
BiSLS/SPS: Auto-tune Step Sizes for
Stable Bi-level Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

The popularity of bi-level optimization (BO) in deep learning has spurred a growing1

interest in studying gradient-based BO algorithms. However, existing algorithms2

involve two coupled learning rates that can be affected by approximation errors3

when computing hypergradients, making careful fine-tuning necessary to ensure4

fast convergence. To alleviate this issue, we investigate the use of recently proposed5

adaptive step-size methods, namely stochastic line search (SLS) and stochastic6

Polyak step size (SPS), for computing both the upper and lower-level learning rates.7

First, we revisit the use of SLS and SPS in single-level optimization without the8

additional interpolation condition that is typically assumed in prior works. For such9

settings, we investigate new variants of SLS and SPS that improve upon existing10

suggestions in the literature and are simpler to implement. Importantly, these two11

variants can be seen as special instances of general family of methods with an12

envelope-type step-size. This unified envelope strategy allows for the extension13

of the algorithms and their convergence guarantees to BO settings. Finally, our14

extensive experiments demonstrate that the new algorithms, which are available in15

both SGD and Adam versions, can find large learning rates with minimal tuning16

and converge faster than corresponding vanilla SGD or Adam BO algorithms that17

require fine-tuning.18

1 Introduction19

Bi-level optimization has found its applications in various fields of machine learning, such as20

hyperparameter optimization [14, 17, 30, 40], adversarial training [51], data distillation [2, 53],21

neural architecture search [28, 39], neural-network pruning [52], and meta-learning [13, 37, 11].22

Specifically, it is used widely for problems that exhibit a hierarchical structure of the following form:23

min
x∈X

F (x) = Eϕ[f(x, y∗(x);ϕ)] s.t. y∗(x) = argmin
y∈Y

Eψ[g(x, y;ψ)]. (1)

Here, the solution to the lower-level objective g becomes the input to the upper-level objective f , and24

in (1) the upper-level variable x is fixed when optimizing the lower-level variable y. To solve such25

bi-level problems using gradient-based methods requires computing the hypergradient of F , which26

based on the chain rule is given as [15]:27

∇F (x) = ∇xf(x, y∗(x)) +∇2
xyg(x, y

∗(x))[∇2
yyg(x, y

∗(x))]−1∇yf(x, y∗(x)). (2)

In practice, the closed-form solution y∗(x) is difficult to obtain, and one strategy is to run a few steps28

of (stochastic) gradient descent on g w.r.t. y to get an approximation ȳ, and use ȳ in places of y∗(x).29

We denote the stochastic hypergradient based on ȳ as hf (x, ȳ) and the stochastic gradient of g w.r.t. y30

as hg . This leads to a general gradient-based framework for solving bi-level optimization [15, 19, 4].31

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

At each iteration k, run T (can be one or more) steps of SGD on y, i.e. yk,t+1 = yk,t − βhk,tg , then32

run one step on x using the approximated hypergradient:33

xk+1 = xk − αhf (xk, yk+1), where yk+1 = yk,T . (3)

Based on this framework, a series of stochastic algorithms have been developed to achieve the optimal34

or near-optimal rate of their deterministic counterparts [7, 8]. These algorithms can be broadly35

divided into single-loop (T = 1) or double-loop (T > 1) categories [23].36

0 10 20 30 40 50
Upper Iterations

100

4 × 10 1

6 × 10 1

2 × 100

Va
lid

at
io

n
Lo

ss

= 0.1
= 1.0
= 5.0
= 10.0

0 10 20 30 40 50
Upper Iterations

100

6 × 10 1

2 × 100

Va
lid

at
io

n
Lo

ss

= 0.001
= 0.0025
= 0.005
= 0.01
= 0.05 (Diverge)
= 0.1 (Diverge)

Figure 1: Results based on hyper-representation learning task
(see Sec 4 for details). Validation loss against upper-level
iterations for different values of β (left, α = 0.005) and α
(right, β = 0.01). Unless carefully tuned, vanilla SGD-based
methods for BO are very unstable.

Unlike minimizing the single-level37

finite-sum (convex) problem38

F (x) := min
x∈C

1

N

N∑
i=1

fi(x), (4)

where only one learning rate is in-39

volved when using SGD, bi-level op-40

timization involves tuning both the41

lower and upper-level learning rates42

(β and α respectively). This poses a43

significant challenge due to the poten-44

tial correlation between these learn-45

ing rates [19]. Thus, as observed in46

Figure 1, algorithm divergence can occur when either α or β is large. While there is considerable47

literature on achieving faster rates in bi-level optimization [24, 5, 7, 8], only a few studies have48

focused on stabilizing its training and automating the tuning of α and β. This work addresses the49

question: Is it possible to utilize large α and β without manual tuning? In doing so, we explore the50

use of stochastic adaptive-step size methods, namely stochastic Polyak step size (SPS) and stochastic51

line search (SLS), which utilize gradient information to adjust the learning rate at each iteration52

[44, 29]. These methods have been demonstrated to perform well in interpolation settings with strong53

convergence guarantees [44, 29]. However, applying them to bi-level optimization (BO) introduces54

significant challenges, as follows. ① BO requires tuning two correlated learning rates (for lower55

and upper-level). ② The bias in the stochastic approximation of the hypergradient complicates the56

practical performance and convergence analysis of SLS and SPS. ③ Other algorithmic challenges57

arise for both algorithms: For SLS, verifying the stochastic Armijo condition at the upper-level58

involves evaluating the objective at a new (x, y∗(x)) pair, while y∗(x) is only approximately known;59

For SPS, most existing variants guarantee good performance only in interpolating settings, which are60

typically not satisfied for the upper-level objective in BO [22]. Before presenting our solutions to the61

challenges above in Sec 2, we first review the most closely related literature.62

1.1 Related Work63

Gradient-Based Bi-level Optimization Penalty or gradient-based approaches have been used for64

solving bi-level optimization problems [10, 45, 21]. Here we focus our discussions on stochastic65

gradient-based methods as they are closely related to this work. For double-loop algorithms, an early66

work (BSA) by Ghadimi and Wang [15] has derived the sample complexity of ϕ in achieving an67

ϵ-stationary point to be O(ϵ−2), but require the number of lower-level steps to satisfy T ∼ O(ϵ−1).68

Using a warm start strategy (stocBiO), Ji et al. [22] removed this requirement on T . However, to69

achieve the same sample complexity, the batch size of stocBiO grows as O(ϵ−1). Chen et al. [4]70

removed both requirements on T and batch size by using the smoothness properties of y∗(x) and71

setting the step sizes α and β at the same scale. For single-loop algorithms, a pioneering work by72

Hong et al. [19] gave a sample complexity of O(ϵ−2.5), provided α and β are on two different scales73

(TTSA). By making corrections to the y variable update (STABLE), Chen et al. [5] improved the74

rate to O(ϵ−2). However, extra matrix projections required by STABLE can incur high computation75

cost [5, 4]. By incorporating momentum into the updates of x and y (SUSTAIN), Khanduri et al.76

[24] further improved the rate to O(ϵ−1.5) [6]. Besides these single or double-loop algorithms, a77

series of works have drawn ideas from variance reduction to achieve faster convergence rates for78

BO. For example, Yang et al. [49] designed the VRBO algorithm based on SPIDER [12]. Dagréou79

et al. [7, 8] designed the SABA and SRBA algorithms based on SAGA and SARAH respectively, and80

demonstrate that they can achieve the optimal rate of O(ϵ−1) [9, 35]. Huang et al. [20] proposes to81

use Adam-type step sizes in BO. However, it introduces three sequences of learning rates (αk, βk, ηk)82

2

0 50 100 150 200
Iterations

10 2

10 1

100

Ob
je

ct
iv

e
va

lu
e

DecSPS
SPSmax
SPSB
SPSB (2 samples)

0 200 400 600 800 1000
Iterations

10 3

10 2

10 1

100

x
x

*

101 102 103

Iterations

10 2

10 1

100

k

0.0 0.5
x

0.0

0.5

1.0

1.5

y

Starting point
x *

1 and x *
2

Minimum

Figure 2: Experiments on quadratic functions adapted from [29]. The objective is the sum of two-
dimensional functions fi = 1

2 (x− x
∗
i)
THi(x− x∗i), where Hi is positive definite and i = 1, 2 (see

Appendix B for more details). From left to right, we show: the objective value, distance to optimum,
step size, and iterate trajectories.

that require tuning, which limits its practical usage. To our knowledge, none of these works have83

explicitly addressed the fundamental problem of how to select α and β in bi-level optimization. In84

this work, we focus on the alternating SGD framework (T can be 1 or larger), and design efficient85

algorithms that find large α and β without tuning, while ensuring the stability of training.86

Adaptive Step Size Adaptive step-size such as Adam has found great success in modern machine87

learning, and different variants have been proposed [25, 38, 47, 31, 32]. Here, we limit our discussions88

on two adaptive step sizes that are most relevant to this work. The Armijo line search is a classic89

way for finding step sizes for gradient descent [48]. Vaswani et al. [44] extends it to the stochastic90

setting (SLS) and demonstrates that the algorithm works well with minimal tuning required under91

interpolation, where model fits the data perfectly. Hence, the method is adaptive to local smoothness92

of the objective, which is typically difficult to predict a priori. However, the theoretical guarantee93

of SLS in the non-interpolating regime is lacking. In fact, the results in Figure 3 suggest that SLS94

can perform poorly for convex losses when interpolation is not satisfied. Besides SLS, another95

adaptive method derived from Polyak step size is proposed by Loizou et al. [29] with the name96

stochastic Polyak step size (SPS). Loizou et al. [29] further places an upper bound on the step size97

resulting in the SPSmax variant. Similar to SLS, the algorithm performs well when the model is98

over-parametrized. Without interpolation, the algorithm converges to a neighborhood of the solution99

whose size depends on this upper bound.100

Algorithm 1 BiSLS-Adam/SGD

Input: x0, y0, K, T , δ, αb,0, βb,0, w, η
Output: x

1: for k = 0, 1, . . . ,K − 1 do
2: yk,0 = yk

3: for t = 0, 1, . . . , T − 1 do
4: βtb,k ← reset(β, βb,0, η, opt) ▷ see

Algorithm 2
5: β ← linesearch based on (8) starting

from βtb,k
6: yk,t+1 = yk,t − β hk,tg ,
7: end for
8: yk+1 = yk,T−1;x̂k = xk; ŷk+1 = yk+1

9: α← reset(α, αb,0, η, opt)
10: while (14) based on (x̂k, ŷk+1, α, δ)

does not hold. do
11: α = α ∗ w
12: x̂k = xk − αhf (x

k, yk+1) or
13: x̂k = xk − αA−1

k hf (x
k, yk+1)

14: ŷk+1 = yk+1 − β hg(x̂
k, yk+1)

15: end while
16: xk+1 = xk − αhkf
17: end for

In a later work, Orvieto et al. [36] make the SPS101

converge to the exact solution by ensuring the step102

size and its upper bound are both non-increasing103

(DecSPS). However, enforcing monotonicity may104

result in the step size being smaller than decaying-105

step SGD and losing the adaptive features of SPS106

(see Figure 2, 3). In this work, we propose new107

versions of SLS and SPS that do not require mono-108

tonicity and extend them into the alternating SGD109

bi-level optimization framework (3).110

2 Summary of Contributions111

We discuss our main contributions in this section,112

which is organized as follows. First, we discuss113

our variants of SPS and SLS, and unify them114

under the umbrella of “envelope-type step-size”.115

Then, we extend the envelope-type step size to the116

bi-level setting. Finally, we discuss our bi-level117

line-search algorithms based on Adam and SGD.118

Converging SPSB and SLSB by Envelope Ap-119

proach We first propose simple variants of SLS120

and SPS that converge in the non-interpolating121

setting while not requiring the step size to be monotonic. To this end, we introduce a new stochastic122

3

Polyak step size (SPSB). For comparison, we also recall the step-sizees of SPSmax and DecSPS .123

For all methods, the iterate updates are given as xk+1 = xk − γk∇fik(xk) where ik is sampled124

uniformly from [n] = {1, . . . , n} at each iteration k. The step-sizes γk are then defined as follows:125

SPSmax [29]: γk = min{
fik(x

k)− f∗ik
c∥∇fik(xk)∥2

, γb,0} (5)

DecSPS [36]: γ0 = γ̄ γk =
1

ck
min{

fik(x
k)− l∗ik

∥∇fik(xk)∥2
, ck−1γk−1} ∀k ≥ 1 (6)

SPSB (ours): γk = min{
fik(x

k)− l∗ik
ck∥∇fik(xk)∥2

, γb,k}, (7)

where f∗i = infx fi(x), γ̄ = 1
c0

min{ fi0 (x
0)−l∗i0

∥∇fi0 (x0)∥2 , c0γb,0} , ck is non-decreasing, γb,k is non-126

increasing, and l∗i ≤ f∗i is any lower bound.127

0 1000 2000 3000 4000 5000
Iterations

10 1

100

101

Tr
ai

n
Lo

ss

Const SGD
Decay SGD
SLS
SPSmax
DecSPS
SLSB
SPSB

100 101 102 103 104

Iterations

10 2

10 1

100

101

102

103

St
ep

 S
ize

s

Const SGD
Decay SGD
SLS
SPSmax
DecSPS
SLSB
SPSB

Figure 3: Binary linear classification on w8a dataset using
logistic loss [3]. We choose γb,0 = 1000 for all algorithms;
c = 1 and c̄ = 1 for SPSmax and SLS respectively; ck =√
k + 1 for DecSPS ; ck = 1 and γb,k =

γb,0√
k+1

for SPSB ;
c̄ = 0.1 and γb,k =

γb,0√
k+1

for SLSB ; γb,k =
γb,0√
k+1

for
decaying-step SGD.

Unlike SPSmax in which γb,0 is a128

constant, our upper bound γb,k is129

non-increasing. Also, unlike Dec-130

SPS in which both the step size and131

the upper bound are non-increasing132

(this is because γk ≤ ck−1

ck
γk−1 and133

min{ 1
2cLmax

,
c0γb,0
ck
} ≤ γk ≤ c0γb,0

ck
134

[36, Lemma 1]), we simplify the re-135

cursive structure and do not require136

the step-size to be monotonic. As137

we empirically observe in Figure 3,138

the step size of DecSPS is similar to139

that of decaying SGD and in fact can140

be much smaller. Interestingly, the141

resulting performance of DecSPS is142

worse than SPSmax despite SPSmax eventually becoming unstable once iterates get closer to the143

neighborhood of a solution and the step-size naturally behaves erratically. This is not unexpected due144

to small gradient norms (note division by gradient-norm in (5)) and dissimilarity between samples in145

the non-interpolating scenario. Moreover, note that the adaptivity of SPS in the early stage seems146

to be lost in DecSPS due to monotonicity of the latter. On the other hand, SPSB not only takes147

advantage of the large SPS steps that leads to fast convergence, but also stays regularized due to the148

non-increasing upper bound γb,k in (19). These observations are further supported by the experiments149

on quadratic functions given in Figure 2, where we observe the fast convergence of SPSB and the150

instability of SPSmax . Motivated by the good practical performance of SPSB , we take a similar151

approach for SLS. The SLS proposed and analyzed by Vaswani et al. [44] starts with γb,0 and in each152

iteration k finds the largest γk ≤ γb,0 that satisfies:153

fik(xk − γk∇fik(xk)) ≤ fik(xk)− c̄ · γk∥∇fik(xk)∥2, 0 < c̄ < 1. (8)
To ensure its convergence without interpolation, we replace γb,0 with appropriate non-increasing154

sequence γb,k. We name this variant of SLS as SLSB . Interestingly, the empirical performance and155

step size of SLSB are similar to those of SPSB (see Figure 3). This can be explained by observing156

that the step sizes of SPSB and SLSB share similar envelope structures, as follows (see Lemma 1 in157

Appendix A):158

SPSB : min{ 1

2cLmax
, γb,k} ≤ γk = min{

fik(x
k)− l∗ik

c∥∇fik(xk)∥2
, γb,k}, 0 < c,

SLSB : min{2(1− c̄)
Lmax

, γb,k} ≤ γk ≤ min{
fik(x

k)− l∗ik
c̄∥∇fik(xk)∥2

, γb,k}, 0 < c̄ < 1.

Therefore, we unify their analysis based on the following generic envelope-type step size:159

γk = min{max{γl,k, γ̃k}, γb,k}, γl,k = min{w, γb,k}, (9)
where ω > 0, γb,k is non-increasing, and γ̃k satisfies γl,k := min{ω, γb,k} ≤ γ̃k ≤ γb,k. We show160

that this envelope-type step size converges at a rateO(1√
K
) andO(1

K) for convex and strongly-convex161

losses respectively.162

4

Envelope Step Size for Bi-level Optimization (BiSPS) We extend the analysis of envelope-type163

step size to the bi-level setting. The step sizes for upper and lower-level objectives of our general164

envelope-type method are:165

Upper: αk = min{max{αl,k, α̃k}, αb,k} hence αl,k ≤ α̃k ≤ αb,k (10)

Lower: βk,t = min{
g(xk, yk,t;ψ)− g(xk, y∗xk,ψ;ψ)

p∥∇yg(xk, yk,t;ψ)∥2
, βb,k} ∀t, (11)

where y∗xk,ψ is the minimizer of the function g(xk, ·;ψ), and αl,k, αb,k, and βb,k are three non-166

increasing sequences. Note that βb,k is fixed over the lower-level iterations for a given k, therefore,167

this is equivalent to running T steps of SPSmax to minimize the function g at each upper iteration k.168

However, the decrease in the upper bound βb,k with k is crucial to guarantee the overall convergence169

of the algorithm (see Theorem 3). Starting from the general step-size rules in (10), (11), our bi-level170

extension of SPS, which we call BiSPS, follow by setting αk in the form of SPS computed using171

stochastic hypergradient hkf . That is,172

ᾱk =
f(xk, yk+1;ϕ)− l∗f(·,yk+1;ϕ)

p∥hkf∥2
, αl,k =

αl,0√
k + 1

, αb,k =
αb,0√
k + 1

, (12)

where αl,0 ≤ αb,0 and l∗f(·,yk+1;ϕ) is a lower bound for infx f(x, yk+1;ϕ). For computing hkf , we173

can take a similar approach as previous works [15, 19, 4] that use Neumann series setting174

hkf = ∇xf(xk, yk+1;ϕ)−∇xyg(xk, yk+1;ψ0)
[N
Lg

N̄∏
j=1

(I −∇2
yyg(x

k, yk+1;ψj))
]
∇yf(xk, yk+1;ϕ),

(13)

where N̄ is sampled uniformly from [N] and N is the total number of samples. For BiSPS, we use175

the same sample for f(xk, yk+1;ϕ) and∇fx(xk, yk+1;ϕ) when evaluating ᾱk in (12). Interestingly,176

we also empirically observe that using independent samples for computing ᾱk and hkf resulting177

in similar performance as using the same sample. The optimal rate of SGD for non-convex bi-178

level optimization is O(1√
K
) without a growing batch size [4]. We show that BiSPS can obtain179

the same rate (see Theorem 3) by taking the envelope-type step-size of the form (10) and (11).180

0 250 500 750 1000 1250 1500 1750 2000
Upper Iterations

10 2

10 1

100

Va
lid

at
io

n
Lo

ss

0 250 500 750 1000 1250 1500 1750 2000
Upper Iterations

10 2

10 1

100

Va
lid

at
io

n
Lo

ss

Figure 4: Results on data distillation experiments adapted
from Lorraine et al. [30] (see Sec 4 for details). We compare
BiSPS and decaying-step SGD for different values of αb,0
where Hessian inverse in (2) is computed based on the Iden-
tity matrix (left) or Neumann series (right). The lower-level
learning rate is fixed at 10−4.

We implement BiSPS according to181

(12) and observe that it has better per-182

formances over decaying-step SGD183

with less variations across different184

values of αb,0 (see Figure 4 and note185

that decaying-step SGD is of the form186
αb,0√
k+1

).187

Stochastic Line-Search Algorithms188

for Bi-level Optimization The189

challenge of extending SLS to bi-190

level optimization is rooted in the191

term y∗(x). In fact, we realize that192

some of the bi-level objectives are of193

the form F (x) = f(y∗(x)). That194

is, f does not have an explicit de-195

pendence on x, e.g. the data hyper-196

cleaning task [22]. This implies that when SLS takes a potential step on x, the approximation of y∗(x)197

(i.e, ȳ(x)) also needs to be updated, otherwise there is no change in function values. Moreover, the198

use of approximation ȳ(x) and the stochastic estimation error in hypergradient would not gaurantee a199

step size can be always found. To this end, we modify the Armijo line-search rule to be:200

BiSLS-SGD: f
(
xk − αkhkf , ŷk+1(xk − αkhkf)

)
≤ f(xk, yk+1)− pαk∥hkf∥2 + δ,

BiSLS-Adam: f
(
xk − αkA−1

k hkf , ŷ
k+1(xk − αkA−1

k hkf)
)
≤ f(xk, yk+1)− pαk∥hkf∥2A−1

k

+ δ,

(14)

5

0 10 20 30 40 50
Upper Iterations

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Va
lid

at
io

n
Lo

ss

SGD = 5.0 = 0.0025
SGD = 1.0 = 0.005
SGD = 0.5 = 0.005
Adam = 10.0 = 0.0001
Adam = 1.0 = 0.0005
Adam = 0.5 = 0.0005
BiSLS-SGD (b, 0 = 100.0, b, 0 = 10.0)
BiSLS-Adam (b, 0 = 100.0, b, 0 = 10.0)

(a) Validation Loss

0 10 20 30 40 50
Upper Iterations

10 6

10 5

10 4

10 3

Up
pe

r S
te

p
Si

ze

b, 0 = 0.1
b, 0 = 0.5
b, 0 = 1.0
b, 0 = 5.0
b, 0 = 10.0

(b) Upper-level step sizes

0 500 1000 1500 2000 2500
Iterations

101

6 × 100

2 × 101

Lo
we

r S
te

p
Si

ze

b, 0 = 100
b, 0 = 500
b, 0 = 1000
b, 0 = 5000

(c) Lower-level step sizes

Figure 5: Results on hyper-representation learning task (see Sec 4 for details). (a) Validation loss
against upper-level iterations for comparing BiSLS-Adam/SGD to fine-tuned Adam/SGD. (b)(c)
Upper (left) and lower-level (right) learning rates found by BiSLS-Adam. For the tuned Adam, the
optimal lower and upper-level learning rates are O(1) and O(10−4), respectively. BiSLS-Adam
outperforms tuned Adam/SGD with a starting point that is 5 orders of magnitude larger than the
optimal step size.

where p, δ > 0 and Ak is a positive definite matrix such that A2
k = Gk. Similar to the single-201

level Adam case, the matrix Gk in the bi-level setting is defined as Gk = (β2Gk−1 + (1 −202

β2) diag(h
k
fh

k
f

T
))/(1−βk2) [25, 43]. Moreover, BiSLS-Adam takes the following steps for updating203

the variable x: xk+1 = xk − αkA−1
k mk where mk+1 = β1m

k − (1− β1)hkf . The details are given204

in Algorithms 1 and 2. We denote the search starting point for the upper-level as αb,k at iteration205

k, and denote it as βtb,k at step t within iteration k for the lower-level. We remark the following206

key benefits of resetting αb,k and βtb,k (by using Algorithm 2) to larger values with reference to αk207

and βtk (respectively) at each step: (1) Avoid always searching from αb,0 or β0
b,0, thus, reducing208

computation cost, and, (2) preserving an overall non-increasing (not necessarily monotonic) trend for209

αb,k and βtb,k, thus, improving training stability. We found different values of η all work well (see210

Appendix B). The key algorithmic challenge we are facing is that during the backtracking process,211

for any candidate αk, we need to compute x̂k := xk −αkhkf and approximate y∗(x̂k) with ŷk+1 (see212

Algorithm 1). To limit the cost induced by this nested loop, we limit the number of steps to obtain213

ŷk+1 to be 1. Moreover, δ in (14) plays the role of a safeguard that ensures a step size can be found.214

Algorithm 2 reset

Input: p, q, η ≥ 1,
opt

Output: p
1: if opt = 1 then
2: p← q
3: else if opt = 2

then
4: p← p
5: else if opt = 3

then
6: p← η · p
7: end if

We set it to be small to avoid finding unrealistically large learning rates while215

tolerating some error in the hypergradient estimation (see Appendix B for216

experiments on the sensitivity of δ). In practice, we empirically find that217

simply setting δ = 0 works well. In Figure 5a, we observe that BiSLS-Adam218

outperforms fine-tuned Adam or SGD. Surprisingly, its training is stable even219

when the search starting point αb,0 is 5 orders of magnitude larger than a fine-220

tuned learning rate (O(10−4)). Importantly, BiSLS-Adam finds large upper221

and lower-level learning rates in early phase (see Figure 5b, 5c) for different222

values of αb,0 and βb,0 that span 3 orders of magnitudes. Interestingly, the223

learning rates naturally decay with training (also see Figure 6c and 6d). In224

essence, BiSLS is a truly adaptive (no knowledge of initialization required)225

and robust (different initialization works) method that finds large α and226

β without tuning. In the next section, we give the convergence results of the227

envelope-type step size.228

3 Convergence Results229

3.1 Envelope-type step size for single-level optimization230

We first state the assumptions, which are standard in the literature, that will be used for analyzing231

single-level problems. Assumption 1 is on the Lipschitz continuity of f and fi in Problem 4.232

Assumption 1. The individual function fi is convex and Li-smooth such that ∥∇fi(x)−∇fi(x′)∥ ≤233

Li∥x − x′∥,∀i,∀x ∈ dom f and the overall function f is L-smooth. We denote Lmax ≜ maxi Li.234

6

Furthermore, we assume there exists l∗i such that l∗i ≤ f∗i := infx fi(x),∀i, and f is lower bounded235

by f∗ obtained by some x∗ such that f∗ = f(x∗).236

The following bounded gradient assumption is also used in the analysis of convex problems [41, 33].237

Assumption 2. There exists G > 0 such that ∥∇fi(x)∥2 ≤ G,∀i.238

We first state the theorem for the envelop-type step size defined in (9) for convex functions.239

Theorem 1. Suppose Assumption 1, 2 hold, each fi is convex, C = dom f , γk is independent of240

the sample∇fk(xk), and choose γb,k =
γb,0√
k+1

. Then, the envelope-type step size in (9) achieves the241

following rate,242

E[f(x̄K)− f(x∗)] ≤ ∥x
0 − x∗∥2

2γl,K−1K
+
γ2b,0G

2 log(K)

2γl,K−1K
,

where γl,K−1 = min{ω, γb,0√
K
} and x̄K = 1

K

∑K
k=0 x

k.243

We were not able to give a convergence result that uses the same sample for computing the step size and244

the gradient. However, we empirically observe that the performance is very similar when using either245

one or two independent samples per iteration (see Figure 2 and Appendix B). When two independent246

samples ik and jk are used per iteration, the first computes the gradient sample ∇fik(xk), and the247

other computes the step-size γk. For example, for SPSB this gives γk = min{
fjk (x

k)−l∗jk
ck∥∇fjk (xk)∥2 , γb,k}.248

This type of assumption has been used in several other works for analyzing adaptive step sizes249

[27, 44, 29]. Under this assumption, we specialize the results of Theorem 1 to SPSB and SLSB ,250

where γl,K−1 = min{ 1
2cLmax

,
γb,0√
K
} and γl,K−1 = min{ 2(1−c̄)Lmax

,
γb,0√
K
} respectively. Concretely, for251

K ≥ γ2b,0L
2
max, SLSB and SPSB with γb,k =

γb,0√
k+1

and c = c̄ = 1
2 achieve the following rate:252

E[f(x̄K)− f(x∗)] ≤ ∥x0−x∗∥2

2γb,0
√
K

+
γb,0G

2 log(K)

2
√
K

. Next, we state the result for the envelop-type step253

size when f is µ-strongly convex.254

Theorem 2. Suppose a µ-strongly convex function f satisfying Assumptions 1 and 2, assume C is a255

closed and convex set, and γk is independent of the sample ∇fk(xk). Then an envelope-type step256

size as in (9) with γb,k =
γb,0
k+1 , γb,0 ≥ 1

µ , and ωµ < 1 achieves the following rate257

E[f(x̄K)− f(x∗)] ≤ µk0
2(K − k0)

(
e−k0µω∥x0 − x∗∥2 + γ2b,0G

2
)
+
γb,0G

2 logK

2(K − k0)
,

where x̄K = 1
K−k0

∑K−1
k=k0

xk and k0 = max{1, ⌈γb,0/ω⌉ − 1}.258

We can again apply the result of Theorem 2 to SPSB and SLSB with γb,k =
γb,0
k+1 , γb,0 ≥ 1

µ ,259

ω = 1/Lmax, and c = c̄ = 1
2 to get an explicit rate: E[f(x̄K) − f(x∗)] ≤ µk0

2(K−k0)
(
e

−k0µ
Lmax ∥x0 −260

x∗∥2 + γ2b,0G
2
)
+

γb,0G
2 logK

2(K−k0) , where k0 = max{1, ⌈γb,0Lmax⌉ − 1}.261

Remark 1. Under the envelop-type step size framework and the assumption of two independent262

samples, SLSB and SPSB share the same convergence rates of O(1√
K
) and O(1

K) as SGD with263

decaying step-size for convex and strongly-convex losses respectively. This is not surprising because264

of the structure of the envelope step-size in (9). Indeed, the proof is similar to the standard proof of265

analogous rate for SGD with decaying step-size. Nonetheless, we include it here for completeness.266

3.2 Envelope-type step size for bi-level optimization267

We start with recalling standard assumptions in BO [22, 19, 15, 4]. We denote z = [x; y] and recall268

the bi-level problem in (1). The first assumption is on the lower-level objective g.269

Assumption 3. The function g(x, y) is µg strongly convex in y for any given x. Moreover, ∇g is270

Lipschitz continuous: ∥∇g(x1, y1)−∇g(x2, y2)∥ ≤ Lg∥z1−z2∥ (also assume that this holds true for271

each sampled function g(x, y;ψ)), and∇2g is Lipschitz continuous: ∥∇2g(x1, y1)−∇2g(x2, y2)∥ ≤272

LG∥z1 − z2∥. We further assume that ∥∇2
xyg(x, y)∥ ≤ Cg, and the condition number is defined as273

κ =
Lg

µg
.274

7

Next, we state the assumptions on the upper objective f .275

Assumption 4. The function f and its gradients are Lipschitz continuous. That is: ∥f(x1, y1) −276

f(x2, y2)∥ ≤ L1∥z1 − z2∥ and ∥∇f(x1, y1)−∇f(x2, y2)∥ ≤ Lf,1∥z1 − z2∥. We also assume that277

∥∇yf(x, y)∥ ≤ Cf .278

Furthermore, we make the following standard assumptions on the estimates of∇f ,∇g, and ∇2g.279

Assumption 5. The stochastic gradients are unbiased: Eϕ[∇f(x, y;ϕ)] = ∇f(x, y),280

Eψ[∇g(x, y;ψ)] = ∇g(x, y), and Eψ[∇2g(x, y;ψ)] = ∇2g(x, y). The variances of ∇f(x, y;ϕ)281

and ∇2g(x, y;ψ]) are bounded: Eϕ[∥∇f(x, y;ϕ) − ∇f(x, y)∥2] ≤ σ2
f and Eψ[∥∇2g(x, y;ψ) −282

∇2g(x, y)∥2] ≤ σ2
G.283

Finally, we introduce the bounded optimal function value assumption in (15), which is used specifi-284

cally for analyzing step size of the form (11) in the bi-level setting:285

Eψ[g(x, y∗(x);ψ)− g(x, y∗x,ψ;ψ)] ≤ σ2
g ,∀x, (15)

E[∥∇yg(x, y)−∇yg(x, y;ϕ)∥2] ≤ σ2
g ,∀x, y, (16)

where y∗(x) = miny g(x, y) and y∗x,ψ = miny g(x, y;ψ) for a given x (recall that at any iteration286

k, the lower-level steps in BiSPS are SPSmax with an upper bound βb,k; furthermore, βb,k is non-287

increasing w.r.t. upper iteration k). The one-variable analogous assumption of (15) has been used288

in the analysis of SPSmax [29]. Here, we extend it to a two-variable function. Unlike the bounded289

variance assumption (16), which needs to hold true for all x and y, we require (15) to hold at y∗(x)290

for any given x. As mentioned previously, the closed form solution y∗(x) is difficult to obtain. Thus,291

we define the following expression by replacing y∗(x) with y in (2):292

∇̄f(x, y) = ∇xf(x, y) +∇2
xyg(x, y)[∇2

yyg(x, y)]
−1∇yf(x, y). (17)

A stochastic Neumann series in (13) approximates (17) with x and y being xk and yk+1 (respectively),293

also recall that yk+1 is an approximation of y∗(xk) by running T lower-level SGD steps to minimize294

g w.r.t. y for a fixed xk. Based on Assumptions 3, 4, and 5, we have the following results to295

be used in the analysis [15]: ∥∇F (x1) − ∇F (x2)∥ ≤ LF ∥x1 − x2∥, ∥y∗(x1) − y∗(x2)∥ ≤296

Ly∥x1 − x2∥, and ∥∇̄f(x, y∗(x)) − ∇̄f(x, y)∥ ≤ Lf∥y∗(x) − y∥. Furthermore, the bias in the297

stochastic hypergradient in (13) (denoted as B) decays exponentially with N and its variance is298

bounded, i.e. E[∥hkf − E[hkf]∥2] ≤ σ̃2
f (see Appendix A for details) [19].299

Now, we state our main theorem based on step size of the form (10) and (11).300

Theorem 3. Suppose f and g satisfy Assumptions 3, 4, and 5, learning-rate upper bounds αb,k =301

αb,0√
k+1

and αl,k =
αl,0√
k+1

with αb,0 and αl,0 satisfying 1
LF+4L2

y
≥ α2

b,0

αl,0
and αl,0 ≤ αb,0. Further302

assume that αk is independent of the stochastic hypergradient hkf , and each sampled function303

g(x, y;ψ) is convex. Then under the Assumption (15) with p ≥ 1
2 , Ck = min{ 1

2pLg
, βb,k}, T ≥304

log(αb,0L
2
f+2)

− log(1−µgCK−1)
, and βb,k =

βb,0

k+1 , BiSPS achieves the rate:305

1

K

K−1∑
k=0

E[∥∇F (xk)∥2] ≤ Õ(κ
3

√
K

+
κ2 logK√

K
). (18)

Remark 2. We further give the convergence result under the bounded variance assumption (16) in306

Appendix A. Theorem 3 shows that BiSPS matches the optimal rate of SGD up to a logarithmic factor307

without a growing batch size. We notice that the assumption (15) largely simplifies the expression on308

T and does not require an explicit upper bound on βb,0. As in the single-level case, whether using309

one sample or two samples (which makes upper-level step-size independent of gradient) gives similar310

empirical performances (see Appendix B). Note that the independence assumption is only needed311

for the upper-level. Thus, the two-sample requirement of theorem does not apply to the lower-level312

problem. This is useful from computational standpoint as typical bi-level algorithms run multiple313

lower-level updates for each upper-level iteration.314

4 Additional Hyper-Representation and Data Distillation Experiments315

Hyper-representation learning: The experiments are performed on MNIST dataset using LeNet316

[26, 42]. We use conjugate gradient method for solving system of equations when computing the317

8

0 10 20 30 40 50
Upper Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

BiSLS-SGD Lower-Search=False Upper-Search=True
BiSLS-SGD Lower-Search=True Upper-Search=False
BiSLS-SGD Lower-Search=True Upper-Search=True
BiSLS-Adam Lower-Search=False Upper-Search=True
BiSLS-Adam Lower-Search=True Upper-Search=False
BiSLS-Adam Lower-Search=True Upper-Search=True

(a) Validation Loss

0 10 20 30 40 50
Upper Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
Ac

cu
ra

cy

SGD = 5.0 = 0.0025
SGD = 1.0 = 0.005
SGD = 0.5 = 0.005
Adam = 10.0 = 0.0001
Adam = 1.0 = 0.0005
Adam = 0.5 = 0.0005
BiSLS-SGD (b, 0 = 100.0, b, 0 = 10.0)
BiSLS-Adam (b, 0 = 100.0, b, 0 = 10.0)

(b) Validation Accuracy

0 10 20 30 40 50
Upper Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

BiSLS-Adam b, 0 = 0.1
BiSLS-Adam b, 0 = 0.5
BiSLS-Adam b, 0 = 1.0
BiSLS-Adam b, 0 = 5.0
BiSLS-Adam b, 0 = 10.0
BiSLS-SGD b, 0 = 0.1
BiSLS-SGD b, 0 = 0.5
BiSLS-SGD b, 0 = 1.0
BiSLS-SGD b, 0 = 5.0
BiSLS-SGD b, 0 = 10.0

(c) Different αb,0

0 10 20 30 40 50
Upper Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

BiSLS-Adam b, 0 = 100
BiSLS-Adam b, 0 = 500
BiSLS-Adam b, 0 = 1000
BiSLS-Adam b, 0 = 5000

(d) Different βb,0

Figure 6: Validation loss (a) and accuracy (b) against iterations. (a) Comparisons between whether
to use or not use line-search at the upper or lower level; (b) Generalization performance of BiSLS-
Adam/SGD and fine-tuned Adam/SGD; (c) Validation loss against iterations for different values of
αb,0 (βb,0 fixed at 100). (d) Same plot as (c) but for different values of βb,0 (αb,0 fixed at 10).

0 250 500 750 1000 1250 1500 1750 2000
Upper Iterations

10 3

10 2

10 1

100

Va
lid

at
io

n
Lo

ss

Adam = 0.001
Adam = 0.01
Adam = 0.1
SGD = 0.001
SGD = 0.01
SGD = 0.1
BiSLS-SGD

(a) Neumann

0 250 500 750 1000 1250 1500 1750 2000
Upper Iterations

10 3

10 2

10 1

100

Va
lid

at
io

n
Lo

ss

Adam = 0.001
Adam = 0.01
Adam = 0.1
SGD = 0.001
SGD = 0.01
SGD = 0.1
BiSLS-SGD

(b) Identity (c) Distilled MNIST Images

Figure 7: (a)(b): Comparison between BiSLS-SGD and Adam/SGD for Data Distillation on MNIST
dataset. Validation loss plotted against iterations. (a) Hypergradient computed using Neumann series;
(b) Inverse Hessian in (2) treated as the Identity [30] when computing the hypergradient; (c) Distilled
MNIST images after 3000 iterations of BiSLS-SGD.

hypergradient [17]. The upper and lower-level objectives are to optimize the embedding layers and the318

classifier (i.e. the last layer of the neural net), respectively (see Appendix B for details). For constant-319

step SGD and Adam, we tune the lower-level learning rate β ∈ {10.0, 5.0, 1.0, 0.5, 0.1, 0.05, 0.01}.320

For the upper-level learning rate, we tune α ∈ {0.001, 0.0025, 0.005, 0.01, 0.05, 0.1} for SGD, and321

α ∈ {10−5, 5 · 10−5, 10−4, 5 · 10−4, 0.001, 0.01} for Adam (recall that δ in (14) is set to 0). Based322

on the results of Figure 6, we make the following key observations: ① line-search at the upper-level323

is essential for achieving the optimal performance (Figure 6a); ② BiSLS-Adam/SGD not only324

converges fast but also generalizes well (Figure 6b); ③ BiSLS-Adam/SGD is highly robust to325

search starting points αb,0 and βb,0 (Figure 6c, 6d). It addresses the fundamental question of326

how to tune α and β in bi-level optimization (see Appendix B for additional results on search cost).327

Data distillation: The goal of data distillation is to generate a small set of synthetic data from an328

original dataset that preserves the performance of a model when trained using the generated data329

[46, 50]. We adapted the experiment set up from Lorraine et al. [30] to distill MNIST digits. We330

present the results in Figure 7, where we observe that BiSLS-SGD converges significantly faster than331

fine-tuned Adam or SGD, and generate realistic MNIST images (see Appendix B for more results).332

5 Conclusion333

In this work, we have given simple alternatives to SLS and SPS that show good empirical performance334

in non-interpolating scenario without requiring the step size to be monotonic. We unify their analysis335

based on a simplified envelope-type step size, and extend the analysis to the bi-level setting while336

designing a SPS-based bi-level algorithm. In the end, we propose bi-level line-search algorithm337

BiSLS-Adam/SGD that is empirically truly robust and adaptive to learning rate initialization. Our338

work opens several possible future directions. Given the superior performance of BiSLS, we prioritize339

an analysis of its convergence rates. The difficulty stems from: (a) the bias in hypergradient estimation;340

(b) the dual updates in x and y∗(x) (incurring nested loop structures); (c) the error in estimating y∗(x).341

On single-level optimization, we remark as an important direction to relax the two-sample assumption342

on SPSB /SLSB . Ultimately, we hope to promote further research on bi-level optimization algorithms343

with minimal tuning.344

9

References345

[1] Amir Beck. First-order methods in optimization. SIAM, 2017.346

[2] Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for347

continual learning and streaming. Advances in Neural Information Processing Systems, 33:348

14879–14890, 2020.349

[3] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM350

transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.351

[4] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter analysis of alternating stochastic gradient352

method for stochastic nested problems, 2021.353

[5] Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for stochastic354

bilevel optimization, 2022.355

[6] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex356

sgd, 2020.357

[7] Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel358

optimization that enables stochastic and global variance reduction algorithms, 2022.359

[8] Mathieu Dagréou, Thomas Moreau, Samuel Vaiter, and Pierre Ablin. A lower bound and a360

near-optimal algorithm for bilevel empirical risk minimization, 2023.361

[9] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient362

method with support for non-strongly convex composite objectives, 2014.363

[10] James E Falk and Jiming Liu. On bilevel programming, part i: general nonlinear cases.364

Mathematical Programming, 70:47–72, 1995.365

[11] Chen Fan, Parikshit Ram, and Sijia Liu. Sign-maml: Efficient model-agnostic meta-learning by366

signsgd, 2021.367

[12] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex368

optimization via stochastic path integrated differential estimator, 2018.369

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-370

tion of deep networks, 2017.371

[14] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and372

reverse gradient-based hyperparameter optimization, 2017.373

[15] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming, 2018.374

[16] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter375

Richtárik. Sgd: General analysis and improved rates. In International conference on machine376

learning, pages 5200–5209. PMLR, 2019.377

[17] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration378

complexity of hypergradient computation, 2020.379

[18] Riccardo Grazzi, Massimiliano Pontil, and Saverio Salzo. Convergence properties of stochastic380

hypergradients, 2021.381

[19] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for382

bilevel optimization: Complexity analysis and application to actor-critic, 2022.383

[20] Feihu Huang, Junyi Li, and Shangqian Gao. Biadam: Fast adaptive bilevel optimization methods,384

2023.385

[21] Yo Ishizuka and Eitaro Aiyoshi. Double penalty method for bilevel optimization problems.386

Annals of Operations Research, 34(1):73–88, 1992.387

[22] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and388

enhanced design, 2021.389

[23] Kaiyi Ji, Mingrui Liu, Yingbin Liang, and Lei Ying. Will bilevel optimizers benefit from loops,390

2022.391

[24] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang.392

A near-optimal algorithm for stochastic bilevel optimization via double-momentum, 2021.393

10

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint394

arXiv:1412.6980, 2014.395

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning396

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.397

[27] Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with398

adaptive stepsizes, 2019.399

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search,400

2019.401

[29] Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon Lacoste-Julien. Stochastic polyak402

step-size for sgd: An adaptive learning rate for fast convergence, 2021.403

[30] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters404

by implicit differentiation. In International Conference on Artificial Intelligence and Statistics,405

pages 1540–1552. PMLR, 2020.406

[31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.407

[32] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic408

bound of learning rate, 2019.409

[33] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic410

approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):411

1574–1609, 2009.412

[34] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.413

Springer Science & Business Media, 2003.414

[35] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for415

machine learning problems using stochastic recursive gradient. In International Conference on416

Machine Learning, pages 2613–2621. PMLR, 2017.417

[36] Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of sgd with stochastic418

polyak stepsizes: Truly adaptive variants and convergence to exact solution, 2022.419

[37] Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with420

implicit gradients, 2019.421

[38] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.422

arXiv preprint arXiv:1904.09237, 2019.423

[39] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin424

Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM425

Computing Surveys (CSUR), 54(4):1–34, 2021.426

[40] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-427

propagation for bilevel optimization. In The 22nd International Conference on Artificial428

Intelligence and Statistics, pages 1723–1732. PMLR, 2019.429

[41] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient430

solver for svm. In Proceedings of the 24th international conference on Machine learning, pages431

807–814, 2007.432

[42] Daouda Sow, Kaiyi Ji, and Yingbin Liang. On the convergence theory for hessian-free bilevel433

algorithms, 2022.434

[43] Sharan Vaswani, Issam Laradji, Frederik Kunstner, Si Yi Meng, Mark Schmidt, and Simon435

Lacoste-Julien. Adaptive gradient methods converge faster with over-parameterization (but you436

should do a line-search). arXiv preprint arXiv:2006.06835, 2020.437

[44] Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon438

Lacoste-Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates,439

2021.440

[45] Luis Vicente, Gilles Savard, and Joaquim Júdice. Descent approaches for quadratic bilevel441

programming. Journal of optimization theory and applications, 81(2):379–399, 1994.442

[46] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation,443

2020.444

11

[47] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over445

nonconvex landscapes, 2021.446

[48] Jorge Nocedal Stephen J Wright. Numerical optimization, 2006.447

[49] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization,448

2021.449

[50] Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review,450

2023.451

[51] Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Sijia Liu.452

Revisiting and advancing fast adversarial training through the lens of bi-level optimization. In453

International Conference on Machine Learning, pages 26693–26712. PMLR, 2022.454

[52] Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi455

Wang, and Sijia Liu. Advancing model pruning via bi-level optimization, 2023.456

[53] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature457

regression. arXiv preprint arXiv:2206.00719, 2022.458

12

Notes: A few small typos have been revised in the main body. The > sign in (14) is corrected to459

≤, and the missing A−1
k for BiSLS-Adam in (14) is added. In Theorem 3 and the remark that460

follows, the letter γ is corrected to letter β. In Assumption 3, Lf is changed to Lf,1.461

A Proofs of Theorems and Additional Convergence Results462

A.1 Useful Lemmas463

Lemma 1 provides more details on the envelope structure of SPSB and SLSB given in (10) and (11).464

The lower bound in (19) will also be used in Lemma 5 (for bounding the term ∥yk+1 − y∗(xk)∥2).465

Lemma 1. Under the Assumption 1, we have the following:466

SPSB : min{ 1

2cLmax
, γb,k} ≤ γk = min{

fik(x
k)− l∗ik

c∥∇fik(xk)∥2
, γb,k}, 0 < c, (19)

SLSB : min{2(1− c̄)
Lmax

, γb,k} ≤ γk ≤ min{
fik(x

k)− l∗ik
c̄∥∇fik(xk)∥2

, γb,k}, 0 < c̄ < 1. (20)

Proof. The bounds in (19) have been shown in [29, 36]. For (20), the first part of the inequality has467

been shown in [44]. For the second part, recall the Armijo condition (14):468

fik(xk − γk∇fik(xk)) ≤ fik(xk)− c̄ · γk∥∇fik(xk)∥2, 0 < c̄ < 1.

We can then rearrange this to obtain469

γk ≤
fik(xk)− fik(xk − γk∇fik(xk))

c̄∥∇fik(xk)∥2
≤
fik(xk)− f∗ik
c̄∥∇fik(xk)∥2

≤
fik(xk)− l∗ik
c̄∥∇fik(xk)∥2

, (21)

where l∗ik is any lower bound for f∗ik . Also recall that γb,k is the search starting point at iteration k,470

hence (20) holds for SLSB .471

Lemma 2 gives the expressions for the constants LF , Ly, and Lf . The proof can be found in [15,472

Lem 2.2].473

Lemma 2. Under Assumptions 3 and 4, we have the following:474

∥∇F (x1)−∇F (x2)∥ ≤ LF ∥x1 − x2∥,
∥y∗(x1)− y∗(x2)∥ ≤ Ly∥x1 − x2∥,

∥∇̄f(x, y∗(x))− ∇̄f(x, y)∥ ≤ Lf∥y∗(x)− y∥,
where475

Lf = Lf,1 +
Lf,1Lg
µg

+
L1

µg
(LG +

LgLG
µg

) ∼ O(κ2)

Ly =
Lg
µg
∼ O(κ)

LF = Lf,1 +
Lg(Lf,1 + Lf)

µg
+
L1

µg
(LG +

LgLG
µg

) ∼ O(κ3)

Lemma 3 is on the bias and variance of the stochastic hypergradient in (13), which has the following476

form [19]477

hkf = ∇xf(xk, yk+1;ϕ)−∇xyg(xk, yk+1;ψ0)
[N
Lg

N̄∏
j=1

(I −∇2
yyg(x

k, yk+1;ψj))
]
∇yf(xk, yk+1;ϕ).

(22)

Recall that the hypergradient surrogate defined in (17) based on (xk, yk+1) is478

∇̄f(xk, yk+1) = ∇xf(xk, yk+1) +∇2
xyg(x

k, yk+1)[∇2
yyg(x

k, yk+1)]−1∇yf(xk, yk+1). (23)

Given a filtration F ′

k up to and including xk and yk+1, the bias of the stochastic hypergradient479

is defined as B = ∇̄f(xk, yk+1) − E[hkf |F
′

k], and the variance is defined as E[∥∇̄f(xk, yk+1) −480

E[hkf |F
′

k]∥2]. Lemma 3 has been proven in [19, Lem 1.] (also see [4, Lem 5.]). Lemmas 1, 2, and 3481

will be used in the proofs of Theorems 3 and 4.482

13

Lemma 3. Under Assumptions 3, 4, and 5, the bias and variance of the stochastic hypergradient hkf483

satisfy the following484

Bias: ∥∇̄f(xk, yk+1)− E[hkf |F
′

k]∥ ≤
CgCf
µg

(1− µg
Lg

)N ,∀k

Variance: E[∥∇̄f(xk, yk+1)− E[hkf |F
′

k]∥2] ≤ σ̃2
f ,∀k,

where N is the total number of samples, and σ̃2
f = σ2

f +[(σ2
f +L

2
1)(σ

2
G+2L2

g)+σ
2
fL

2
g]

3
µ2
g
∼ O(κ2).485

Lemma 4 is on the descent of the quantity V k := F (xk)− F (x∗) + ∥yk − y∗(xk)∥2. It will be used486

in the proofs of Theorem 3 and 4.487

Lemma 4. Suppose F satisfies Assumptions 3, 4, and 5, sequences αb,k =
αb,0√
k+1

and αl,k =
αl,0√
k+1

488

with αb,0 and αl,0 satisfying 1
LF+4L2

y
≥ α2

b,0

αl,0
and αl,0 ≤ αb,0. Further assume that αk is independent489

of hkf . Then step sizes of the form (10) and (11) achieve the following:490

E[V k+1] ≤ E[V k]− αl,k
2

E[∥∇F (xk)∥2] + (αb,kL
2
f + 2)E[∥yk+1 − y∗(xk)∥2]+

αb,kB
2 + (2L2

yα
2
b,k +

LFα
2
b,k

2
)σ̃2
f − E[∥yk − y∗(xk)∥2],∀k, (24)

where V k = F (xk)−F (x∗)+ ∥yk+1− y∗(xk+1)∥2 and recall that F is the upper-level loss defined491

in (1).492

Proof. We denote E[hkf |F
′

k] = h̄kf . By the LF -smoothness of the objective F :493

F (xk+1) ≤ F (xk) + ⟨∇F (xk), xk+1 − xk⟩+ LF
2
∥xk+1 − xk∥2.

Take expectation conditioned on a filtration of past iterates F ′

k (up to and include xk, yk+1):494

E[F (xk+1)|F
′

k] ≤ F (xk) + E[⟨∇F (xk), xk+1 − xk⟩|F
′

k] +
LF
2

E[∥xk+1 − xk∥2|F
′

k]

= F (xk)− E[αk⟨∇F (xk), hkf ⟩|F
′

k] +
LFE[α2

k|F
′

k]

2
E[∥hkf − h̄kf + h̄kf∥2|F

′

k]

(a)
= F (xk)− E[αk|F

′

k]⟨∇F (xk), h̄kf ⟩+
LFE[α2

k|F
′

k]

2
∥h̄kf∥2 +

LFE[α2
k|F

′

k]

2
σ̃2
f

= F (xk)− E[αk|F
′

k]

2
∥∇F (xk)∥2 − E[αk|F

′

k]

2
∥h̄kf∥2 +

E[αk|F
′

k]

2
∥∇F (xk)− h̄kf∥2+

LFE[α2
k|F

′

k]

2
∥h̄kf∥2 +

LFE[α2
k|F

′

k]

2
σ̃2
f ,

where (a) is by the assumption that αk is independent of hkf . Then expand the term ∥∇F (xk)− h̄kf∥2495

as follows:496

∥∇F (xk)− h̄kf∥2 = ∥∇F (xk)− ∇̄f(xk, yk+1) + ∇̄f(xk, yk+1)− h̄kf∥2

≤ 2∥∇F (xk)− ∇̄f(xk, yk+1)∥2 + 2∥∇̄f(xk, yk+1)− h̄kf∥2

(b)

≤ 2L2
f∥yk+1 − y∗(xk)∥2 + 2B2,

where (b) is by Lemma 2 and 3. Substituting this into the above:497

E[F (xk+1)|F
′

k] ≤ F (xk)−
E[αk|F

′

k]

2
∥∇F (xk)∥2 − E[αk|F

′

k]

2
∥h̄kf∥2 +

LFE[α2
k|F

′

k]

2
∥h̄kf∥2+

E[αk|F
′

k]L
2
f∥yk+1 − y∗(xk)∥2 + E[αk|F

′

k]B
2 +

LFE[α2
k|F

′

k]

2
σ̃2
f

(c)

≤ F (xk)− αl,k
2
∥∇F (xk)∥2 − αl,k

2
∥h̄kf∥2 +

LFα
2
b,k

2
∥h̄kf∥2+

αb,kL
2
f∥yk+1 − y∗(xk)∥2 + αb,kB

2 +
LFα

2
b,k

2
σ̃2
f ,

14

where (c) is by αl,k ≤ αk and αb,k ≥ αk. Then take total expectations and subtract F (x∗):498

E[F (xk+1)− F (x∗)] ≤ E[F (xk)− F (x∗)]− αl,k
2

E[∥∇F (xk)∥2]− αl,k
2

E[∥h̄kf∥2] +
LFα

2
b,k

2
E[∥h̄kf∥2]+

αb,kL
2
fE[∥yk+1 − y∗(xk)∥2] + αb,kB

2 +
LFα

2
b,k

2
σ̃2
f (25)

Now define the potential function V k := F (xk) − F (x∗) + ∥yk+1 − y∗(xk+1)∥2 and expand the499

term ∥yk+1 − y∗(xk+1)∥2 as follows:500

∥yk+1 − y∗(xk+1)∥2 = ∥yk+1 − y∗(xk) + y∗(xk)− y∗(xk+1)∥2

≤ 2∥yk+1 − y∗(xk)∥2 + 2∥y∗(xk)− y∗(xk+1)∥2

(d)

≤ 2∥yk+1 − y∗(xk)∥2 + 2L2
y∥xk+1 − xk∥2

= 2∥yk+1 − y∗(xk)∥2 + 2L2
yα

2
k∥hkf∥2

= 2∥yk+1 − y∗(xk)∥2 + 2L2
yα

2
k∥hkf − h̄kf + h̄kf∥2,

where (d) is by Lemma 2. Take expectation conditioned on F ′

k:501

E[∥yk+1 − y∗(xk+1)∥2|F
′

k] ≤ 2∥yk+1 − y∗(xk)∥2 + 2L2
yα

2
k∥h̄kf∥2 + 2L2

yα
2
kσ̃

2
f

≤ 2∥yk+1 − y∗(xk)∥2 + 2L2
yα

2
b,k∥h̄kf∥2 + 2L2

yα
2
b,kσ̃

2
f .

Then, take total expectations:502

E[∥yk+1 − y∗(xk+1)∥2] ≤ 2E[∥yk+1 − y∗(xk)∥2] + 2L2
yα

2
b,kE[∥h̄kf∥2] + 2L2

yα
2
b,kσ̃

2
f . (26)

Now, based on the definition of V k and combining (25) and (26):503

E[V k+1] ≤ E[F (xk)− F (x∗)]− αl,k
2

E[∥∇F (xk)∥2]

−
E[∥h̄kf∥2]

2
(αl,k − LFα2

b,k − 4L2
yα

2
b,k) + (αb,kL

2
f + 2)E[∥yk+1 − y∗(xk)∥2]+

αb,kB
2 + (2L2

yα
2
b,k +

LFα
2
b,k

2
)σ̃2
f

(e)

≤ E[F (xk)− F (x∗)]− αl,k
2

E[∥∇F (xk)∥2] + (αb,kL
2
f + 2)E[∥yk+1 − y∗(xk)∥2]+

αb,kB
2 + (2L2

yα
2
b,k +

LFα
2
b,k

2
)σ̃2
f

= E[V k]− αl,k
2

E[∥∇F (xk)∥2] + (αb,kL
2
f + 2)E[∥yk+1 − y∗(xk)∥2]+

αb,kB
2 + (2L2

yα
2
b,k +

LFα
2
b,k

2
)σ̃2
f − E[∥yk − y∗(xk)∥2],

where (e) is because 1
LF+4L2

y
≥ α2

b,0

αl,0
, which guarantees that αl,k =

αl,0√
k+1
≥ (LF + 4L2

y)αb,k =504

(LF + 4L2
y)
α2

b,0

k+1 .505

Lemma 5 and Lemma 6 give two alternatives for bounding the term ∥yk+1 − y∗(xk)∥2. Lemma 5 is506

based on the assumption Eψ[g(x, y∗(x);ψ)− g(x, y∗x,ψ;ψ)] ≤ σ2
g , ∀x. The proof for its one-variable507

analogous assumption is given in Loizou et al. [29]. Here we follow a similar approach for the508

two-variable function g(x, y). Lemma 5 will be used in the proof of Theorem 3.509

Lemma 5. Suppose Assumptions 3, 5, and the bounded optimal function value assumption (15) hold.510

Further assume that each sampled function g(x, y;ψ) is convex, then step size of the form 11 achieves511

the following:512

E[∥yk+1 − y∗(xk)∥2] ≤ (1− µgCk)TE[∥yk − y∗(xk)∥2] + 2βb,kTσ
2
g ,

where Ck = min{ 1
2pLg

, βb,k}.513

15

Proof. We denote hk,tg = ∇yg(xk, yk,t;ψ), and F ′

k,t be a filtration up to and including xk and yk,t.514

We have,515

∥yk,t+1 − y∗(xk)∥2 = ∥yk,t − βk,thk,tg − y∗(xk)∥2

= ∥yk,t − y∗(xk)∥2 − 2βk,t⟨yk,t − y∗(xk), hk,tg ⟩+ β2
k,t∥hk,tg ∥2

(a)

≤ ∥yk,t − y∗(xk)∥2 − 2βk,t⟨yk,t − y∗(xk), hk,tg ⟩+
βk,t
p

[g(xk, yk,t;ψ)− g(xk, y∗xk,ψ;ψ)]

(b)

≤ ∥yk,t − y∗(xk)∥2 − 2βk,t⟨yk,t − y∗(xk), hk,tg ⟩+ 2βk,t[g(x
k, yk,t;ψ)− g(xk, y∗xk,ψ;ψ)]

= ∥yk,t − y∗(xk)∥2 − 2βk,t⟨yk,t − y∗(xk), hk,tg ⟩+
2βk,t[g(x

k, yk,t;ψ)− g(xk, y∗(xk);ψ) + g(xk, y∗(xk);ψ)− g(xk, y∗xk,ψ;ψ)]

= ∥yk,t − y∗(xk)∥2 + 2βk,t[−⟨yk,t − y∗(xk), hk,tg ⟩+ g(xk, yk,t;ψ)− g(xk, y∗(xk);ψ)]+
2βk,t[g(x

k, y∗(xk);ψ)− g(xk, y∗xk,ψ;ψ)]

(c)

≤ ∥yk,t − y∗(xk)∥2 + 2Ck[−⟨yk,t − y∗(xk), hk,tg ⟩+ g(xk, yk,t;ψ)− g(xk, y∗(xk);ψ)]+
2βb,k[g(x

k, y∗(xk);ψ)− g(xk, y∗xk,ψ;ψ)],

where (a) is by Lemma 1, (b) is by choosing p ≥ 1
2 , and, (c) is by individual convexity of516

g(x, y;ψ) such that −⟨yk,t − y∗(xk), hk,tg ⟩ + g(xk, yk,t;ψ) − g(xk, y∗(xk);ψ) ≤ 0 and recalling517

that Ck = min{ 1
2pLg

, βb,k} ≤ βk,t by Lemma 1. Take expectation conditioned on F ′

k,t and note that518

E[hk,tg |F
′

k,t] = ∇yg(xk, yk+1), E[g(xk, yk,t;ψ)|F ′

k,t] = g(xk, yk,t), and E[g(xk, y∗(xk);ψ)] =519

g(xk, y∗(xk)):520

E[∥yk,t+1 − y∗(xk)∥2|F
′

k,t] ≤ ∥yk,t − y∗(xk)∥2 + 2Ck[−⟨yk,t − y∗(xk),∇yg(xk, yk+1)⟩+
g(xk, yk,t)− g(xk, y∗(xk))] + 2βb,kσ

2
g . (27)

Now, based on the strong convexity of g w.r.t. y,521

−⟨yk,t − y∗(xk),∇yg(xk, yk+1)⟩+ g(xk, yk,t)− g(xk, y∗(xk)) ≤ µg
2
∥yk,t − y∗(xk)∥2,

we can further obtain (by taking total expectations of (27) and using strong-convexity):522

E[∥yk,t+1 − y∗(xk)∥2] ≤ (1− µgCk)E[∥yk,t − y∗(xk)∥2] + 2βb,kσ
2
g .

Solve this recursively from t = 0 to t = T − 1 (recall T is the total number of lower-level steps,523

yk,0 = yk and yk+1 = yk,T):524

E[∥yk+1 − y∗(xk)∥2] ≤ (1− µgCk)TE[∥yk − y∗(xk)∥2] + 2βb,kσ
2
g

T−1∑
j=0

(1− µgCk)j

≤ (1− µgCk)TE[∥yk − y∗(xk)∥2] + 2βb,kTσ
2
g .

525

Lemma 6 is based on the standard bounded variance assumption Eψ[∥∇yg(x, y∗(x);ψ) −526

∇yg(x, y∗(x))∥2] ≤ σ2
g , ∀x, y in the bi-level optimization literature [19, 4]. Lemma 6 will be527

used in the proof of Theorem 4.528

Lemma 6. Suppose Assumptions 3, 5 and the bounded variance assumption (16) hold. Suppose that529

p ≥ max{ µg

µg+Lg
,
µg+Lg

4Lg
}, βb,0 ≤ min{ 2

µg+Lg
,
µg+Lg

2µgLg
, 1

2pLg− 2µgLg
µg+Lg

}. Then step size of the form530

11 achieves the following:531

E[∥yk+1 − y∗(xk)∥2] ≤ (
βb,k
Ck
− 2µgLg
µg + Lg

βb,k)
TE[∥yk − y∗(xk)∥2] + Tβ2

b,kσ
2
g ,

where Ck = min{ 1
2pLg

, βb,k}.532

16

Proof. Similar to the proof of Lemma 5, we can start with533

∥yk,t+1 − y∗(xk)∥2 = ∥yk,t − y∗(xk)∥2 − 2βk,t⟨yk,t − y∗(xk), hk,tg ⟩+ β2
k,t∥hk,tg ∥2.

Divide both sides by βk,t534

∥yk,t+1 − y∗(xk)∥2

βk,t
=
∥yk,t − y∗(xk)∥2

βk,t
− 2⟨yk,t − y∗(xk), hk,tg ⟩+ βk,t∥hk,tg ∥2.

Then use the facts that βk,t ≤ βb,k and βk,t ≥ Ck,535

∥yk,t+1 − y∗(xk)∥2

βb,k
≤ ∥y

k,t − y∗(xk)∥2

Ck
− 2⟨yk,t − y∗(xk), hk,tg ⟩+ βb,k∥hk,tg ∥2 .

Next, take expectation conditioned on the Filtration F ′

k,t up to and including xk and yk,t536

1

βb,k
E[∥yk,t+1 − y∗(xk)∥2|F

′

k,t] ≤
1

Ck
E[∥yk,t − y∗(xk)∥2|F

′

k,t]− 2⟨yk,t − y∗(xk),∇g(xk, yk,t)⟩

+ βb,kE[∥hk,tg ∥2|F
′

k,t]

=
1

Ck
E[∥yk,t − y∗(xk)∥2|F

′

k,t]− 2⟨yk,t − y∗(xk),∇g(xk, yk,t)⟩

+ βb,kE[∥hk,tg −∇g(xk, yk,t) +∇g(xk, yk,t)∥2|F
′

k,t]

(a)

≤ 1

Ck
E[∥yk,t − y∗(xk)∥2|F

′

k,t]− 2⟨yk,t − y∗(xk),∇g(xk, yk,t)⟩

+ βb,kσ
2
g + βb,k∥∇g(xk, yk,t)∥2,

where (a) is by the bounded variance assumption (16). Based on strong-convexity of g [34, Theorem537

2.1.11], we have538

1

βb,k
E[∥yk,t+1 − y∗(xk)∥2|F

′

k,t] ≤
1

Ck
∥yk,t − y∗(xk)∥2 − 2µgLg

µg + Lg
∥yk,t − y∗(xk)∥2

− 2

µg + Lg
∥∇g(xk, yk,t)∥2 + βb,kσ

2
g + βb,k∥∇g(xk, yk,t)∥2

Multiply by βb,k in both sides, group terms, and take total expectations to reach539

E[∥yk,t+1 − y∗(xk)∥2] ≤ (
βb,k
Ck
− 2µgLg
µg + Lg

βb,k)E[∥yk,t − y∗(xk)∥2] + β2
b,kσ

2
g

+ βb,k(βb,k −
2

µg + Lg
)∥∇g(xk, yk,t)∥2

(b)

≤ (
βb,k
Ck
− 2µgLg
µg + Lg

βb,k)E[∥yk,t − y∗(xk)∥2] + β2
b,kσ

2
g ,

where in (b) we have chosen βb,k ≤ βb,0 ≤ 2
µg+Lg

,∀k. Solving this recursion similar to Lemma 5,540

we obtain:541

E[∥yk+1 − y∗(xk)∥2] ≤ (
βb,k
Ck
− 2µgLg
µg + Lg

βb,k)
TE[∥yk − y∗(xk)∥2] + Tβ2

b,kσ
2
g . (28)

In (28), we require βb,k

Ck
− 2µgLg

µg+Lg
βb,k ≥ 0 (recall Ck = min{ 1

2pLg
, βb,k} ≤ βk,t ≤ βb,k), this is542

equivalent to Ck ≤ µg+Lg

2µgLg
. In case of Ck = 1

2pLg
, we choose p ≥ µg

µg+Lg
(to avoid contradictions,543

we also choose p ≥ µg+Lg

4Lg
). In case of Ck = βb,k, we choose βb,k ≤ βb,0 ≤ µg+Lg

2µgLg
.544

We also require βb,k

Ck
− 2µgLg

µg+Lg
βb,k ≤ 1. In case of Ck = βb,k, this is equivalent to545

2µgLg

µg+Lg
βb,k ≥ 0, which is satisfied by all βb,k. In case of Ck = 1

2pLg
, we choose βb,k ≤546

βb,0 ≤ 1

2pLg−
2µgLg
µg+Lg

. Puting everything together, we have p ≥ max{ µg

µg+Lg
,
µg+Lg

4Lg
}, and547

βb,0 ≤ min{ 2
µg+Lg

,
µg+Lg

2µgLg
, 1

2pLg− 2µgLg
µg+Lg

}.548

17

A.2 Single-level Convex Proofs549

A.2.1 Proof of Theorem 1550

The proof of Theorem 1 is similar to the standard proof of decaying-step SGD (GD) that can be found551

in e.g. Beck [1]. Here, we give the proof for completeness.552

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2γk⟨xk − x∗,∇fi(xk)⟩+ γ2k∥∇fi(xk)∥2

(a)

≤ ∥xk − x∗∥2 − 2γk(fi(x
k)− fi(x∗)) + γ2k∥∇fi(xk)∥2

(b)

≤ ∥xk − x∗∥2 − 2γk(fi(x
k)− fi(x∗)) + γ2b,kG

2,

where (a) is by individual convexity of fi, and (b) is by Assumption 2. Take conditional expectation553

and assume that γk is independent of sample k554

E[∥xk+1 − x∗∥2|xk]
(c)

≤ ∥xk − x∗∥2 − 2E[γk|xk](f(xk)− f(x∗)) + γ2b,kG
2

(d)

≤ ∥xk − x∗∥2 − 2γl,k(f(x
k)− f(x∗)) + γ2b,kG

2,

where (c) is by independence of γk and xk, and (d) is because γl,k ≤ γk,∀k. Take total expectation555

and rearrange556

2γl,kE[f(xk)− f(x∗)] ≤ E[∥xk − x∗∥2]− E[∥xk+1 − x∗∥2] + γ2b,kG
2

Using the fact that γl,K−1 ≤ γl,k ∀k ∈ [K − 1] and set γb,k = γ0√
k+1

, we obtain557

2γl,K−1E[f(xk)− f(x∗)] ≤ E[∥xk − x∗∥2]− E[∥xk+1 − x∗∥2] + γ20
k + 1

G2

Summing over k = 0 to k = K − 1 we obtain558

2γl,K−1
1

K

K−1∑
k=0

E[f(xk)− f(x∗)] ≤ ∥x
0 − x∗∥2 − E[∥xK − x∗∥2]

K
+ γ20G

2 1

K

K−1∑
k=0

1

k + 1

≤ ∥x
0 − x∗∥2

K
+
γ20G

2 log(K)

K

Define x̄ = 1
K

∑K−1
k=0 xk, apply Jensen’s inequality and rearrange559

E[f(x̄K)− f(x∗)] ≤ ∥x
0 − x∗∥2

2γl,K−1K
+
γ20G

2 log(K)

2γl,K−1K
.

A.3 Proof of Theorem 2560

The approach of Theorem 2 is similar to [16, Theorem 3.2]. The crucial difference is that the step561

size in [16, Theorem 3.2] is constant (γk = 1
Lmax

) for k ≤ 4⌈κ⌉, whereas for envelope-type step size562

it is of the form:563

γk = min{max{γl,k, γ̃k}, γb,k}, γl,k = min{w, γb,k},

where γ̄k can be (e.g. in the case of SPSB):564

γ̄k = min{
fik(x

k)− l∗ik
ck∥∇fik(xk)∥2

,
γb,0
k + 1

}, w =
1

2ckLmax
.

The proof of Theorem 2 suggests that the step size can be either
fik (x

k)−l∗ik
ck∥∇fik (xk)∥2 or γb,0

k+1 depending on565

their magnitudes for k ≤ k0 − 1 (k0 = max{1, ⌈γ0/ω⌉ − 1}). After k0 iterations, the step size is566

γk =
γb,0
k+1 . This finding is numerically confirmed by the experimental results in Section B.567

18

To proceed with the proof, we have:568

∥xk+1 − x∗∥2 = ∥xk − γk∇fi(xk)− x∗∥2

= ∥xk − x∗∥2 − 2γk⟨∇fi(xk), xk − x∗⟩+ γ2k∥∇fi(xk)∥2

(a)

≤ ∥xk − x∗∥2 − 2γk⟨∇fi(xk), xk − x∗⟩+ γ2b,k∥∇fi(xk)∥2,

where (a) is because γk ≤ γb,k,∀k. Take conditional expectations569

E[∥xk+1 − x∗∥2|xk] ≤ ∥xk − x∗∥2 − 2E[γk|xk]⟨∇f(xk), xk − x∗⟩+ γ2b,kE[∥∇fi(xk)∥2|xk]
(b)

≤ ∥xk − x∗∥2 − µE[γk|xk]∥xk − x∗∥2 − 2E[γk|xk][f(xk)− f(x∗)] + γ2b,kG
2

(c)

≤ ∥xk − x∗∥2 − µγl,k∥xk − x∗∥2 − 2γl,k[f(x
k)− f(x∗)] + γ2b,kG

2

where (b) is by bounded gradients assumption and strong convexity of f . Take total expectation and570

rearrange571

2E[f(xk)− f(x∗)] ≤ (1− µγl,k)E[∥xk − x∗∥2]− E[∥xk+1 − x∗∥2]
γl,k

+
γ2b,kG

2

γl,k

Choose k0 = max{1, ⌈γ0/ω⌉ − 1}, then for ∀k s.t. k ≥ k0, we have γl,k = min{ω, γb,k} =572

γb,k = γ0
k+1 , which means γk = γ0

k+1 after k0 steps. Within the first k0 steps, the step size is573

γk = min{ω, γb,k}. Hence, for k ≥ k0 we have574

2E[f(xk)− f(x∗)] ≤ (1− µγl,k)E[∥xk − x∗∥2]− E[∥xk+1 − x∗∥2]
γl,k

+
γ0G

2

k + 1

Now, sum from k = k0 to K − 1575

2

K−1∑
k=k0

E[f(xk)− f(x∗)] ≤
K−1∑
k=k0

(1− µγl,k)E[∥xk − x∗∥2]− E[∥xk+1 − x∗∥2]
γl,k

+

K−1∑
k=k0

γ0G
2

k + 1

(29)

For the first term in (29), call it A, we expand it as576

A =

K−1∑
k=k0+1

E[∥xk − x∗∥2](1

γl,k
− 1

γl,k−1
− µ) + E[∥xk0 − x∗∥2](

1

γl,k0
− µ)− E[∥xK − x∗∥2]

γl,K−1

≤
K−1∑

k=k0+1

E[∥xk − x∗∥2](k + 1

γ0
− k

γ0
− µ) + E[∥xk0 − x∗∥2](

k0 + 1

γ0
− µ)

(d)

≤ E[∥xk0 − x∗∥2]µk0.

where (d) is because γ0 ≥ 1
µ , we have k+1

γ0
− k

γ0
− µ ≤ 0,∀k and k0+1

γ0
− µ ≤ µk0. For the second577

term in (29), call it B, we have578

B =

K−1∑
k=k0

γ0G
2

k + 1
≤ γ0G2

∫ K−1

k0

1

x+ 1
dx = γ0G

2[log(K)− log(k0 + 1)] ≤ γ0G2 logK

Putting A and B together, we obtain579

1

K − k0

K−1∑
k=k0

E[f(xk)− f(x∗)] ≤ E[∥xk0 − x∗∥2]µk0
2(K − k0)

+
γ0G

2 log(K)

2(K − k0)
(30)

Within the first k0 − 1 iterations, similarly to the above, we have580

E[∥xk+1 − x∗∥] ≤ (1− µγl,k)E[∥xk − x∗∥2]− 2γl,kE[f(xk)− f(x∗)] + γ2b,kG
2

≤ (1− µγl,k)E[∥xk − x∗∥2] + γ2b,kG
2 .

19

For the first k ≤ k0 − 1 iterations, γl,k = ω where ωµ < 1; thus, we obtain the following581

E[∥xk+1 − x∗∥] ≤ (1− µω)E[∥xk − x∗∥2] + γ2b,kG
2.

Solve this recursively,582

E[∥xk0 − x∗∥2] ≤ (1− µω)k0∥x0 − x∗∥2 +
k0−1∑
k=0

(1− µω)k0−k−1 γ20G
2

(k + 1)2

≤ (1− µω)k0∥x0 − x∗∥2 +
k0−1∑
k=0

γ20G
2

(k + 1)2

≤ (1− µω)k0∥x0 − x∗∥2 + γ20G
2

∫ k0−1

0

1

(1 + x)2
dx

= (1− µω)k0∥x0 − x∗∥2 + γ20G
2(1− 1

k0
)

≤ (1− µω)k0∥x0 − x∗∥2 + γ20G
2. (31)

Putting this into (30), we obtain583

1

K − k0

K−1∑
k=k0

E[f(xk)− f(x∗)] ≤ µk0
2(K − k0)

{exp(−k0µω)∥x0 − x∗∥2 + γ20G
2}+ γ0G

2 logK

2(K − k0)
.

Define x̄K = 1
K−k0

∑K−1
k=k0

xk, then by Jensen’s inequality we have584

E[f(x̄K)− f(x∗)] ≤ µk0
2(K − k0)

{exp(−k0µω)∥x0 − x∗∥2 + γ20G
2}+ γ0G

2 logK

2(K − k0)
,

where k0 = max{1, ⌈γ0/ω⌉ − 1} and γ0 ≥ 1
µ .585

A.4 Bi-level Proofs586

A.4.1 Proof of Theorem 3587

Start with Lemma 4:588

E[V k+1] ≤ E[V k]− αl,k
2

E[∥∇F (xk)∥2] + (αb,kL
2
f + 2)E[∥yk+1 − y∗(xk)∥2]+

αb,kB
2 + (2L2

yα
2
b,k +

LFα
2
b,k

2
)σ̃2
f − E[∥yk − y∗(xk)∥2].

We substitute the result of Lemma 5 for the expression E[∥yk+1 − y∗(xk)∥2],589

E[V k+1] ≤ E[V k]− αl,k
2

E[∥∇F (xk)∥2] + [(αb,kL
2
f + 2)(1− µgCk)T − 1]E[∥yk − y∗(xk)∥2]+

2αb,kβb,kTL
2
fσ

2
g + 4βb,kTσ

2
g + αb,kB

2 + (2L2
y +

LF
2

)α2
b,kσ̃

2
f

(a)

≤ E[V k]− αl,k
2

E[∥∇F (xk)∥2] + [(αb,0L
2
f + 2)(1− µgCK−1)

T − 1]E[∥yk − y∗(xk)∥2]+

2αb,kβb,kTL
2
fσ

2
g + 4βb,kTσ

2
g + αb,kB

2 + (2L2
y +

LF
2

)α2
b,kσ̃

2
f

(b)

≤ E[V k]− αl,k
2
E[∥∇F (xk)∥2] + 2αb,kβb,kTL

2
fσ

2
g + 4βb,kTσ

2
g + αb,kB

2 + (2L2
y +

LF
2

)α2
b,kσ̃

2
f ,

where (a) is by αb,0 ≥ αb,k, CK−1 ≤ Ck,∀k, hence (αb,0L
2
f)(1 − µgCK−1)

T ≥ (αb,kL
2
f)(1 −590

µgCk)
T (recall that Ck = min{ 1

2pLg
, βb,k} in Lemma 1); (b) is by T ≥ log[αb,0L

2
f+2]

− log(1−µCK−1)
, which591

implies that (αb,0L2
f + 2)(1− µgCK−1)

T ≤ 1. Now, rearrange and use the fact that αl,K−1 ≤ αl,k,592

αl,K−1E[∥∇F (xk)∥2] ≤ 2E[V k]− 2E[V k+1] + 4αb,kβb,kTL
2
fσ

2
g + 8βb,kTσ

2
g + 2αb,kB

2 + (4L2
y + LF)α

2
b,kσ̃

2
f .

20

Then sum over k = 0 to K − 1:593

1

K

K−1∑
k=0

E[∥∇F (xk)∥2] ≤ 2V 0

αl,K−1K
+

4TL2
fσ

2
g

αl,K−1K

K−1∑
k=0

αb,kβb,k +
8Tσ2

g

αl,K−1K

K−1∑
k=0

βb,k +
2B2

αl,K−1K

K−1∑
k=0

αb,k+

(4L2
y + LF)σ̃

2
f

αl,K−1K

K−1∑
k=0

α2
b,k

(c)
=

2V 0

αl,K−1K
+

4TL2
fσ

2
gαb,0βb,0

αl,K−1K

K−1∑
k=0

1

(k + 1)1.5
+

8Tσ2
gβb,0

αl,K−1K

K−1∑
k=0

1

k + 1
+

+
2B2αb,0
αl,K−1K

K−1∑
k=0

1√
k + 1

+
(4L2

y + LF)σ̃
2
fα

2
b,0

αl,K−1K

K−1∑
k=0

1

k + 1

(d)

≤ 2V 0

αl,0
√
K

+
8TL2

fσ
2
gαb,0βb,0

αl,0
√
K

+
8Tσ2

gβb,0 log(K)

αl,0
√
K

+

2B2αb,0
αl,0

+
(4L2

y + LF)σ̃
2
fα

2
b,0 log(K)

αl,0
√
K

,

where we substituted αb,k =
αb,0√
k+1

and βb,k =
βb,0

k+1 in (c); (d) is based on
∑K−1
k=0

1
(k+1)1.5 ≤ 2,594 ∑K−1

k=0
1
k+1 ≤ log(K), and

∑K−1
k=0

1√
k+1
≤
√
K. Recall that in Lemma 2, we have Lf ∼ O(κ2),595

Ly ∼ O(κ), and LF ∼ O(κ3). Also recall that αb,k =
αb,0√
k+1

and αl,k =
αl,0√
k+1

, hence596

we choose αl,0 ∼ αb,0 ∼ O(κ−3), T ∼ O(κ), and βb,0 ∼ O(κ−2). Then we can obtain597

1
K

∑K−1
k=0 E[∥∇F (xk)∥2] ≤ O(κ

3
√
K

+ κ2 log(K)√
K

).598

A.4.2 Theorem 4 and its proof599

Theorem 4. Suppose f and g satisfy Assumptions 3, 4, and 5, and, learning-rate upper bounds αb,k =600

αb,0√
k+1

and αl,k =
αl,0√
k+1

with αb,0 and αl,0 satisfying 1
LF+4L2

y
≥ α2

b,0

αl,0
and αl,0 ≤ αb,0. Further601

assume that αk is independent of the stochastic hypergradient hkf . Then, under the Bounded-variance602

assumption in (16) with p ≥ max{ µg

µg+Lg
,
µg+Lg

4Lg
}, βb,0 ≤ min{ 2

µg+Lg
,
µg+Lg

2µgLg
, 1

2pLg− 2µgLg
µg+Lg

}, and603

T ≥ log(3
2αb,0L

2
f+2)

min{− log(1− 2µgLg
µg+Lg

βb,K−1),− log((2pLg−
2µgLg
µg+Lg

)βb,0)}
, BiSPS achieves the following rate:604

1

K

K−1∑
k=0

E[∥∇F (xk)∥2] ≤ Õ(κ
3

√
K

+
κ2 logK√

K
).

Proof. Start with Lemma 4:605

E[V k+1] ≤ E[V k]− αl,k
2

E[∥∇F (xk)∥2] + (αb,kL
2
f + 2)E[∥yk+1 − y∗(xk)∥2]+

αb,kB
2 + (2L2

yα
2
b,k +

LFα
2
b,k

2
)σ̃2
f − E[∥yk − y∗(xk)∥2].

We substitute the result of Lemma 6 for the expression E[∥yk+1 − y∗(xk)∥2],606

E[V k+1] ≤ E[V k]− αl,k
2

E[∥∇F (xk)∥2] + [(αb,kL
2
f + 2)(

γb,k
Ck
− 2µgLg
µg + Lg

βb,k)
T − 1]E[∥yk − y∗(xk)∥2]+

+ L2
fTσ

2
gαb,kβ

2
b,k + 2Tσ2

gβ
2
b,k + αb,kB

2 + [2L2
y +

LF
2

]α2
b,kσ̃

2
f

(a)

≤ E[V k]− αl,k
2

E[∥∇F (xk)∥2] + L2
fTσ

2
gαb,kβ

2
b,k + 2Tσ2

gβ
2
b,k + αb,kB

2 + [2L2
y +

LF
2

]α2
b,kσ̃

2
f ,

21

where in (a) we have chosen T ≥ max{ log(αb,0L
2
f+2)

− log(1− 2µgLg
µg+Lg

βb,K−1)
,

log(α2
b,0L

2
f+2)

− log(2pLg−
2µgLg
µg+Lg

)βb,0

}. This ensures607

that T ≥ log(αb,0L
2
f+2)

− log(
βb,k
Ck

− 2µgLg
µg+Lg

βb,k)
,∀k, which guarantees that (αb,kL2

f+2)(
βb,k

Ck
− 2µgLg

µg+Lg
βb,k)

T−1 ≤ 0.608

Now, rearrange and use the fact that αl,K−1 ≤ αl,k,609

αl,K−1E[∥∇F (xk)∥2] ≤ 2E[V k]− 2E[V k+1] + 2αb,kβ
2
b,kTL

2
fσ

2
g + 4β2

b,kTσ
2
g + 2αb,kB

2 + (4L2
y + LF)α

2
b,kσ̃

2
f .

Sum over k = 0 to k = K − 1:610

1

K

K−1∑
k=0

E[∥∇F (xk)∥2] ≤ 2V 0

αl,K−1K
+

2TL2
fσ

2
g

αl,K−1K

K−1∑
k=0

αb,kβ
2
b,k +

4Tσ2
g

αl,K−1K

K−1∑
k=0

β2
b,k+

2B2

αl,K−1K

K−1∑
k=0

αb,k +
(4L2

y + LF)σ̃
2
f

αl,K−1K

K−1∑
k=0

α2
b,k

(b)
=

2V 0

αl,K−1K
+

2TL2
fσ

2
gαb,0β

2
b,0

αl,K−1K

K−1∑
k=0

1

(k + 1)3/2
+

4Tσ2
gβ

2
b,0

αl,K−1K

K−1∑
k=0

1

k + 1
+

2B2αb,0
αl,K−1K

K−1∑
k=0

1

(k + 1)0.5
+

(4L2
y + LF)σ̃

2
fα

2
b,0

αl,K−1K

K−1∑
k=0

1

k + 1

(c)

≤ 2V 0

αl,K−1K
+

2TL2
fσ

2
gαb,0β

2
b,0

αb,0
√
K

+
4Tσ2

gβ
2
b,0 log(K)

αb,0
√
K

+

+
2B2αb,0
αl,0

+
(4L2

y + LF)σ̃
2
fα

2
b,0 log(K)

αl,0
√
K

,

where in (b) we have substituted αb,k =
αb,0√
k+1

and βb,k =
βb,0√
k+1

, and (c) is by
∑K−1
k=0

1
(k+1)3/2

≤ 2,611 ∑K−1
k=0

1
k+1 ≤ log(K), and

∑K−1
k=0

1
(k+1)1/2

≤
√
K. Similar to the proof of Theorem 3, we choose612

αl,0 ∼ αb,0 ∼ O(κ−3), T ∼ O(κ), and βb,0 ∼ O(κ−1) to obtain 1
K

∑K−1
k=0 E[∥∇F (xk)∥2] ≤613

O(κ
3

√
K

+ κ2 log(K)√
K

).614

B Additional Experiment Results615

This section is organized as follows. First, we discuss synthetic quadratics experiments. Second,616

we provide more details on the sensitivity of the algorithms to the choices of δ in (14), on the reset617

procedure, and on the search cost of BiSLS. Third, we compare the empirical performance of 1-sample618

vs 2-samples implementations of our algorithms for single-level convex and bi-level optimization.619

Some additional results for hyper-representation learning and data distillation experiments are also620

presented. We run 5 independent runs for all our experiments.621

B.1 Synthetic Quadratics622

The experiments on quadratic functions are adapted from Loizou et al. [29]. The training objective is
as follows:

f(x) =
1

2
(x− x∗1)TH1(x− x∗1) +

1

2
(x− x∗2)TH2(x− x∗2),

where Hi (i = 1, 2) are positive definite. The optimal solutions x∗i (i = 1, 2) are generated randomly
from a standard normal distribution. Specifically, Hi is defined as follows:

Hi = OT · Diag(log(1 + λi)) ·O, i = 1, 2,

where O and λi are taken from the spectral decomposition of PTP , and P is generated from the623

standard normal distribution. Figure 8 shows the convergence of various algorithms with different624

starting points. Interestingly, both SPSB with either 1 sample or 2 samples (1 sample for computing625

the gradient and the other for computing the step size) converge to the optimal solution (labelled with626

a star).627

22

2 0 2
x

2

0

2

y

DecSPS
SPSB
SPSB (2 samples)
Starting points
x *

1 and x *
2

Minimum

Figure 8: Iterate trajectories of different starting points for the synthetic quadratic experiments.

B.2 Sensitivity of δ, reset, and search cost628

In this section, we discuss the effects of δ in (14), η in Algorithm 2, and comment on the search cost629

of the options in the Reset Algorithm 2. Recall that the line-search condition (8) assumes that we can630

find a largest γk ≤ γb,0 to satisfy it. However, in practice, we apply a backtracking procedure, i.e.631

γk = γk ∗ w, 0 < w < 1, until γk satisfies (8). Therefore, the found learning rate is not guaranteed632

to be the largest. Nonetheless, we assume that γk is the largest to simplify our analysis given above633

(similar arguments apply to line-search at both upper and lower-level in the bi-level optimization).634

The experiments in this section are based on hyper-representation learning [42]. In this case, the635

objective of the induced bilevel-optimization problem can be written as:636

min
w
F (w) =

1

2DX1

∥f̃(X1;w)c
∗(w)− Y1∥2

s.t. c∗(w) = argmin
c

1

2DX2

∥f̃(X2;w)c− Y2∥2 +
λ

2
∥c∥2 ,

where (X1, Y1) and (X2, Y2) are validation and training data sets with sizes DX1
and DX2

, respec-637

tively; f̃(·;w) are the embedding layers of the model parameterized by w; and, c is the classification638

layer. Moreover, we use conjugate gradient methods (CG) [17, 18] to solve the linear system when639

computing the hypergradient for hyper-representation learning experiments.640

Reset While Algorithm 2 (reset) can be applied to both upper and lower-level problems, we focus641

our discussions here on the upper-level learning rate (αk). This is because we empirically find it to642

be more critical for the convergence performance (see Figure 6a). As shown in Algorithm 2, reset has643

3 options. Options 1, 2, and 3 search starting from αb,0, αk−1, and ηαk−1, at iteration k respectively.644

Option 1 has the highest search cost as it always starts from the same initial upper bound (αb,0).645

Option 2 ensures the monotonicity of the learning rate due to αk ≤ αb,k = αk−1. Option 3 chooses646

the search starting point at iteration k (αb,k) by multiplying the previous learning rate (αk−1) by a647

factor η ≥ 1. As in the single-level convex case where monotonicity in the step size can potentially648

lead to slow convergence (see Figure 3), we again observe that monotonicity in the upper learning649

rate (i.e. option 2) leads to poorer performance when compared against options 1 or 3 as shown in650

Figure 9. Finally, we compare the performance of different ηs in option 3 (note that η = 1 in option 3651

is equivalent to option 2). We observe in Figure 10 that different ηs perform equally well. This shows652

the robustness of our algorithm to the choice of η. As mentioned previously, the choice of option 3653

over option 1 are due to 2 reasons: (a) reduced search cost; (b) provides an overall non-increasing and654

non-monotonic trend of upper bound αb,k. We discuss search cost of different ηs in option 3 below.655

Search Cost We investigate the line-search cost based on options 1, 2, and 3 in reset (Algorithm 2)656

for the upper-level problem. For option 1, the search cost in terms of number of search rounds (i.e.657

number of evaluations using (14)) per iteration for BiSLS-SGD and BiSLS-Adam is 89 ± 15 and658

115±16, respectively. The search cost of BiSLS-Adam is higher than that of BiSLS-SGD because the659

feasible learning rate range for Adam is typically smaller than SGD at the upper-level. Based on the660

23

0 10 20 30 40 50
Upper Iterations

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

= 0.0 (Opt-1)
= 0.0 (Opt-2)
= 0.0 (Opt-3)

(a) Different Opt (BiSLS-SGD)

0 10 20 30 40 50
Upper Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

= 0.0 (Opt-1)
= 0.0 (Opt-2)
= 0.0 (Opt-3)

(b) Different Opt (BiSLS-Adam)

Figure 9: Validation loss against iterations with search options 1, 2, and 3 for the upper-level learning
rate. The results for BiSLS-SGD and BiSLS-Adam are in (a) and (b), respectively. For the lower-level
search, we fix it option 1 with βb,0 = 100. Results are based on hyper-representation learning.

results in Figure 11, we observe the use of option 3 in reset can significantly reduce the search cost for661

both BiSLS-Adam and BiSLS-SGD. For example, choosing η = 2 in option 3 results in an average662

upper-level search cost of only ∼ 9 rounds per iteration, which is much smaller than that of option 1.663

As we have shown in Figure 9, options 1 and 3 have nearly the same performance. Therefore, option664

3 is an efficient algorithm that maintains good performance while reducing computation cost. Option665

2 has the lowest search cost (∼ 4 rounds per iteration). However, its performance is not as good as666

option 1 or 3 as observed in Figure 9. Moreover, the average lower-level search cost is only 1 round667

per iteration when option 1 is used (see Figure 11b).668

Sensitivity on δ As mentioned in Sec 2, due to the stochastic error in hypergradient computation,669

further complicated by the approximation error of y∗(x) (see (14)), a learning rate is not guaranteed670

to be found in the bi-level case. Specifically, this is in contrast to the single-level convex problems.671

To avoid this, we introduce in (14) a δ slack to give some tolerance to such errors. Here, we give a672

thorough investigation of the effects of δ on performance. We vary its magnitude across 6 orders673

for both reset options 1 and 3 (see Algorithm 2 and discussions on reset above). We observe that674

despite a large difference on the magnitudes of δ, they all share very similar performance for both675

BiSLS-SGD and BiSLS-Adam: see Figures 12 and 13. We summarize the key fins in this section as676

follows: ① The option 3 in reset has good empirical performance (outperforms option 2) and677

is an effective way to reduce search cost (Figure 9, 11); ② BiSLS is highly robust to different678

choices of η in option 3 and δ in (14) (Figure 10, 12, 13).679

B.3 Data distillation objective and additional results680

We let LS(w) denote the loss evaluated on dataset S with model weights w. The objective of data
distillation can be expressed as a BO problem as follows:

D∗ = argmin
D

LṼ (w
∗(D)) s.t. w∗(D) = argmin

w
LD(w),

where Ṽ is of the same size as D and subsampled from the entire (original) dataset V . The solution681

D∗ is the distilled data, e.g. 9 MNIST digits each corresponding to a different label. In figure 14a,682

we show the performance of BiSPS for different values of αb,0 in comparison with BiSLS-SGD, and683

observe that BiSLS-SGD has better performance. In 14b, we show the results when we increase684

the number of lower-level iterations (T) from 20 to 50. As observed for T = 20 (in Figure 7),685

BiSLS-SGD here also outperforms a fine-tuned Adam or SGD.686

B.4 1-sample or 2-samples versions of algorithms for convex and bi-level optimization687

We provide additional results to compare the performance of 1-sample and 2-samples (one for688

computing the gradient and the other for computing the step size) versions of our algorithms for689

24

0 10 20 30 40 50
Upper Iterations

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

BiSLS-SGD = 1.0
BiSLS-SGD = 2.0
BiSLS-SGD = 5.0
BiSLS-SGD = 7.0
BiSLS-SGD = 10.0

(a) Different ηs (BiSLS-SGD)

0 10 20 30 40 50
Upper Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

BiSLS-Adam = 1.0
BiSLS-Adam = 2.0
BiSLS-Adam = 5.0
BiSLS-Adam = 7.0
BiSLS-Adam = 10.0

(b) Different ηs (BiSLS-Adam)

Figure 10: Validation loss against iterations for different ηs based on reset option 3. Results for
BiSLS-SGD are given in (a) and for BiSLS-Adam are given in (b). Note that η = 1 in reset option 3
is equivalent to reset option 2. For the lower-level search, we fix it option 1 with βb,0 = 100. Results
are based on hyper-representation learning.

2 4 6 8 10

5

10

15

20

25

Up
pe

r-L
ev

el
 S

ea
rc

h
Co

st

BiSLS-Adam
BiSLS-SGD

(a) Upper-level search cost

0 1000 2000 3000 4000 5000
b, 0

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05
Lo

we
r-L

ev
el

 S
ea

rc
h

Co
st

(b) Lower-level search cost

Figure 11: (a) Upper-level search cost measured in terms of average number of search rounds per
iteration against different ηs in reset (Algorithm 2). (b) Lower-level search cost measured in the same
way as upper-level against different lower-level search starting points (βb,0). The lower-level search
is done with option 1 (see above for discussions about these options).

SPSB and BiSPS used for single-level and bi-level optimization, respectively. In the single-level case690

(Figure 15), we observe that 2-samples SPSB performs just as well as 1-sample SPSB . Interestingly,691

we observe that their step sizes also follow a similar pattern. That is: an initial increase followed692

by a regime where γk =
fik (x

k)−l∗ik
c∥∇fik (xk)∥2 is frequently used, and eventually changes to decaying-693

step SGD. This seems to also match with Theorem 2 where a transition point for SPSB (k0 =694

max{1, ⌈γ0/ω⌉ − 1}, w = 1
2cLmax

, γ0 ≥ 1
µ) is predicted. At the same time, we also note that695

(perhaps, unsurprisingly) the 2-samples version seems to have a slightly more oscillatory behavior696

than the 1-sample version as shown in Figure 15. SLSB with either 1-sample or 2-samples also697

result in a similar performance and step size. Overall, despite the requirements of Theorems 1698

and 2 for a 2-samples assumption, the empirical performance of 1-sample and 2-samples for either699

SPSB or SLSB appears to be very similar. Moving on to the bi-level case, recall that Theorems 3700

and 4 require the 2-samples assumption (i.e., αk independent of hkf) for the upper-level learning rate.701

We empirically verify this assumption with both hyper-representation learning and data distillation702

experiments. For hyper-representation learning experiments in Figure 16, BiSPS with either 1-sample703

or 2-samples for different values of αb,0 show similar performance. In fact, for αb,0 = 0.1 we even704

observe that the 2-samples variant outperforms the 1-sample BiSPS. For data distillation experiments705

25

0 10 20 30 40 50
Upper Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

= 0.0 (Opt-1)
= 10 6 (Opt-1)
= 10 5 (Opt-1)
= 10 4 (Opt-1)
= 10 3 (Opt-1)
= 10 2 (Opt-1)

(a) Different δs/Opt-1 (BiSLS-SGD)

0 10 20 30 40 50
Upper Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

= 0.0 (Opt-1)
= 10 6 (Opt-1)
= 10 5 (Opt-1)
= 10 4 (Opt-1)
= 10 3 (Opt-1)
= 10 2 (Opt-1)

(b) Different δs/Opt-1 (BiSLS-Adam)

Figure 12: Validation loss against iterations for different δs based on reset option 1. Results for BiSLS-
SGD (a) and for BiSLS-Adam (b). For the lower-level search, we fix it option 1 with βb,0 = 100.
Results are based on hyper-representation learning.

0 10 20 30 40 50
Upper Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

= 0.0 (Opt-3)
= 10 6 (Opt-3)
= 10 5 (Opt-3)
= 10 4 (Opt-3)
= 10 3 (Opt-3)
= 10 2 (Opt-3)

(a) Different δs/Opt-3 (BiSLS-SGD)

0 10 20 30 40 50
Upper Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

= 0.0 (Opt-3)
= 10 6 (Opt-3)
= 10 5 (Opt-3)
= 10 4 (Opt-3)
= 10 3 (Opt-3)
= 10 2 (Opt-3)

(b) Different δs/Opt-3 (BiSLS-Adam)

Figure 13: Validation loss against iterations for different δs based on reset option 3 (η = 10). Results
for BiSLS-SGD (a) and for BiSLS-Adam (b). For the lower-level search, we fix it option 1 with
βb,0 = 100. Results are based on hyper-representation learning.

in Figure 17, the performances of 1-sample and 2-samples BiSPS are similar to each other when706

αb,0 = 10.0 or αb,0 = 50.0. In general, the performance difference between 1-sample and 2-samples707

in the single-level or bi-level settings is small.708

26

0 250 500 750 1000 1250 1500 1750 2000
Upper Iterations

10 4

10 3

10 2

10 1

100

Va
lid

at
io

n
Lo

ss

BiSPS - 0.1/ k + 1
BiSPS - 1.0/ k + 1
BiSPS - 10.0/ k + 1
BiSPS - 100.0/ k + 1
BiSLS-SGD

(a) Different αb,0s (BiSPS)

0 250 500 750 1000 1250 1500 1750 2000
Upper Iterations

10 4

10 3

10 2

10 1

100

Va
lid

at
io

n
Lo

ss

Adam = 0.001
Adam = 0.01
Adam = 0.1
SGD = 0.001
SGD = 0.01
SGD = 0.1
BiSLS-SGD

(b) T = 50, Identity

Figure 14: Validation loss against iterations. (a) Comparison between BiSPS with different αb,0s
and BiSLS-SGD. (b) Comparison between BiSLS-SGD to fine-tuned Adam/SGD (βk fixed at 10−4).
Inverse Hessian in (2) treated as the Identity [30] when computing the hypergradient. Recall that T is
the total number of lower-level iterations and we have shown the results for T = 20 in Figure 7b.

0 1000 2000 3000 4000 5000
Iterations

10 1

100

101

Tr
ai

n
Lo

ss

Const SGD
Decay SGD
SLSB
SLSB (2 samples)
SPSB
SPSB (2 samples)

(a) Train loss

100 101 102 103 104

Iterations
100

101

102

103

St
ep

 S
ize

s

Const SGD
Decay SGD
SLSB
SLSB (2 samples)
SPSB
SPSB (2 samples)

(b) Step size

Figure 15: Binary linear classification on w8a dataset using logistic loss [3]. Train loss (left) and step
size (right) against iterations. We choose γb,0 = 1000 for all algorithms. The upper bound for either
SPSB or SLSB decays as γb,k =

γb,0√
k+1

. For decaying-step SGD, the learning rate schedule is γb,0√
k+1

.

27

0 10 20 30 40 50
Upper Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Va
lid

at
io

n
Lo

ss

Decaying-step SGD
BiSPS (1-sample) b, 0 = 0.01
BiSPS (1-sample) b, 0 = 0.05
BiSPS (1-sample) b, 0 = 0.1
BiSPS (2-sample) b, 0 = 0.01
BiSPS (2-sample) b, 0 = 0.05
BiSPS (2-sample) b, 0 = 0.1

Figure 16: Comparison between BiSPS (2-samples), BiSPS (1-sample) and decaying-step SGD.
Experiments are based on hyper-representation learning. For either version of BiSPS, the lower-level
learning rate (βk) is fixed at 10. The hypergradient is computed using conjugate gradient [17].

0 250 500 750 1000 1250 1500 1750 2000
Upper Iterations

10 2

10 1

100

Va
lid

at
io

n
Lo

ss

Figure 17: Comparison between BiSPS (2-samples), BiSPS (1-sample) and decaying-step SGD.
Experiments are based on data distillation. For either version of BiSPS, the lower-level learning
rate (βk) is fixed at 10−4. The Inverse Hessian in (2) is treated as the Identity when computing the
hypergradient [30].

28

	Introduction
	Related Work

	Summary of Contributions
	Convergence Results
	Envelope-type step size for single-level optimization
	Envelope-type step size for bi-level optimization

	Additional Hyper-Representation and Data Distillation Experiments
	Conclusion
	Proofs of Theorems and Additional Convergence Results
	Useful Lemmas
	Single-level Convex Proofs
	Proof of Theorem 1

	Proof of Theorem 2
	Bi-level Proofs
	Proof of Theorem 3
	Theorem 4 and its proof

	Additional Experiment Results
	Synthetic Quadratics
	Sensitivity of , reset, and search cost
	Data distillation objective and additional results
	1-sample or 2-samples versions of algorithms for convex and bi-level optimization

