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A Broader Impacts Statement3

The creation and introduction of our video-based retinal vessel dataset (RVD) have profound effects4

on both the research community and the broader healthcare domain.5

Research Impacts. By providing a comprehensive dataset with both spatial and temporal dimensions,6

the RVD significantly facilitates the analysis of retinal vessel segmentation and leads to improved7

understanding and modeling of ocular diseases. By incorporating dynamic video data, this dataset8

offers a broader and richer scope of retinal information than the traditional static image-based datasets.9

It fosters new research opportunities in retinal vessel segmentation that emphasize dynamic temporal10

characteristics and more granular vessel details. The introduced domain gaps with handheld devices11

may promote the development of robust and adaptable models, thereby advancing state-of-the-art12

image analysis methods. By providing this dataset as a resource for the research community, we13

hope to facilitate widespread collaboration and accelerate the exploration in retinal disease detection,14

understanding, and diagnosis.15

Societal Impacts. As adopted in our RVD dataset, smartphone-based devices have the potential to16

democratize retinal vessel examination by making it more accessible and less reliant on expensive,17

specialized ophthalmic equipment. Such an enhancement in accessibility consequently leads to earlier18

detection and prevention of a spectrum of ocular diseases. Handheld devices potentially increase19

equity in healthcare services.20

Limitations. Although our RVD is the largest dataset for retinal vessel segmentation to date (63521

videos with annotations), its scale is still limited compared to other datasets in computer vision and22

thus our dataset can be further extended in the future. Compared to the data collected with bench-top23

devices, the original videos captured with handheld devices involve more realistic factors such as24

operator techniques, varying lighting conditions, and eye movement of the patient. These factors will25

require more sophisticated data cleaning and preprocessing strategies to avoid the degraded quality26

and reliability of the data.27

B Building RVD28

Equipment. We use self-designed handheld devices for data collection. Compared to bench-top29

devices which are cumbersome and expensive, the devices we adopt here are lightweight and portable.30

Our devices are much cheaper and easier to access. Our devices are built by connecting a smartphone31

to the fundus camera lens via an optical tube (see Fig. 1).32

Operation details. Clinicians use the handheld devices in Fig. 1 (b) to amass a collection of videos33

during eye health examinations. To accommodate handheld operation, each video lasts at least34

0.5 seconds and does not exceed 25 seconds. The process initiates with the random selection of35

participants and their consent prior to recording. Then, either the left eye, the right eye, or both eyes36

are randomly selected for video recording. This method ensures that our dataset comprises both37

healthy and diseased eyes. Each participant joins in the recording process either once or multiple38

times. In our dataset, we try to eliminate the potential bias towards specific eye conditions and ensure39

a broad representation of various ocular health states from different people.40

Statistics of our RVD. We show some statistical characteristics of the patients in Fig. 3. Age41

distribution among patients exhibits a Gaussian-like one, and more videos are collected from males42

rather than females in our dataset. From Fig. 3 (c), we conclude that most of the videos are collected43

from clinic 0 and clinic 3. Finally, the videos collected from the left eye and right eye are nearly44

balanced, as shown in Fig. 3 (d). More detailed statistical information on the videos can be accessed45

on our website in the future.46
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Figure 1: (a): Bench-top device, which is cumbersome and expensive; (b): Our handheld device,
which is lightweight and portable. It is built by connecting a smartphone to the fundus camera lens
via a optical tube.

Figure 2: Diversity of our collected videos. (a): Samples with different sizes of ODR; (b): Different
illumination; (c): Different vessel density.

Table 1: The statistics of diseased and normal eyes.

Clinics P Q R S Total

Diseased 132 18 16 151 317
Normal 140 15 42 121 318

Characteristics of our videos. We show more47

samples in Fig. 2 to illustrate the diversity of our48

collected videos, e.g., samples with different49

sizes of optic disc regions (ODR), different illu-50

mination, and different vessel density. The ODR51

contains most of the vessels in the retina and the52

size of ODR is vital in retinal vessel segmenta-53

tion. Different illumination and vessel density54

will also make our dataset more challenging by55

increasing the variety of samples.56

Statistics of diseased and normal eyes. As indicated in Table 1, there are 317 videos of diseased57

eyes and 318 videos of normal eyes. Although the number of videos collected from different clinics58

varies, e.g., only dozens of videos are collected from clinics Q and R, while more than 200 videos are59

collected from clinics P and S, the diseased and normal eye videos for each clinic are balanced.60

C Experimental settings61

C.1 Implementation Details.62

We implement the benchmark in PyTorch using the open-sourced MMSegmentation [1]. For all63

methods, we leverage the default settings of each method in MMSegmentation and implement them64

on 4090 GPUs. We train each model for 40,000 iterations and select the checkpoints with the best65

validation results. To ensure the accuracy and reliability of final results, cross-validation is employed66

across our experiments.67
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Figure 3: Statistics of our dataset. (a): The age distribution of the participants; (b): The ratio of
males and females; (c): The number of videos and patients in each clinic; (d): The number of videos
collected from the left eye and right eye.

Figure 4: Visualization in the binary, general artery-vein, and fine-grained artery-vein segmentation.

C.2 More Results of Models68

In Table 2, we present the segmentation results produced by FCN, PSPNet, and Segmenter. Each69

method leverages different backbones, e.g., UNet, ResNet, and ViT. The models are trained and tested70

with binary vessel masks, general artery-vein masks, and fine-grained artery-vein masks. We observe71

a consistent pattern that even though the methods have achieved the best results with binary masks,72

the highest mIoU is under 70. These results underscore the difficulties of existing methods in dealing73

with our dataset. Such results show the challenges inherent to our dataset and imply the potential of74

our dataset to inspire future studies. In Fig. 4, we show the complete segmentation results of FCN,75

PSPNet, DeeplabV3, Segmenter, and Mask2Former in our dataset.76

C.3 Better domain gap analysis77

In this section, we investigate the potential domain gaps in our RVD dataset. Such variations in78

distribution could arise from multiple factors: (i) Different clinical conditions; (ii) Variations of79

vasculature due to the presence and absence of disease and (iii) Different devices used for video80

capture. Furthermore, we consider the evaluation of baseline models on a third dataset.81

C.3.1 Test across disease and normal videos82

We evaluate our best-performing model Mask2Former with the Swin Transformer backbone on83

diseased and normal retinal videos. The binary segmentation results are reported in Table 3. The seg-84
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Table 2: Segmentation results of “FCN”, “PSPNet”, and “Segmenter” on our RVD dataset.

Method Backbone Binary General Artery-Vein Fine-grained Artery-Vein
mIoU mAcc mFscore mIoU mAcc mFscore mIoU mAcc mFscore

FCN [5]
UNet [4] 67.82±0.6 73.22±0.6 77.08±0.5 38.29±1.0 39.85±0.9 64.59±0.7 13.47±0.5 14.88±0.9 19.95±1.2

ResNet50 [3] 62.12±0.5 66.05±0.7 70.76±0.3 49.22±0.1 53.93±0.2 58.99±0.1 18.38±0.6 21.41±0.0.8 26.62±0.4
ResNet101 62.79±0.3 66.77±0.4 71.54±0.3 48.24±0.6 51.98±0.5 57.90±0.5 18.53±0.3 21.44±0.1 24.07±0.2

PSPNet [7]
UNet 68.53±0.5 74.04±0.6 77.80±0.1 40.08±0.8 42.27±0.2 45.65±0.1 12.71±0.7 13.67±0.6 64.34±0.4

ResNet50 61.82±0.3 65.25±0.2 70.37±0.5 49.08±0.6 53.94±0.9 58.71±1.1 18.92±0.8 22.10±1.2 24.45±1.1
ResNet101 63.06±0.6 67.11±0.2 71.87±0.1 47.76±0.3 51.34±0.8 57.12±0.5 19.37±1.3 22.39±2.0 25.05±1.5

Segmenter [6]

ViT-T [2] 49.39±1.3 51.25±1.2 51.51±0.9 33.83±0.1 35.15±0.3 36.04±0.5 11.98±0.2 12.57±0.1 29.73±0.4
ViT-S 51.36±0.4 53.33±0.7 55.14±0.1 32.54±0.5 33.79±1.0 33.61±0.2 11.62±0.5 12.11±0.4 28.37±0.9
ViT-B 50.98±0.3 52.90±2.3 54.45±0.7 34.03±0.4 35.36±1.3 36.40±0.9 11.78±1.1 12.30±0.4 28.99±1.2
ViT-L 48.11±0.3 50.00±0.5 98.07±1.1 34.70±1.3 36.03±0.8 37.55±0.7 12.19±0.1 12.75±0.3 24.37±0.6

Table 3: Binary segmentation results of Mask2Former on diseased/normal videos.
Eye Condition Diseased Normal

mIoU 74.25 73.96
mAcc 79.23 78.16

mFscore 81.18 80.08

mentation results on both diseased and normal eye videos are close, indicating the domain discrepancy85

between the diseased and normal videos is marginal in the context of retinal vessel segmentation.86

Table 4: Results of models trained on one de-
vice and tested on another device.

Device Metric Device 1 Device 2

mIoU 69.37 71.07
Device 1 mAcc 77.07 80.45

mFscore 78.73 80.16

mIoU 68.53 70.98
Device 2 mAcc 74.2 77.99

mFscore 77.85 80.04

87

C.3.2 Test across different devices88

In our dataset, videos are acquired by using two89

types of camera models. To study the domain gaps90

between the data collected from different devices,91

we focus on the binary segmentation task and adopt92

the best-performing model Mask2Former with the93

Swin transformer backbone. Specifically, we train94

the model on data collected from one device and95

test it on that of another device. The results are96

shown in Table 4. The performance of the mod-97

els varies slightly across different devices. This98

suggests that the variations in the data collection99

process introduce some domain gaps.100

C.3.3 Test across different clinics101

Table 5: Binary segmentation results of
Mask2Former across different clinics.

Clinics P Q R S

mIoU 73.85 72.00 70.89 75.33
mAcc 79.63 77.72 75.63 81.78

mFscore 81.35 80.54 78.38 82.27

To study model performance across different clinics,102

we focus on binary segmentation and SVP detection.103

Here, we denote the four clinics as P, Q, R, and S.104

We adopt the same model in Section C.3.1 and test105

it on each clinic test data. The results are reported106

in Table 5 and Table 6. In both vessel segmentation107

and SVP detection, the model performances across108

different clinics are different, indicating that domain109

gaps exist in different clinics.110

C.3.4 Test on the third dataset111
Table 6: Evaluation of the I3D model on SVP
detection across various clinics.

Clinics P Q R S

Acc 64.58 50.00 60.00 58.33
AUROC 70.28 66.67 58.83 54.32
Recall 65.38 66.67 90.00 51.85

We further conduct experiments to evaluate the do-112

main gaps between our RVD dataset and existing113

datasets. To be specific, we train segmentation mod-114

els on RVD and DRIVE with the same amount115

of samples and then test them on a third dataset116
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Figure 5: Visualization of domain gaps between different datasets. (a): Examples of binary segmen-
tation datasets; (b): Visualization results of general Artery-Vein segmentation datasets.

CHASEDB. As seen in Table 7, models trained on RVD have lower performance compared to those117

trained on DRIVE. This indicates our dataset exhibits a larger domain gap with the existing datasets.118

C.4 Domain Gaps between RVD and Existing Datasets119

In Section 4.2, we highlight the presence of domain gaps between existing datasets and our retinal120

vessel dataset (RVD). To further demonstrate this phenomenon, we show a set of visualization results,121

which can be found in Fig. 5. We consider two distinct scenarios:122
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Table 7: Evaluation of domain gaps between RVD and existing datasets. The models are trained on
RVD and DRIVE and tested on CHASEDB.

Model-Backbone RVD → CHASEDB DRIVE → CHASEDB
mIoU mAcc mFscore mIoU mAcc mFscore

DeepLabV3-R50 60.22 63.3 68.25 65.56 76.00 75.69

Mask2Former-R50 68.35 76.00 77.62 78.48 89.43 86.84

Mask2Former-Swin-L 63.47 67.60 73.04 79.88 90.97 87.87

(a) Initially, we present the visualization results of models trained on existing datasets and then123

applied to our dataset. The results reveal a concerning trend of presence of overgeneralization in the124

predictions, thereby overlooking finer details. This underscores the difficulty for models trained on125

existing datasets to generalize to our dataset.126

(b) Conversely, we also show the visualization of models initially trained on our RVD, and then applied127

to existing datasets. Similar to the first case, the performance drop is observed after transferring.128

However, the transferred results reveal that more granular details, particularly of vessel structure,129

are preserved. Such a phenomenon suggests that models trained on our dataset exhibit much better130

generalizability and tend to adapt more efficiently to the existing datasets.131
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