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Abstract

This paper proposes a novel strategy for estimating the heterogeneous treatment
effect called the Fused and Accurate Shrinkage Tree (FAST). Our approach utilizes
both trial and observational data to improve the accuracy and robustness of the
estimator. Inspired by the concept of shrinkage estimation in statistics, we develop
an optimal weighting scheme and a corresponding estimator that balances the
unbiased estimator based on the trial data with the potentially biased estimator
based on the observational data. Specifically, combined with tree-based techniques,
we introduce a new split criterion that utilizes both trial data and observational
data to more accurately estimate the treatment effect. Furthermore, we confirm the
consistency of our proposed tree-based estimator and demonstrate the effectiveness
of our criterion in reducing prediction error through theoretical analysis. The
advantageous finite sample performance of the FAST and its ensemble version
over existing methods is demonstrated via simulations and real data analysis.

1 Introduction

Causal effects are the magnitude of the response of an effect variable (also called outcome) caused
by the effect variable (also called treatment), which is a fundamental and essential issue in the field
of casual inference (Imbens and Rubin, 2016). And the heterogeneous treatment effect (abbr. HTE)
is usually used to characterize the heterogeneity of causal effects across different subgroups of the
population. In recent years, heterogeneous treatment effect estimation has been successfully applied
in various fields such as epidemiology, medicine, and social sciences (Glass et al., 2013; Kosorok and
Laber, 2019; Turney and Wildeman, 2015; Taddy et al., 2016).

In general, the causal problems can be studied through both experimental studies (also known
as randomized control trials, RCTs) and observational studies. Experimental studies are widely
regarded as the gold standard for assessing causal effects since the randomization process eliminates
the possibility of confounding bias. However, large-scale RCTs can be challenging due to issues
related to cost, time, and ethics (Edwards et al., 1999). On the other hand, observational data
are often readily available with an adequate sample size. Under certain fairly strong assumptions,
such as unconfoundedness assumption, there is a rich literature regarding the estimation of HTE in
observational studies, such as tree-based methods (Athey and Imbens, 2016; Wager and Athey, 2018;
Athey et al., 2019; Hahn et al., 2020), boosting (Powers et al., 2017), meta learners (Künzel et al.,
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2019) and R-learner (Nie and Wager, 2020). However, the unconfoundedness assumption, which
requires measuring all confounders, is in general untestable unless extra information such as the
existing of instrumental variables is available (de Luna and Johansson, 2014). And any violations
of this assumption may result in seriously invalid causal statements. Various methods have been
proposed to mitigate the unmeasured confounding in observational studies, such as the sensitivity
analysis (Rosenbaum and Rubin, 1983; Zhang and Tchetgen Tchetgen, 2022), the instrumental
variables (IV) approach (Angrist et al., 1996) and the proximal causal inference (Kuroki and Pearl,
2014; Miao et al., 2018; Shi et al., 2020; Cui et al., 2023). However, the validity of these procedures
also relies crucially on assumptions that are often difficult to verify in practice.

Given the limitations of relying on individual data sources, data fusion, as a branch of causal inference
strategies that integrates both the trial and the observational data, has gained significant interest in the
literature (Bareinboim and Pearl, 2016; Colnet et al., 2020; Shi et al., 2022). Existing data fusion
methods for estimating the HTE include the KPS estimator obtained by modeling the confounding
function parametrically (Kallus et al., 2018), the semi-parametric integrative estimator under the
parametric structural models (Yang et al., 2020) and the integrative R-learner (Wu and Yang, 2022).
Besides, (Tang et al., 2022) proposed the Gradient Boosting Causal Tree (GBCT), which integrated
the current observational data and their historical controls for estimating the conditional average
treatment effect on the treated group (CATT).

This paper presents a novel approach for estimating heterogeneous treatment effects (HTE) in the
context of causal data fusion. The proposed method, named Fused and Accurate Shrinkage Tree
(FAST), avoids the need for a two-stage estimation process required in conventional data fusion
strategies, which involves modeling and estimating the nuisance confounding bias function. The main
contributions of this work can be summarized as follows (i) The authors propose a novel shrinkage
method for combining an unbiased and biased estimator, which effectively reduces the mean square
error of the unbiased estimator, and provides an easy implementation of the method tailored for
the HTE estimation; (ii) The authors extend the conventional node split criterion via a re-scaling
technique, which automatically penalizes the use of the observational data with low quality (namely
large confounding bias); (iii) The authors also provide a theoretical analysis to explain the advantages
of our splitting criterion.

2 Background and motivation

2.1 Notations

Let X ∈ X = [−1, 1]p be a p-dimensional vector of pre-treatment covariates, U ∈ Rq (q ≥ 0)
be a possibly unmeasured random vector consisting of the confounding variables, D be a binary
treatment variable (D = 0 denotes the control and D = 1 denotes the treated) and let Y (d) be
the potential outcome that would be observed when the treatment had been set to d ∈ {0, 1}. We
follow the potential outcome framework (Rubin, 1974) to define the heterogeneous treatment effect
τ(x) = E(Y (1)− Y (0)|X = x).

Suppose that we can collect two kinds of data: trial data and observational data, and they are described
by n + m quadruples, {Yi, Di,Xi, Si}n+mi=1 , where Si indicates if the i-th individual would have
been recruited (S = 1) or not (S = 0) in the trial. We also denote R = {1, 2, · · · , n} the set of
indices of observations in the RCT study, and O = {n + 1, n + 2, · · · , n +m} the set of indices
of observations in the observational study. We define e(X,U , S) = P (D = 1|X,U , S) as the
propensity score of the trial and observational population, respectively. In practice, due to U being
unknown, we usually use ê(X, S) to estimate e(X,U , S). In addition, ê(X, 1) is unbiased, but
ê(X, 0) is biased because the unmeasured confounder U in the observational study can be related
to the assignment of treatment D. Let τ1(x) = E(Y (1)− Y (0)|X = x, S = 1) be the HTE on the
trial population. We then make the following fundamental assumption on the trial and observational
studies, which facilitates the potential for causal data fusion:

Assumption 1. (i) For any x ∈ X , τ1(x) = τ(x); (ii) Y (d) ⊥ D|(X, S = 1) for d ∈ {0, 1} and
(iii) the propensity score δ < e(X, S) < 1− δ almost surely for some constant 0 < δ < 1/2.

Assumption 1 (i) states that the HTE function is transportable from the trial population to the
target population. Stronger versions of Assumption 1 include the ignorability of study participation
(Buchanan et al., 2018) and the mean exchangeability (Dahabreh et al., 2019). In the following of this
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paper, we use |Λ| to denote the number of elements for any set Λ, ⌊c⌋ to denote the biggest integer
less than or equal to the constant c, and [p] to denote the index set {1, 2, · · · , ⌊p⌋}. For two positive
sequences {an}n≥1 and {bn}n≥1, we write an = O(bn) if |an/bn| is bounded.

2.2 Tree-based methods

To estimate the HTE, it is reasonable to perform subgroup analysis by appropriately stratifying or
matching (Frangakis and Rubin, 2002) the samples into multiple subgroups that differ in the magnitude
of treatment effects. In machine learning, tree-based methods (Breiman et al., 1984; Breiman, 2001;
Friedman, 2001) are usually used for such stratification tasks, which greedily optimize the loss
function, also called splitting criterion, via recursively partitioning feature space. In fact, many tree-
based causal methods designed for the HTE estimation were also proposed (Radcliffe and Surry, 2012;
Athey and Imbens, 2016; Athey et al., 2019). Along with the development of the tree-based methods,
various regularization strategies, either implicit or explicit, have been proposed to mitigate overfitting
(Mentch and Zhou, 2020; Agarwal et al., 2022). Recently, tree-based methods have been generalized
to address the heterogeneous data from diverse data sources(Nasseri et al., 2022). For convenience,
in the following we define a regression tree by two components: a set of leaves Q = {Qj}Jj=1 and
the associated parameter τ . We can denote a causal tree by T (X;Q, τ) =

∑J
j=1 τ(Qj)I{x ∈ Qj},

where I{·} denotes the indicator function and τ(Qj) denotes the casual effect of sub-area indexed by
Qj .
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Figure 1: The probability density functions (pdfs) of the unbiased estimator (pink) and the biased
estimator (blue) in the left panel and the pdf of the shrinkage (fused) estimator under the optimal
weight W ∗ (green) in the right panel. The vertical dashed line represents the true parameter value
θ∗ = 0.

2.3 Shrinkage estimation

It is important to note that applying conventional methods, such as the generalized random forest
(Athey et al., 2019), separately to trial data and observational data can readily lead to two estimators:
the first is unbiased but may exhibit large variability, while the second is potentially biased but
usually has a smaller variance due to the much larger amount of observational data. Therefore, the
challenge becomes finding the optimal combination of an unbiased estimator and a biased estimator
in the data fusion problem. To see this, suppose we have a parameter of interest θ ∈ R, an unbiased
estimator θ̂u, and a (potentially) biased estimator θ̂b of θ, such that E(θ̂u) = θ, E(θ̂b) = θ + b(θ),
Var(θ̂u) = σ2

u, Var(θ̂b) = σ2
b and Cov(θ̂u, θ̂b) = 0. Consider the family of estimators Λw =

{θ̂w|θ̂w = wθ̂b + (1− w)θ̂u, 0 ≤ w ≤ 1}, then the mean square error (MSE) of its elements admits
the following expansion:

E(θ̂w − θ)2 = (σ2
b + b2(θ) + σ2

u)w
2 − 2σ2

uw + σ2
u. (1)
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Minimizing (1) with respect to w, we can obtain the unique minimizer w∗ = σ2
u/(σ

2
b + b2(θ) + σ2

u)

and the gain of the optimal weighting over the single estimators θ̂u and θ̂b can be characterized by
the following formula:

E(θ̂∗w − θ)2 = (1− w∗)σ2
u = w∗(σ2

b + b2(θ)). (2)

Comment The weighting strategy is akin to the classical James-Stein shrinkage estimation (Efron and
Morris, 1973; Green and Strawderman, 1991) method, in which it is shown that a multivariate normal
vector Z (p ≥ 3), as a maximum likelihood estimator (MLE) of its population mean µ = E(Z), is
not minimax optimal, and the MSE of the estimator Z can be reduced by shrinking it towards the
zero vector 0 by some factor 0 < w < 1. The zero vector can be viewed as a biased estimator of
µ with zero variance in their setting. In comparison, we replace the deterministic estimator with a
(potentially) biased estimator θ̂b: The larger the variance σ2

u of the unbiased estimator is compared to
b2(θ) + σ2

b , the more the fused estimator θ̂w∗ will be shrunk towards the biased estimator that is less
fluctuating. By doing so, one can efficiently mitigate the occurrence of significant estimation error in
the unbiased estimator caused by its high variance, as unbiasedness alone does not guarantee reliable
estimation performance with a limited sample size. Figure 1 illustrates a concrete example of the
benefit provided by the shrinkage estimation, where θ = 0, θ̂u ∼ N(θ, 5) and θ̂b ∼ N(θ + 2, 0.5).
The fused estimator θ̂w∗ reduces over 50% of the MSE compared with the unbiased estimator θ̂u.

3 Methodology

In this section, we propose a new data fusion strategy, referred to as the Fused and Accurate Shrinkage
Tree (FAST). We proceed in a bottom-up manner to provide a clear and intuitive illustration of the
entire estimation: we will begin by applying the shrinkage estimation strategy for local data fusion
within each sub-region of the feature space given by a pre-specified partition. Then, we propose a
fused criterion that incorporates the information contained in the observational data via a simple
re-scaling of the conventional criterion. Theoretical guarantees are established in Section 4.

3.1 Local fusion for the HTE estimation

Under a pre-specified partition Q = {Qj}Jj=1 of the feature space, let Rj = {i|i ∈ R,Xi ∈ Qj}
and Oj = {i|i ∈ O,Xi ∈ Qj} represent the sets of indices of the trial and observational sub-samples,
respectively, that fall within the region Qj . Let

Ỹ =
Y D

e(X, S)
− Y (1−D)

1− e(X, S)
(3)

be transformed outcomes of all data, e.g., the transformed outcomes of i-th sample can be denoted by
Ỹi. Then under Assumption 1, one can immediately show for the trial population with S = 1:

E (Y D|X, S = 1) = E (Y (1)|X, S = 1)E (D|X, S = 1) and
E (Y (1−D)|X, S = 1) = E (Y (0)|X, S = 1) (1− E (D|X, S = 1)), leading to

E
(
(Ỹ |X = x, S = 1

)
= τ1(x) = τ(x). (4)

Thus, τ̂u(Qj) = (1/|Rj |)
∑
i∈Rj

Ỹi is an unbiased estimator of E(Y (1)− Y (0)|X ∈ Qj , S = 1),
which can be seen as a reasonable approximation of τ(Qj) if Q segments the feature space properly
such that τ(x) varies slowly in each sub-region Qj . An estimator of Var(τ̂u(Qj)) is given by
σ̂2
u(Qj) = (1/|(Rj |(|Rj |−1)))

∑
i∈Rj

(Ỹi− τ̂u(Qj))
2. In contrast, for the observational population,

the conditional independence no longer holds and τ̂b(Qj) = (1/|Oj |)
∑
i∈Oj

Ỹi is a biased estimator
concerning τ(Qj), due to the presence of unmeasured confounding (U ) on the observational data.

It remains to estimate the weight w∗(Qj) composed of the tuple (σ2
u(Qj), σ

2
b (Qj), b

2(Qj)). The
first term σ2

u(Qj) can be estimated by σ̂2
u(Qj). To bypass the unmeasured confounding issue of

the observational population, re-sampling techniques, such as the Bootstrap (Efron, 1979; Hall,
1992), can be applied to consistently estimate σ2

b (Qj). However, in the causal data fusion setting,
σ2
b (Qj) = O(|Oj |−1) is expected to be of a smaller order term compared to σ2

u(Qj) = O(|Rj |−1),
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which is a consequence of the relative sample size between the trial and the observational data. Thus,
one can just avoid estimating the negligible term σ2

b (Qj). For the last term, b̂(Qj) = τ̂b(Qj)− τ̂u(Qj)
serves as a natural estimator of the bias b(Qj). This leads to the following estimator of w∗(Qj) and
the corresponding fused estimator

ŵof (Qj) = σ̂2
u(Qj)/(σ̂

2
u(Qj) + (b̂(Qj))

2) and (5)

τ̂of (Qj) = ŵof (Qj)τ̂b(Qj) + (1− ŵof (Qj))τ̂u(Qj). (6)

A fused estimator of the HTE function τ(·) under the partition Q can thus be defined as τ̂Q(x) =∑J
j=1 τ̂of (Qj)I{x ∈ Qj}.

3.2 Adaptive fusion for segmentation

In order to obtain a tree-based partition Q designed for the fusion strategy (6), a split criterion
is required, which is sufficient to be defined only at the root node given the recursive nature of
the partitioning. We follow the honest estimation approach (Athey and Imbens, 2016) to prevent
overfitting. Specifically, given a fraction 0 < r < 1 (typically r = 0.5), ⌊rn⌋ observations are
sampled without replacement from the trial data of sample size n for the tree structure estimation,
while the rest of observations are used for local estimation of the HTE in each leaf node. Let the
index sets of the trial data used for the partition and the HTE estimation be Rt and Re, respectively.
We do not further split the observational data to reduce uncertainty, since we have already partitioned
the trial data to avoid overfitting.

The conventional criterion for growing a regression tree chooses the index of the split variable and its
split value at the root node by minimizing the following goodness-of-fit criterion

(q̂, ĉ) = arg min
q̂∈[p],ĉ∈R

 ∑
i∈R̂t

L

(
Ỹi − τ̂u(Q̂L,Rt)

)2

+
∑
i∈R̂t

R

(
Ỹi − τ̂u(Q̂R,Rt)

)2

 , (7)

where Q̂L = {x|xq̂ ≤ ĉ}, R̂t
L = {i|i ∈ Rt,Xi ∈ Q̂L} and τ̂u(Q̂L,Rt) = (1/|{i|i ∈ Rt,Xi ∈

Q̂L}|)
∑
i∈{i|i∈Rt,Xi∈Q̂L} Ỹi , and Q̂R , R̂t

R and τ̂u(Q̂R,Rt) can be defined correspondingly. Given
a tree grown under (7), we fuse the trial data indexed by Re and the observational data indexed by O
at each leaf node according to (6) and refer to the resulting tree estimator as a Shrinkage Tree (ST).
A direct modification of (7), which aligns more with the fused estimator at the leaf nodes, should be

(q̂, ĉ) = arg min
q̂∈[p],ĉ∈R

 ∑
i∈R̂t

L

(
Ỹi − τ̂of (Q̂L)

)2

+
∑
i∈R̂t

R

(
Ỹi − τ̂of (Q̂R)

)2

 , (8)

where τ̂of (Q̂L) = ŵof (Q̂L)τ̂b(Q̂L) + (1 − ŵof (Q̂L))τ̂u(Q̂L,Rt) and τ̂of (Q̂R) is defined corre-
spondingly. The replacement of the unbiased estimators in (7) with the fused estimators in (8)
facilitates a goodness-of-fit criterion of the proposed fusion strategy.

Alternatively, (7) can be interpreted as minimizing the sum of the estimated MSEs of the unbiased
estimators at the child nodes, if the two terms on the right-hand side of (7) are divided by the square
of their respective sample sizes. By contrast, since the fused estimator τ̂of reduces variance by
shrinking the original unbiased estimator to a potentially biased estimator, simply comparing the
fused estimators with the outcomes of the trial data as in (8) fails to capture the variability at the child
nodes. Instead, an appropriate criterion shall respect the MSE of the fused estimator. To this end, we
introduce the following split criterion

(q̂, ĉ) = arg min
q̂∈[p],ĉ∈R

(
(1− ŵof (Q̂L))σ̂

2
u(Q̂L,Rt) + (1− ŵof (Q̂R))σ̂

2
u(Q̂R,Rt)

)
, (9)

where (1−ŵof (Q̂L))σ̂
2
u(Q̂L,Rt) and (1−ŵof (Q̂R))σ̂

2
u(Q̂R,Rt) estimate the MSE of τ̂of (Q̂L) and

τ̂of (Q̂R), respectively, according to formula (2). Compared to (7), the proposed criterion incorporates
the additional information from the observational data into each node split in an adaptive manner by
simply re-scaling the estimated MSE of the unbiased estimator.
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Comment The criterion (9) offers the benefit of local adjustment, which can be intuitively justified.
In sub-regions where the observational data exhibit moderate confounding biases, this criterion
improves tree building by providing a sharper assessment of the variability of the fused estimator. On
the other hand, for sub-regions where the observational data exhibit substantial confounding biases,
the estimated weights of those sub-regions approach zero according to (5). In such cases, the criterion
reduces to the conventional criterion (7), except for the standardization of the square of the sample
size. It is worth mentioning that all the local adjustments achieved by applying this adaptive fusion
strategy are data-driven, namely one can just avoid global modeling of the confounding bias function,
which requires domain-specific knowledge of the observational studies. Additionally, it also enables
the exclusion of the global impact of extremely large confounding biases of the observational data
that only exist in certain sub-regions of the feature space.

We denote the partition obtained under criterion (9) as Q̂of = {Q̂of,1, Q̂of,2, · · · , Q̂of,|Q̂of |}, and
the corresponding tree-based estimator of the HTE is defined as

τ̂fast(x) =

|Q̂of |∑
j=1

τ̂eof (Q̂of,j)I{x ∈ Q̂of,j}, (10)

where the superscript “e” is to show that the RCT data used to construct the fused estimator at the
leaf node is indexed by Re and “fast” is an acronym for the name Fused and Accurate Shrinkage
Tree, which is due to the data fusion nature of the criterion (9), the shrinkage-type leaf node estimator
(6) and its accuracy in terms of the MSE.

3.3 Ensemble fusion

To reduce overfitting, improve robustness against outliers, and enhance generalization, we introduce
the bagged version (Hastie et al., 2009) of the FAST, referred to as the rfFAST, as follows: We
randomly draw index sets R∗ of size n and O∗ of size m, separately from R and O with replacement.
We repeat the process B times, resulting in {R∗,(b),O∗,(b)}Bb=1. Then, B estimators τ̂∗,(b)fast (x) can
be calculated based on the trial data indexed by R∗,(b) and the observational data index by O∗,(b).
We then define τ̂rffast(x) = (1/B)

∑B
b=1 τ̂

∗,(b)
fast (x). For the construction of the prediction intervals,

see Zhang et al. (2020).

4 Theoretical guarantee

In this section, we formally establish the benefits of the proposed split criterion (9) compared with
the conventional criterion (7). To present the theoretical result, we first pose the following regularity
conditions that are standard in literature (see e.g., Györfi et al., 2002 and Scornet et al., 2015).

Assumption 2. (i) There exists a positive constant λ < ∞ such that E{exp(λỸ 2)|S = i} < ∞ for
i = 0, 1. (ii) There exists positive constants σmin < ∞ such that σ2

min < Var(Ỹ |X = x, S = 0) for
any x ∈ X .

Theorem 1 (MSE reduction of the proposed split criterion). Let θ = (q, c) and Θ = [p]×R. Suppose
the node that needs to be partitioned is Qj , under which the sample sizes of the trial data and
observational data are nj and mj , respectively. Let M(θ) and Mof (θ) be the sum of MSEs of the
conventional HTE estimator and the fused HTE estimator on the two child nodes of Qj split by θ,
respectively. Denote bmax = supx∈Qj

|{E(Ỹ |X = x, S = 0) − E(Ỹ |X = x, S = 1)}|. Let θ̂

be the solution of the conventional split criterion (7) and θ̂of be the solution of the proposed split
criterion (9). Under Assumptions 1-2, we have

(i) For any θ ∈ Θ,

Mof (θ)

M(θ)
− 1 ≤ − σ2

min

σ2
min + njb2max

. (11)
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(ii) With probability at least 1− C1e
−t for some positive constant C1 < ∞, it holds that

M(θ̂)−M(θ∗) ≤ C2
t+ log(pnj) log

4(nj)

nj
, (12)

and Mof (θ̂of )−Mof (θ
∗
of ) ≤ C3

(
t+ log(pnj) log

4(nj)

mj
+

t+ log(pnj) log
4(nj)

nj

)
, (13)

for some positive constant C2, C3 < ∞, where θ∗ and θ∗of are oracle splits defined as

θ∗ = argmin
θ∈Θ

M(θ) and θ∗of = argmin
θ∈Θ

Mof (θ).

In the above theorem, the (i) part establishes a uniform MSE reduction result for any split choice
θ ∈ Θ of the proposed split criterion (9). As revealed in (11), the criterion (9) leads to larger
MSE reduction on the nodes with a larger variance of Ỹ and less bias of the observational data. In
addition, the upper bound in (11) decreases as the node sample size nj decreases, implying that our
proposed criterion leads to increasing relative benefits as the tree grows deeper. Besides, in the (ii)
part we present non-asymptotic bounds for the discrepancies between the MSEs under the empirically
estimated splits and the oracle splits, showing that the MSEs under the estimated splits can achieve
a fast convergence rate. As a direct consequence of Theorem 1, the consistency of our final HTE
estimator (10) can be established, since it is known from Scornet et al. (2015) and Athey et al. (2019)
that the conventional tree-based estimator using only the trial data is mean-squared consistent, and
our proposed method leads to a reduced MSE.
Proposition 1 (Consistency of τ̂fast). For almost every x ∈ [−1, 1]p, we have τ̂fast(x) → τ(x) in
probability as n,m → ∞.

5 Experiments

In this section, we demonstrate the results of a series of experiments to answer the following two
questions: (i) Whether the proposed method can effectively alleviate the impact of confounding bias
of observational data and limited sample size of trial data; (ii) Whether the techniques we proposed
including local fusion in tree leaves and adaptive fusion in partitioning are valid, respectively.

In consequence, we conducted experiments on both simulated and real-world datasets to verify the
effectiveness of our method. We evaluated our method against both traditional tree-based and data
fusion-based casual methods. The former includes the classical Transformed Outcome Honest Tree
(HT) Athey and Imbens (2016) and its ensemble version Generalized Random Forest (GRF) Athey
et al. (2019). The latter includes the simplest fusion estimator (SF) training both trial data and
observational data together without distinction and the KPS estimators Kallus et al. (2018). In order
to facilitate better comparison and understanding of our proposed method, we demonstrate three
versions: the simple implementation, Shrinkage Tree (ST), described in Section 3.1; the improved
version, Fused and Accurate Shrinkage Tree (FAST), described in Section 3.2; and its final ensemble
version rfFAST described in Section 3.3. The results of each simulation experiment were based on
B = 100 replications. The ensemble size for all the ensemble estimators was set to 100. For the tree
estimators, the minimum number of observations required to be at a leaf node was set to 5 and the
maximum depth of the tree was set to 10.

5.1 Simulation

We conducted two sets of simulation experiments to evaluate the finite sample performance of the
fused estimator and various baseline estimators. In both experiments, we first generated the pre-
treatment covariates X = (X1, X2, · · · , Xp)

T from Uniform[−1, 1]p and the unobserved variable
U from N(0, 1). Then, we generated the potential outcomes by Y (d) = dτ(X)+

∑p
j=1 Xj+1.5U+

ϵ(d), where τ(X) = 1+X1 +X2
1 +X2 +X2

2 and ϵ(d) ∼ N(0, 1) for d = 0, 1. Thus The treatment
assignments for the trial sample of size n and the observational sample of size m were generated as
follows: D|(X, U, S = 1) ∼ Ber(0.5) and D|(X, U, S = 0) ∼ Ber(1/(1 + exp(−βU − 0.5X1))).
Thus, the magnitude of β controls the strength of the unmeasured confounding: a larger β leads to a
larger confounding bias. The test data Xtest,j for 1 ≤ j ≤ p were generated from Uniform(−1, 1)
with sample size 1000.
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In the first experiment, we aim to verify the effectiveness of the proposed data fusion strategy via
an ablation study. We compared the robustness of the ST and the FAST against different levels
of confounding bias parameter β. Two baselines were considered: (i) the HT using only the trial
data and (ii) the SF estimator obtained by directly merging all the available data and constructing
a Fit-Based Causal Tree (Athey and Imbens, 2016). We set the sample sizes of the trial data and
the observational data be n = 200 and m = 2000, respectively, the dimension of covariates p = 5
and β ∈ {0.1c|c ∈ N, c ≤ 19}. The following three conclusions could be drawn from Figure 2:
(1) When confounding bias in observational data was small, the simple fusion (SF) strategy can
effectively improve the model performance. But when it became large, the SF was very vulnerable
to confounding bias in observational data; (2) Even with the increase of β, both ST and FAST
consistently showed resistance to confounding bias; (3) FAST was significantly better than other
methods including ST, which verified the effectiveness of our proposed split criterion (9) numerically.

Figure 2: The averaged root mean square error (RMSE) (mean with s.e. error bars) of the estimators
on simulation datasets with different levels of the confounding bias parameter β.

In the second experiment, we evaluated the RMSEs with respect to different n and β. We set
m = 2000 and p = 5. We included seven estimators in the analysis: The first two estimators
were calculated purely based on the trial data: (i) the Transformed Outcome Honest Tree (HT)
(Athey and Imbens, 2016) and (ii) the Generalized Random Forest (GRF) (Athey et al., 2019).
The rest estimators were calculated using different data fusion strategies: (iii) the Shrinkage Tree
(ST) estimator,(iv) the Fused and Accurate Shrinkage Tree (FAST) estimator, (v& vi) the KPS
estimators (Kallus et al., 2018) with a parametric (OLS) estimator and a non-parametric (Random
Forest) specification of the confounding function, respectively and (vii) the bagged FAST estimator
(rfFAST).

Table 1 reports the RMSEs of the seven estimators, conveying a good estimation accuracy of both
the FAST and its ensemble version rfFAST. Among the three individual estimators, the ST and
FAST, exhibited superior performance compared to the HT, and the FAST outperformed the ST.
These relative performances provided support for the FAST approach compared to the classical
honest regression tree, the proposed split criterion (9), and the shrinkage estimation strategy (6),
which are implemented progressively. Among the three ensemble estimators, the rfFAST estimator
demonstrated the best performance among all the six combinations of the trial sample size n and the
confounding bias parameter β. On the other hand, the performance of the KPS estimators appeared
to be less stable. The KPSols outperformed the GRF only when the trial sample size was relatively
large (n = 200). Under the non-parametric specification of the confounding function, the KPSRF
did not gain benefit from incorporating the observational data and was consistently inferior to the
baseline estimator GRF.
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Table 1: The averaged RMSE (standard error in parentheses) of the estimators with respect to the
trial sample size n and the confounding bias parameter β. The best performance is marked in bold.

n β HT ST FAST GRF KPSols KPSRF rfFAST

100

0.5 1.89 1.84 1.33 1.73 0.84
(0.06) (0.06) (0.04) (0.03) (0.02)

1.0 2.28 1.90 1.85 1.19 1.29 1.65 0.89
(0.06) (0.05) (0.05) (0.02) (0.04) (0.03) (0.02)

2.0 2.05 2.02 1.28 1.71 0.98
(0.05) (0.04) (0.04) (0.03) (0.02)

200

0.5 1.87 1.71 0.96 1.56 0.73
(0.04) (0.04) (0.02) (0.02) (0.01)

1.0 2.20 1.98 1.83 1.12 0.97 1.59 0.84
(0.04) (0.04) (0.04) (0.01) (0.03) (0.02) (0.02)

2.0 2.08 1.97 1.01 1.57 0.92
(0.03) (0.03) (0.02) (0.03) (0.02)

5.2 Real-world data

In this sub-section, we report an analysis of the Tennessee Student/Teacher Achievement Ratio
(STAR) Experiment (Krueger, 1999) to demonstrate the proposed FAST for the HTE estimation. We
aim at quantifying the treatment effect of the class size on the student’s academic achievement.

Data description The STAR Experiment was a randomized controlled trial conducted in the late
1980s. Students were randomly assigned to one of the two types of classes during the first school year:
D = 1 for small classes containing 13− 17 pupils and D = 0 for regular classes containing 22− 25
pupils. The outcome Y is the average of the listening, reading, and math standardized tests at the
end of first grade. The vector of covariates X includes gender, race, birth month, birthday, birth year,
free lunch given or not, and teacher id. This made a universal sample of 4218 students, among which
2413 were randomly assigned to regular-size classes (D = 0) and 1805 to small classes (D = 1).

Ground-truth In practice, the ground-truth τ(·) is not accessible, so we replaced it with an estimate
calculated by a generalized random forest (Athey et al., 2019) based on all the 4218 observations.

Construction of the trial, observational and test data Following Kallus et al. (2018), we introduced
confounding bias by splitting the population over a variable which is known to strongly affect the
observed outcome Y (Krueger, 1999): rural or inner-city (U = 1, 2811 students) and urban or
suburban (U = 0, 1407 students). The trial data were generated by randomly sampling a fraction h
of the students with U = 1, where h ranges from 0.1 to 0.5. The observational data were constructed
as follows: From students with U = 1, we took the controls (D = 0) that were not sampled in trial
data, and the treated (D = 1) whose outcomes were in the lower half of outcomes among students
with D = 1 and U = 1; From students with U = 0, we took all of the controls (D = 0), and the
treated (D = 1) whose outcomes were in the lower half of outcomes among students with D = 1
and U = 0. The test data consisted of a held-out sub-sample of all the observations in the universal
sample excluding the trial data.

Results We compared the performance of the rfFAST with various baseline estimators. In particular,
the NF and the SF estimators were constructed using the Random Forest regressor. The NF estimator
utilized only trial data, while the SF estimator utilized both trial data and observational data together
without distinction. As shown in Figure 3, the proposed rfFAST method consistently outperformed
other estimators.

6 Discussion

This paper explores the estimation of heterogeneous treatment effects (HTE) within the framework
of causal data fusion. Drawing inspiration from the classical James-Stein shrinkage estimation
(Green and Strawderman, 1991) approach, the authors introduce a new method called Fused and
Accurate Shrinkage Tree (FAST) that effectively incorporates observational data in both feature
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Figure 3: The RMSEs of the five estimators with respect to different sample sizes of the trial data,
reflected by the fraction parameter h. A large h means a large trial sample size.

space segmentation and leaf node value estimation. This new approach is shown to outperform
existing data fusion methods via numerical experiments.

The above estimation framework can be generalized to any data fusion problem if there exists an
unbiased estimator and a biased estimator of some functions of interest. It would be worthwhile to
explore the combination of the FAST method with other ensemble methods, such as the boosting
and the grf-style (Athey et al., 2019) bagging, in addition to Breiman-style (Breiman, 2001) bagging
used in rfFAST. Moreover, extending the framework to handle time-series observational data would
be an interesting direction for future research. Additionally, investigating statistical inference under
the proposed fusion framework would also be valuable.
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APPENDIX

A Additional figures

Figure 4: The averaged root mean square error (RMSE) (mean with 2×s.d. error bars) of each
algorithm on multiple simulation datasets with different levels of the confounding bias parameter β.

B Pre-processing of the real-world data

In the STAR dataset, each of the pre-treatment covariate Xj (1 ≤ j ≤ p) was standardized to a range
of −1 to 1, and the outcome variable Y was standardized to a range of 0 to 100.

C Proof of Theorem 1

The proof follows the similar arguments as in Györfi et al. (2002) and Scornet et al. (2015). It
is sufficient to show the result at the root node given the recursive nature of the partitioning. We
will use the following notations in the sequel. We denote ET ,PT and EO,PO as the expectation
and probability under trial data and observational data, respectively. We let Z = (X, Ỹ ). For
any q ∈ [p] and c ∈ R, let θ = (q, c) and the corresponding two partitioned notes are denoted as
QL(θ) = {x|xq ≤ c} and QR(θ) = {x|xq > c}. The parameter space of θ is denoted as Θ = [p]×R.
Let µL and µR be the predictions for Y on QL(θ) and QR(θ), respectively and denote τ = (τL, τR).
Let M i(θ) and M i

of (θ) be the MSEs of the conventional HTE estimator and the fused HTE estimator
on the child nodes of Qi(θ), respectively, for i ∈ {R,L}.

(i). For any θ ∈ Θ, according to Equation (2) in the main paper we have

M i
of (θ) = (1− wi(θ))M

i(θ),

for i ∈ {R,L}, where the weight wi(θ) satisfies

wi(θ) ≍
σ2
u(Qi)/n

σ2
u(Qi)/n+ b2(θ)

,

by Equation (5) in the main paper, which is lower bounded by σ2
min

σ2
min+nb

2
max

, where σ2
min <

Var(Ỹ |X = x, S = 0) and bmax = supx∈Qj
|{E(Ỹ |X = x, S = 0) − E(Ỹ |X = x, S = 1)}|
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Therefore, we conclude that

Mof (θ)

M(θ)
− 1 ≤ − σ2

min

σ2
min + nb2max

,

which reveals the MSE reduction effect of the proposed split criterion.

(ii). The proof includes two parts. In Part 1, we will derive the bounds for the discrepancies between
the MSEs under the empirically estimated split and the oracle split under the conventional criterion,
and in Part 2 the similar results under the proposed split criterion.

Part 1. We define the following criterion function:

ℓn(θ, τ,Rt
n) =

1

n

n∑
i=1

{
(Ỹ0,i − τL)

2I{X0,i ∈ QL(θ)}+ (Ỹ0,i − τR)
2I{X0,i ∈ QR(θ)}

}
=: ℓLn(θ, τL,Rt

n) + ℓRn (θ, τR,Rt
n).

For i ∈ {L,R}, let

Li(θ, τi) = ET
{
ℓin(θ, τi,Rt

n)
}

and L(θ, τ) = LLn(θ, τL) + LRn (θ, τR) (14)

Then Li(θ, τi) represents the MSE of τi on the region Qi(θ). For a given split θ = (q, c), it is
straightforward to see that the optimal τ(θ) = (τL(θ), τR(θ)) is given by

τi(θ) = argmin
τi∈R

ℓin(θ, τi,Rt
n) = En

{
Ỹ0|X0 ∈ Qi(θ)

}
for i ∈ {L,R}, which is the sample mean of Y on the region Qi(θ). Therefore, by the definition of
M i(θ), it holds that Li(θ, τi(θ)) = M i(θ) for i ∈ {L,R}. The optimal split θ0 = (q0, c0) on the
population level is defined via minimizing the profiled criterion function:

(q0, c0) = argmin
q∈[p],c∈R

{
ML(θ) +MR(θ)

}
= argmin
q∈[p],c∈R

M(θ).

Define M i
n(θ) = ℓin(θ, τi(θ),Rt

n) for i ∈ {L,R} and the empirical optimal split θ̂ = (q̂, ĉ) is defined
via minimizing the sample criterion function:

(q̂, ĉ) = argmin
q∈[p],c∈R

{
ML
n (θ) +MR

n (θ)
}
=: argmin

q∈[p],c∈R
Mn(θ).

Step 1 (Main error decomposition).

Now we will bound M(θ̂) −M(θ0), which represents the discrepancy of the MSEs of the oracle
and empirical split. To apply empirical process theories for stochastic error analysis, we will
use a truncation argument. We let M i

n,βn
(θ, πi,Rt

n) = En(Tβn
Ỹ − Tβn

πi(θ))
2I(X ∈ Qi(θ))

and M i
βn
(θ) = ET

{
M i
n,βn

(θ, πi(θ),Rt
n)
}

, where Tβnx =: (|x| ∧ βn)sign(x) for any βn > 0.

Correspondingly, let Mβn(θ) = ML
βn
(θ) +MR

βn
(θ) and Mn,βn(θ) = ML

n,βn
(θ) +MR

n,βn
(θ). Then

we have the following error decomposition:

0 < M(θ̂)−M(θ0)

=M(θ̂)−Mβn
(θ̂)−M(θ0) +Mβn

(θ0)

+Mβn
(θ̂)−Mβn

(θ0)− 2Mn,βn
(θ̂) + 2Mn,βn

(θ0)

+ 2Mn,βn
(θ̂)− 2Mn(θ̂)− 2Mn,βn

(θ0) + 2Mn(θ0)

+ 2Mn(θ̂)− 2Mn(θ0)

=:S1,n + S2,n + S3,n + S4,n.

By the definition of θ̂, we have S4,n ≤ 0. In following steps, we will bound S1,n, S2,n and S3,n,
respectively. The truncation level βn is chosen as βn = β0 log(n) for β0 ≥ 2σY .
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Step 2 (Bounding S1,n).

For any θ, it holds that

M i(θ)−M i
βn
(θ) =ET

{
(Ỹ − τ̂i(θ))

2 − (Tβn Ỹ − Tβn τ̂i(θ))
2I{X ∈ Qi(θ)}

}
=ET

{
(Ỹ − Tβn Ỹ )(Ỹ + Tβn Ỹ − 2π̂i(θ))I{X ∈ Qi(θ)}

}
+ ET

{
(Tβn π̂i(θ)− π̂i(θ))(Tβn Ỹ + Tβn π̂i(θ)− 2π̂i(θ))I{X ∈ Qi(θ)}

}
=:S5,n + S6,n.

For T1,n, by Cauchy-Schwarz inequality we have

|S5,n| ≤
√

ET (Ỹ − Tβn Ỹ )2
√
ET (Ỹ + Tβn Ỹ − 2π̂i(θ))2 ≲

√
ET (Ỹ − Tβn Ỹ )2,

where the second inequality is because ET (Ỹ 2) ≤ ∞ and ET
{
π̂2
i (θ)

}
≤ ET (Ỹ 2)/|Qi(θ)|. Since

I(|Ỹ | > βn) ≤
exp(σY |Y |2/2)

σY β2
n/2

,

therefore,

|T1,n| ≲
√
ET (Ỹ − Tβn Ỹ )2 ≤

√
ET

{
|Y |2 exp(σY |Y |2/2)

σY β2
n/2

}
≤

√
2

σY
ET exp(σY |Y |2) exp(−σY β

2
n

4
).

Since ET exp(σY |Y |2) < ∞ and βn = β0 log(n), we conclude that |S5,n| ≲ 1
n . With the same

argument, we have S6,n ≲ 1
n , implying that

M(θ)−Mβn(θ) ≲
1

n
(15)

for any θ ∈ Θ. Therefore, the truncation error S1,n ≲ 1
n .

Step 3 (Bounding S2,n).

Let MN,of =
{
f = (Tβn

Ỹ − Tβn
π)I(X ∈ Qi(θ)) : θ = (q, c) ∈ [p]× R

}
. By applying Lemma 2

we obtain

N1(δ,MN,of , z
n
1 ) ≤ (pn)2

(
cβn
δ

)4

,

where zn1 is any set {z1, · · · , zn} ∈ [0, 1]p × Y and c > 0 is a universal constant. It follows from
Lemma 1 that

PT
{
∃θ ∈ Θ : |Mβn

(θ)−Mn,βn
(θ)| ≥ 1

2
(α+ γ +Mβn

(θ))

}
≤28(pn)2

(
80cβ2

n

γ

)4

exp

(
− αn

1284β4
n

)
≲ exp

(
−αn

β4
n

+ log(pn)− log(γ)

)
.

Taking γ = 1/n and α = (t + log(pn))β4
n/n implies that with probability at least 1 − C1e

−t for
some universal constant C1 > 0,

∀θ ∈ Θ, |Mβn(θ)− 2Mn,βn(θ)| ≲
t+ log(pn) log4(n)

n
. (16)

Therefore, we conclude that with probability at least 1 − C1e
−t, the stochastic error S2,n ≲{

t+ log(pn) log4(n)
}
/n.
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Step 4 (Bounding S3,n). According to (15), we have

∀θ ∈ Θ : ET {Mn,βn(θ)−Mn(θ)} ≲
1

n

Since Ỹ is sub-Gaussian by assumption, it is straightforward to see that (Tβn
Ỹ − Tβn

πi(θ))
2I(X ∈

Qi(θ)) and (Ỹ − πi(θ))
2I(X ∈ Qi(θ)) are sub-exponential for i ∈ {L,R} . Suppose∥∥∥(Tβn Ỹ − Tβn

πi(θ))
2I(X ∈ Qi(θ))

∥∥∥
ψ1

≤ σ0 and
∥∥∥(Ỹ − πi(θ))

2I(X ∈ Qi(θ))
∥∥∥
ψ1

≤ σ0 for all

θ ∈ Θ, where ∥·∥ψ1
is the sub-exponential norm operator. By applying Bernstein’s inequality, for

any s > 0, we have

PT
{∣∣M i

n,βn
(θ)−M i

n(θ)− ET
{
M i
n,βn

(θ)−M i
n(θ)

}
≥ s

∣∣}
≤2 exp

(
−cmin

(
ns2

σ2
0

,
ns

σ0

))
,

for i ∈ {R,L}, where c > 0 is a universal constant. Taking s = σ0t
cn = C2t, for any t ≥ 0 we obtain

PT
{∣∣M i

n,βn
(θ)−M i

n(θ)− ET
{
M i
n,βn

(θ)−M i
n(θ)

}
≥ C2t

∣∣} ≤ 2 exp(−t) (17)

for any n > t/c. Since the above result holds for any θ ∈ Θ, we conclude that for any t > 0, with
probability at least 1− 4e−t, we have S3,n ≲ (t+ 1)/n.

Combining the results on S1,n, S2,n and S3,n, we conclude that for any t > 0, with probability at
least 1− C3e

−t, it holds that

Li(θ̂, π̂i(θ̂))− Li(θ0, π(θ0)) ≲
t+ log(pn) log4(n)

n
, (18)

for some universal constants C3, C4 > 0.

Part 2. The proposed scale criterion can reformulated as follows. For i ∈ {L,R}, let

F0,i(θ) = {1− wi(θ)} (Ỹ0 − τ0,i(θ))
2I(X0 ∈ Qi(θ))

F1,i(θ) =wi(θ)(Ỹ1 − τ1,i(θ))
2I(X1 ∈ Qi(θ)) and

where τ0,i(θ) = En(Ỹ0|X0 ∈ Qi(θ)) and τ1,i(θ) = Em(Ỹ1|X1 ∈ Qi(θ)), and

wi(θ) = σ2
u(Qi(θ))/

{
σ2
u(Qi(θ)) + σ2

b (Qi(θ)) + b2(Qi(θ))
}
,

where σ2
u(Qi(θ)) = Varn(τ0,i(θ)), σ2

b (Qi(θ)) = Varm(τ1,i(θ)) and b(Qi(θ)) = τ1,i(θ) − τ0,1(θ).
Let Fs,i(θ) = Es(Fs,i(θ)) for s ∈ {0, 1} and Fs(θ) = Fs,L(θ) + Fs,R(θ), the population criterion
is defined as Mof (θ) = F0(θ) + F1(θ). For the empirical criterion, we first define Fn,i(θ) =
En(FRi (θ)) and Fm,i(θ) = Em(FRi (θ)). Let MN,of (θ) = Fn,L(θ) + Fn,R(θ) and Fm(θ) =
Fm,L(θ)+Fm,R(θ), the empirical criterion is the denoted as MN,of (θ) = MN,of (θ)+Fm(θ). The
population and empirical optimal splits are defined by

θof = argmin
θ∈Θ

Mof (θ) and θ̂f = argmin
θ∈Θ

MN,of (θ).

We first have the following error decomposition:

Mof (θ̂)−Mof (θ0) =Mof (θ̂)−Mof,βn(θ̂of ) +Mof (θ0)−Mof,βn(θof )

+Mof,βn
(θ̂of ) +Mof,βn

(θof )− 2MN,of,βn
(θ̂of ) + 2MN,of,βn

(θof )

+ 2MN,of,βn
(θ̂of )− 2MN,of (θ̂of )− 2MN,of,βn(θof ) + 2MN,of (θof )

+ 2MN,of (θ̂of )− 2MN,of (θof )

=:T1,n + T2,n + T3,n + T4,n.

By the definition of θ̂of , we have T4,n ≤ 0. In the following steps, we will bound T1,n, T2,n and
T3,n, respectively. Following the same argument as for S1,n, it can be obtained that T1,n ≲ 1

n .
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We now bound T2,n Let Gn = {g : g(y, x) =
√
1− w(θ)ỹ − τ)I(x ∈ Q(θ), θ ∈ Θn)} and

Hn = {h : h(y, x) =
√
w(θ)(ỹ − τ)I(x ∈ Q(θ), θ ∈ Θn)}, then via Lemma 2 we have

N1(δ,Gn, zn1 ) ≤ (pn)2
(
cβn
δ

)4

and N1(δ,Hn, z
n
1 ) ≤ (pn)2

(
cβn
δ

)4

,

for any δ > 0, where zn1 is any set {z1, · · · , zn} ∈ [0, 1]p × Y and c > 0 is a universal constant. It
follows from Lemma 1 that for any α1, γ1 > 0

PT
{
∃θ ∈ Θn : |F0,βn(θ)−Fn,βn(θ)| ≥

1

2
(α1 + γ1 +Mof,βn(θ))

}
≤28(pn)2

(
80cβ2

n

γ1

)4

exp

(
− α1n

1284β4
n

)
≲ exp

(
−α1n

β4
n

+ log(pn)− log(γ1)

)
.

Taking γ1 = 1/n and α1 = (t+ log(pn))β4
n/n implies that with probability at least 1− C4e

−t for
some universal constant C4 > 0,

∀θ ∈ Θn, |Mof,βn
(θ)− 2Fn,βn

(θ)| ≲ t+ log(pn) log4(n)

n
. (19)

Similary, for any α2, γ2 > 0,

PO
{
∃θ ∈ Θn : |F1,βn

(θ)−Fm,βn
(θ)| ≥ 1

2
(α1 + γ1 + F1,βn

(θ))

}
≲ exp

(
−α1m

β4
n

+ log(pn)− log(γ1)

)
.

Taking γ2 = 1/n and α2 = (t+ log(pn))β4
n/m implies that with probability at least 1− C5e

−t for
some universal constant C5 > 0,

∀θ ∈ Θn, |F1,βn
(θ)− 2Fm,βn

(θ)| ≲ t+ log(pn) log4(n)

m
. (20)

Combining (19) and (20) delivers that with probability at least 1− 2C1e
−t,

T2,n ≲
log(pn) log4(n)

m
+

t+ log(pn) log4(n)

n
, (21)

for ant t > 0, since θ̂of , θf ∈ Θn and Mof,βn
(θ) = F0,βn

(θ) + F1,βn
(θ) and MN,of,βn

(θ) =
Fn,βn

(θ) + Fm,βn
(θ) for any θ ∈ Θn.

Now we turn to T3,n, the truncation error for the empirical loss. With the similar argument as in (16),
we have with probability at least 1− 4e−t, it holds that T3,n ≲ (t+ 1)/n+ (t+ 1)/m for any t > 0.

Combining the results for T1,n, T2,n and T3,n, we conclude that for any t > 0, with probability at
least 1− C6e

−t,

Mof (θ̂of )−Mof (θof ) ≲
t+ log(pn) log4(n)

m
+

t+ log(pn) log4(n)

n
, (22)

which completes our proof.

D Supporting lemmas

The following to lemmas are from Section 11.3 and Section 13.1 of Györfi et al. (2002), which are
useful for our proofs.
Lemma 1. (Deviation inequality of quadratic process). Suppose that G is a class of uniformly
bounded functions G =

{
g : Rd → R ∥g∥∞ ≤ M

}
. Let F =

{
g2 : g ∈ G

}
. Then for any n ≥ 1, it

holds that
P {∃f ∈ F : |E {f(z)} − En {f(z)}| ≥ ε(α+ γ) + E {f(z)}}

≤28 sup
zn1

N1(
γε

20M
,G, xn1 ) exp

(
− ε2(1− ε)αn

214(1 + ε)M4

)
,

where zn1 = (z1, · · · , zn) ∈ Rd, α, γ > 0 and 0 < ε ≤ 1/2.
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Lemma 2. (Covering number of piece-wise constant functions). Let Π be the family of partitions
of [0, 1]p. For any set xn1 = {x1, · · · , xn} ⊂ [0, 1]p, let ∆(Π) be the maximal number of partitions
of xn1 induced by elements of Π. Let M(Π) be the maximal number of sets contained in a partition
P ∈ Π. Denote the piece-wise constant functions on [0, 1]p be F(Π) with ∥f∥∞ ≤ βn for any
f ∈ F(Π). Then using Lemma 13.31 and Theorem 9.4 of Györfi et al. (2002) we have

N1(δ,F(Π), xn1 ) ≤ ∆n(Π)

(
c1βn
δ

)2M(Π)

,

for any δ > 0, where c1 > 0 is some univiersal constant. Specifically, in each partition for a node Ck
of a tree, we have M(Π) = 2 and ∆n(Π) ≤ (pan)

2, where an is the sample size of Ck.
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