1

= pg I w)e () ~ i

min F'(w)
w

A
s.t. ¢*(w) = argmin (Xo;w)e — Ya||? + §Hc||2 ,

1 ~

where (X7,Y7) and (X2, Y>) are validation and training data sets with sizes Dy, and Dx,, respec-

tively; f(-; w) are the embedding layers of the model parameterized by w; and, c is the classification
layer. Moreover, we use conjugate gradient methods (CG) [[17, (18] to solve the linear system when
computing the hypergradient for hyper-representation learning experiments.

Reset While Algorithm 2] (reset) can be applied to both upper and lower-level problems, we focus
our discussions here on the upper-level learning rate (o). This is because we empirically find it to
be more critical for the convergence performance (see Figure[6a). As shown in Algorithm 2] reset has
3 options. Options 1, 2, and 3 search starting from oy o, o;—1, and nog—1, at iteration k respectively.
Option 1 has the highest search cost as it always starts from the same initial upper bound (cy).
Option 2 ensures the monotonicity of the learning rate due to oy, < o = a—1. Option 3 chooses
the search starting point at iteration k (o ;) by multiplying the previous learning rate (cx—1) by a
factor n > 1. As in the single-level convex case where monotonicity in the step size can potentially
lead to slow convergence (see Figure 3], we again observe that monotonicity in the upper learning
rate (i.e. option 2) leads to poorer performance when compared against options 1 or 3 as shown in
Figure[9] Finally, we compare the performance of different »s in option 3 (note that 7 = 1 in option 3
is equivalent to option 2). We observe in Figure [[0| that different ns perform equally well. This shows
the robustness of our algorithm to the choice of 7. As mentioned previously, the choice of option 3
over option 1 are due to 2 reasons: (a) reduced search cost; (b) provides an overall non-increasing and
non-monotonic trend of upper bound «, ;.. We discuss search cost of different 7s in option 3 below.

Search Cost We investigate the line-search cost based on options 1, 2, and 3 in reset (Algorithm [2)
for the upper-level problem. For option 1, the search cost in terms of number of search rounds (i.e.
number of evaluations using (I4)) per iteration for BiSLS-SGD and BiSLS-Adam is 89 + 15 and
115£16, respectively. The search cost of BiSLS-Adam is higher than that of BiSLS-SGD because the
feasible learning rate range for Adam is typically smaller than SGD at the upper-level. Based on the

23

661

663
664
665
666
667
668

669

671
672
673
674
675
676
677
678
679

680

681
682
683
684
685
686

687

688
689

g

©
-
©

—— 5=0.0 (Opt-1) —— 6=0.0 (Opt-1)
6=0.0 (Opt-2) 5=0.0 (Opt-2)
1.6 —— 5=0.0 (Opt-3) 1.6 —— 5=0.0 (Opt-3)

= I
N S

Validation Loss
5

Validation Loss
o

0 10 20 30 40 50 0 10 20 30 40 50
Upper lterations Upper lterations
(a) Different Opt (BiSLS-SGD) (b) Different Opt (BiSLS-Adam)

Figure 9: Validation loss against iterations with search options 1, 2, and 3 for the upper-level learning
rate. The results for BiSLS-SGD and BiSLS-Adam are in (a) and (b), respectively. For the lower-level
search, we fix it option 1 with /3, ¢ = 100. Results are based on hyper-representation learning.

results in Figure[TT] we observe the use of option 3 in reset can significantly reduce the search cost for
both BiSLS-Adam and BiSLS-SGD. For example, choosing 1 = 2 in option 3 results in an average
upper-level search cost of only ~ 9 rounds per iteration, which is much smaller than that of option 1.
As we have shown in Figure 9] options 1 and 3 have nearly the same performance. Therefore, option
3 is an efficient algorithm that maintains good performance while reducing computation cost. Option
2 has the lowest search cost (~ 4 rounds per iteration). However, its performance is not as good as
option 1 or 3 as observed in Figure[9] Moreover, the average lower-level search cost is only 1 round
per iteration when option 1 is used (see Figure[TTD).

Sensitivity on § As mentioned in Sec 2] due to the stochastic error in hypergradient computation,
further complicated by the approximation error of y*(z) (see (I4)), a learning rate is not guaranteed
to be found in the bi-level case. Specifically, this is in contrast to the single-level convex problems.
To avoid this, we introduce in a J slack to give some tolerance to such errors. Here, we give a
thorough investigation of the effects of 4 on performance. We vary its magnitude across 6 orders
for both reset options 1 and 3 (see Algorithm 2] and discussions on reset above). We observe that
despite a large difference on the magnitudes of d, they all share very similar performance for both
BiSLS-SGD and BiSLS-Adam: see Figures[I2]and[I3] We summarize the key fins in this section as
follows: @ The option 3 in reset has good empirical performance (outperforms option 2) and
is an effective way to reduce search cost (Figure[9}[11); @ BiSLS is highly robust to different
choices of 7 in option 3 and ¢ in (T4) (Figure[10} [12}[13).

B.3 Data distillation objective and additional results

We let Ls(w) denote the loss evaluated on dataset S with model weights w. The objective of data
distillation can be expressed as a BO problem as follows:

D* = argmin Ly (w*(D)) st w*(D) = argmin Lp(w),
D w

where V' is of the same size as D and subsampled from the entire (original) dataset V. The solution
D* is the distilled data, e.g. 9 MNIST digits each corresponding to a different label. In figure [[4a]
we show the performance of BiSPS for different values of o, o in comparison with BiSLS-SGD, and
observe that BiSLS-SGD has better performance. In[I4b] we show the results when we increase
the number of lower-level iterations (T) from 20 to 50. As observed for T = 20 (in Figure [7),
BiSLS-SGD here also outperforms a fine-tuned Adam or SGD.

B.4 1-sample or 2-samples versions of algorithms for convex and bi-level optimization

We provide additional results to compare the performance of 1-sample and 2-samples (one for
computing the gradient and the other for computing the step size) versions of our algorithms for

24

690
691
692

693

695
696
697
698
699
700
701
702

704
705

-
©

— BISLS-SGD n=1.0 —— BiSLS-Adam n=1.0

BiSLS-SGD n=2.0 BiSLS-Adam n=2.0
1.6 —— BISLS-SGD n=5.0 1.6 —— BiSLS-Adam n=5.0
—— BiSLS-SGD n=7.0 —— BiSLS-Adam n=7.0

I
IS

14 —— BISLS-SGD n=10.0 BiSLS-Adam n=10.0

Validation Loss
"
o
Validation Loss
o o - -
> ® o N

I
IS

o
N}

0 10 20 30 40 50 0 10 20 30 40 50
Upper lterations Upper lterations
(a) Different ns (BiSLS-SGD) (b) Different ns (BiSLS-Adam)

Figure 10: Validation loss against iterations for different s based on reset option 3. Results for
BiSLS-SGD are given in (a) and for BiSLS-Adam are given in (b). Note that = 1 in reset option 3
is equivalent to reset option 2. For the lower-level search, we fix it option 1 with 8 o = 100. Results
are based on hyper-representation learning.

25
—4— BiSLS-Adam

BiSLS-SGD /

N
o

= g =

o 1< =)

@ i o

\

=
o

g
=}
S

Upper-Level Search Cost
G
Lower-Level Search Cost
5
2

o
©
©

o
©
©

2 4 6 8 10 0 1000 2000 3000 4000 5000
n Bb,o

(a) Upper-level search cost (b) Lower-level search cost

Figure 11: (a) Upper-level search cost measured in terms of average number of search rounds per
iteration against different 7s in reset (Algorithm[2). (b) Lower-level search cost measured in the same
way as upper-level against different lower-level search starting points (8p,0). The lower-level search
is done with option 1 (see above for discussions about these options).

SPSB and BiSPS used for single-level and bi-level optimization, respectively. In the single-level case
(Figure[T3)), we observe that 2-samples SPSB performs just as well as 1-sample SPSB . Interestingly,
we observe that their step sizes also follow a similar pattern. That is: an initial increase followed
k *
% is frequently used, and eventually changes to decaying-
step SGD. This seems to also match with Theorem [2] where a transition point for SPSB (ko =
max{1, [yo/w] = 1},w = g7—,70 >) is predicted. At the same time, we also note that
(perhaps, unsurprisingly) the 2-samples version seems to have a slightly more oscillatory behavior
than the 1-sample version as shown in Figure [I5] SLSB with either 1-sample or 2-samples also
result in a similar performance and step size. Overall, despite the requirements of Theorems [I]
and 2| for a 2-samples assumption, the empirical performance of 1-sample and 2-samples for either
SPSB or SLSB appears to be very similar. Moving on to the bi-level case, recall that Theorems 3]
andrequire the 2-samples assumption (i.e., a; independent of h’;é) for the upper-level learning rate.
We empirically verify this assumption with both hyper-representation learning and data distillation
experiments. For hyper-representation learning experiments in Figure[I6] BiSPS with either 1-sample
or 2-samples for different values of oy, o show similar performance. In fact, for o, o = 0.1 we even
observe that the 2-samples variant outperforms the 1-sample BiSPS. For data distillation experiments

by a regime where vy, =

25

1.8
—— 6=0.0 (Opt-1) 1.8 —— 6=0.0 (Opt-1)
6=10"°% (Opt-1) 6=107% (Opt-1)
1.6 ~ 16 s
—— 6=107° (Opt-1) . —— 6=1075° (Opt-1)
14 —— 6=10"*(Opt-1) —— 6=10"*(Opt-1)
: 1.4
" —— 6=10"3 (Opt-1) " —— 6=1073 (Opt-1)
a . 5=10-2 _ n — 6=10"2 (Opt-1
21, 6=1072 (Opt-1) 8., (Opt-1)
5 5
210 S 1.0
@© ©
ke} h=d
08 08
2 2
0.6 0.6
0.4 0.4
0.2 0.2
0 10 20 30 40 50 0 10 20 30 40 50
Upper lterations Upper lterations
(a) Different ds/Opt-1 (BiSLS-SGD) (b) Different ds/Opt-1 (BiSLS-Adam)

Figure 12: Validation loss against iterations for different ds based on reset option 1. Results for BiSLS-
SGD (a) and for BiSLS-Adam (b). For the lower-level search, we fix it option 1 with 3, ¢ = 100.
Results are based on hyper-representation learning.

18 — 6=0.0 (Opt-3) 18 — 5=0.0(0pt-3)
6=10 (Opt-3) 5=10"° (Opt-3)
1.6 _ 1.6 -
—— 6=10"5 (Opt-3) : —— 6=10"5 (Opt-3)
—— 6=10"* (Opt-3) —— 6=10"*(Opt-3)
1.4 1.4
—— 6=10"% (Opt-3) : —— 6=10" (Opt-3)

—— 6=1072 (Opt-3) —— 6=10"2(Opt-3)

=
N]

12

Validation Loss
-

o
Validation Loss
-

o

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 10 20 30 40 50 0 10 20 30 40 50
Upper lterations Upper Iterations
(a) Different ds/Opt-3 (BiSLS-SGD) (b) Different §s/Opt-3 (BiSLS-Adam)

Figure 13: Validation loss against iterations for different s based on reset option 3 (7 = 10). Results
for BiSLS-SGD (a) and for BiSLS-Adam (b). For the lower-level search, we fix it option 1 with
B0 = 100. Results are based on hyper-representation learning.

in Figure [I7} the performances of 1-sample and 2-samples BiSPS are similar to each other when
ap,0 = 10.0 or oy, 0 = 50.0. In general, the performance difference between 1-sample and 2-samples
in the single-level or bi-level settings is small.

26

— BISPS-0.1Vk+1 —

0
—— BIiSPS- 1.0k +1 10
—— BiSPS - 10.0Vk+1

BiSPS - 100.0/vk +1
BiSLS-SGD

10°

=
o
1
L
-
o
L

Adém &: 0.001
————— Adam a=0.01

Validation Loss
Validation Loss

——- Adam a=0.1

10-3 10°3 SGD a=0.001
————— SGD a=0.01
—=- SGD a=0.1
== BiSLS-SGD

1074 T T T T T T y T T 107 T T T T T T T T T

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Upper Iterations Upper Iterations
(a) Different ap,0s (BiSPS) (b) T = 50, Identity

Figure 14: Validation loss against iterations. (a) Comparison between BiSPS with different cy os
and BiSLS-SGD. (b) Comparison between BiSLS-SGD to fine-tuned Adam/SGD (3, fixed at 10~%).
Inverse Hessian in (2) treated as the Identity [30] when computing the hypergradient. Recall that T is
the total number of lower-level iterations and we have shown the results for 7' = 20 in Figure @

\ -=- Const SGD 103 fm= === e
| Decay SGD
1014 i —— SLSB
: == SLSB (2 samples)
i SPSB
i = SPSB (2 samples)
] 1 v 102
& E - N
— ! i)
c 10° 4 \ yoh ‘||"| e H [
= \ A, nﬁ,'}' WN N T TR %
g (NiAVhe L'U ‘{‘ RV ARY Ny \‘\/ ‘\,l" v 'f“/\,""'_l n 1
10%4 --- Const SGD
Decay SGD
—— sLsB
107 4 = SLSB (2 samples)
SPSB
A 100 == SPSB (2 samples)
0 1000 2000 3000 4000 5000 10° 10! 102 10° 104
Iterations Iterations
(a) Train loss (b) Step size

Figure 15: Binary linear classification on w8a dataset using logistic loss [3]]. Train loss (left) and step
size (right) against iterations. We choose 73, o = 1000 for all algorithms. The upper bound for either

SPSB or SLSB decays as yp ;, = \/7% For decaying-step SGD, the learning rate schedule is \/7%

27

—— Decaying-step SGD
1.751 —— BIiSPS (1-sample) ap,o=0.01
BiSPS (1-sample) ap, o = 0.05
1.50 —— BIiSPS (1-sample) ap,0=0.1
' --- BIiSPS (2-sample) ap, o =0.01
) BiSPS (2-sample) ap, o = 0.05
8 1.25 -——. BISPS (2-sample) ap, 0 =0.1
|
c
o 1.001
)
(]
S 0.751
©
>
0.50
0.251
0.00

0 10 20 30 40 50
Upper Iterations
Figure 16: Comparison between BiSPS (2-samples), BiSPS (1-sample) and decaying-step SGD.

Experiments are based on hyper-representation learning. For either version of BiSPS, the lower-level
learning rate () is fixed at 10. The hypergradient is computed using conjugate gradient [[17]].

100,

0

(%)

(@]

-

C

e,

+J -1

© 10

i)

© o ——

> '-lll..%;.
10_27 "naa,

0 250 500 750 1000 1250 1500 1750 2000
Upper lterations

Decay SGD - ap,0 = 10.0 === BiSPS - ap,0 = 10.0 == BiSPS (2 samples) - ay o = 10.0
Decay SGD - ap,0 = 50.0 === BiSPS - ap,0 = 50.0 == BiSPS (2 samples) - ap,0 = 50.0
Decay SGD - ap,0 = 100.0 === BiSPS - ap,0 = 100.0 === BiSPS (2 samples) - ay,o = 100.0

Figure 17: Comparison between BiSPS (2-samples), BiSPS (1-sample) and decaying-step SGD.
Experiments are based on data distillation. For either version of BiSPS, the lower-level learning
rate () is fixed at 10~%. The Inverse Hessian in (@) is treated as the Identity when computing the

hypergradient [30].

28

	Introduction
	Related Work

	Summary of Contributions
	Convergence Results
	Envelope-type step size for single-level optimization
	Envelope-type step size for bi-level optimization

	Additional Hyper-Representation and Data Distillation Experiments
	Conclusion
	Proofs of Theorems and Additional Convergence Results
	Useful Lemmas
	Single-level Convex Proofs
	Proof of Theorem 1

	Proof of Theorem 2
	Bi-level Proofs
	Proof of Theorem 3
	Theorem 4 and its proof

	Additional Experiment Results
	Synthetic Quadratics
	Sensitivity of , reset, and search cost
	Data distillation objective and additional results
	1-sample or 2-samples versions of algorithms for convex and bi-level optimization

