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(Appendix)

A Proof for Theorem 1

Note that the constraint constrained optimization problem of Eq. (5) in our case is separable. We
consider the k-th (1 ≤ k ≤ K and K ≥ 2) problem as:

min
H

1

N

nk∑
i=1

LCE(hk,i,W
∗), (17)

s.t. ||hk,i||2 ≤ EH , 1 ≤ i ≤ nk.
where W∗ is the fixed ETF classifier. The problem above is convex as the objective is a sum of affine
functions and log-sum-exp functions with convex constraints. We have the Lagrange function as:

L̃ =
1

N

nk∑
i=1

− log
exp(hT

k,iw
∗
k)∑K

j=1 exp(hT
k,iw

∗
j )

+

nk∑
i=1

µi

(
||hk,i||2 − EH

)
, (18)

where µi is the Lagrange multiplier. We have its gradient with respect to hk,i as:

∂L̃

∂hk,i
= − (1− pk)w∗k

N
+

1

N

K∑
j 6=k

pjw
∗
j + 2µihk,i, 1 ≤ i ≤ nk. (19)

First we consider the case when µi = 0. ∂L̃/∂hk,i = 0 gives the following equation:

K∑
j 6=k

pjw
∗
j =

K∑
j 6=k

pjw
∗
k. (20)

Multiplying w∗k by both sides of the equation, we should have:

K

K − 1

K∑
j 6=k

pj = 0, (21)

which contradicts with pj > 0,∀1 ≤ j ≤ K when the `2 norm of hk,i is constrained and W∗ has a
fixed `2 norm. So we have µi > 0 and according to the KKT condition:

||hk,i||2 = EH , (22)

Then we have the equation:

∂L̃

∂h∗k,i
=

1

N

K∑
j 6=k

pj(w
∗
j −w∗k) + 2µih

∗
k,i = 0, (23)

where h∗k,i is the optimal solution of hk,i. Multiplying w∗j′ (j′ 6= k) by both sides of Eq. (23), we
get:

EW pj′

(
1 +

1

K − 1

)
+ 2Nµi〈h∗k,i,w∗j′〉 = 0. (24)

Since pj′ > 0 and K − 1 > 0, we have 〈h∗k,i,w∗j′〉 < 0. Then for any pair j, j′ 6= k, we have:

pj
pj′

=
exp(〈h∗k,i,w∗j 〉)
exp(〈h∗k,i,w∗j′〉)

=
〈h∗k,i,w∗j 〉
〈h∗k,i,w∗j′〉

. (25)

Considering that the function f(x) = exp(x)/x is monotonically increasing when x < 0, we have :

〈h∗k,i,w∗j 〉 = 〈h∗k,i,w∗j′〉 = C, pj = pj′ = p, ∀j, j′ 6= k, (26)

where C and p are constants. From Eq. (24), we have:

p =
1−K
K

· 2NµiC

EW
, (27)
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1− pk = (K − 1)p =
(1−K)(K − 1)

K
· 2NµiC

EW
, (28)

and
1− pk + p = (1−K) · 2NµiC

EW
. (29)

From Eq. (23), we have:

h∗k,i =
1

2Nµi

(1− pk)w∗k −
K∑

j 6=k

pjw
∗
j

 . (30)

The ETF classifier defined in Eq. (1) satisfies that
∑K

i w∗i = 0. Given that pj = p,∀j 6= k and Eq.
(29), we have:

h∗k,i =
1

2Nµi
(1− pk + p)w∗k

=
(1−K)C

EW
w∗k,

(31)

which indicates that h∗k,i has the same direction as w∗k. Its length has been given in Eq. (22). Then
we have:

C = 〈h∗k,i,w∗j 〉 = −
√
EHEW

K − 1
, ∀j 6= k, (32)

and

h∗k,i =

√
EH

EW
w∗k, (33)

which is equivalent to Eq. (7) and concludes the proof. �

B Proof for Theorem 2

We would like to show that the ηh of LDR is always smaller than that of LCE given ht is close to h∗.

For the DR loss:

Since ||ht
k,i−h∗k,i|| ≤ δ and h∗k,i is aligned with w∗k, we let ||h0

k,i||2 = EH and cos∠(h0
k,i,w

∗
k) ≥ 0

for any k ∈ [1,K], i ∈ [1, nk]. For the DR loss in (14), the projected SGD takes the following step at
time t+ 1 with the sample i in the class k:

ht+1
k,i = ProjEH

(
ht
k,i − γ

∂LDR

∂hk,i

)
= ProjEH

(
ht
k,i − γ

(
cos∠(ht

k,i,w
∗
k)− 1

)
w∗k
)
, (34)

where ProjEH
is the orthogonal projection onto the ball {h : ||h||2 ≤ EH}. Suppose that at the t-th

iteration ||ht
k,i||2 = EH and cos∠(ht

k,i,w
∗
k) ≥ 0, and one has:∥∥∥∥ht

k,i − γ
∂LDR

∂hk,i

∥∥∥∥2 = EH − 2
√
EHEW γ

(
cos∠(ht

k,i,w
∗
k)− 1

)
cos∠(ht

k,i,w
∗
k)

+ γ2EW

(
cos∠(ht

k,i,w
∗
k)− 1

)2
≥ EH ,

which means ||ht+1
k,i ||2 = EH . It is also easy to identify cos∠(ht+1

k,i ,w
∗
k) ≥ 0. So for all time t ≥ 0

in the sequence from h0
k,i to h∗k,i, we have ||ht

k,i||2 = EH and cos∠(ht
k,i,w

∗
k) ≥ 0.

By the non-expansiveness of projection, one has the following convergence:∥∥∥ht+1
k,i − h∗k,i

∥∥∥2 ≤ ∥∥ht
k,i − γ

(
cos∠(ht

k,i,w
∗
k)− 1

)
w∗k − h∗k,i

∥∥2
=
∥∥ht

k,i − h∗k,i
∥∥2 − 2γ

(
cos∠(ht

k,i,w
∗
k)− 1

) 〈
ht
k,i − h∗k,i,w

∗
k

〉
+ γ2EW

(
cos∠(ht

k,i,w
∗
k)− 1

)2
a
= 2EH

(
1− cos∠(ht

k,i,w
∗
k)
)
− 2γ

√
EWEH

(
cos∠(ht

k,i,w
∗
k)− 1

)2
+ γ2EW

(
cos∠(ht

k,i,w
∗
k)− 1

)2
,

(35)
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where a
= holds because ||ht

k,i − h∗k,i||2 = 2EH(1− cos∠(ht
k,i,w

∗
k)). When γ =

√
EH√
EW

, we have:

∥∥∥ht+1
k,i − h∗k,i

∥∥∥2 ≤ 2EH

(
1− cos∠(ht

k,i,w
∗
k)
)
− EH

(
1− cos∠(ht

k,i,w
∗
k)
)2

=
1 + cos∠(ht

k,i,w
∗
k)

2

∥∥ht
k,i − h∗k,i

∥∥2 . (36)

Then we get that the ηh-regularity number of the DR loss is:

η
(DR)
h =

1 + cos∠(ht
k,i,w

∗
k)

2
.

For the CE loss:

On the other hand, for the CE loss in (3), the projected SGD takes the following step at time t+ 1
with the sample i in the class k:

ht+1
k,i = ProjEH

(
ht
k,i − γ

∂LCE

∂hk,i

)
= ProjEH

ht
k,i + γ (1− pk)w∗k − γ

K∑
j 6=k

pjw
∗
j

 .

By the non-expansiveness of projection, one has the following convergence:

∥∥∥ht+1
k,i − h∗k,i

∥∥∥2 ≤
∥∥∥∥∥∥ht

k,i + γ (1− pk)w∗k − γ
K∑

j 6=k

pjw
∗
j − h∗k,i

∥∥∥∥∥∥
2

=
∥∥ht

k,i − h∗k,i
∥∥2 − 2γ (pk − 1)

〈
ht
k,i − h∗k,i,w

∗
k

〉
+ γ2 (pk − 1)

2
EW

+ 2γ

〈
h∗k,i − ht

k,i,

K∑
j 6=k

pjw
∗
j

〉

− 2γ

〈
(1− pk)γw∗k,

K∑
j 6=k

pjw
∗
j

〉
+

∥∥∥∥∥∥γ
K∑

j 6=k

pjw
∗
j

∥∥∥∥∥∥
2

=
∥∥ht

k,i − h∗k,i
∥∥2 + γ2 (pk − 1)

2
EW +

∥∥∥∥∥∥γ
K∑

j 6=k

pjw
∗
j

∥∥∥∥∥∥
2

+M,

(37)

where we have:

M = 2γ(1− pk)
〈
ht
k,i − h∗k,i,w

∗
k

〉
− 2γ

〈
(1− pk)γw∗k,

K∑
j 6=k

pjw
∗
j

〉
+ 2γ

〈
h∗k,i − ht

k,i,

K∑
j 6=k

pjw
∗
j

〉

= 2γ(1− pk)

〈ht
k,i − h∗k,i,w

∗
k

〉
+

γEW

K − 1

K∑
j 6=k

pj

+ 2γ

〈
h∗k,i − ht

k,i,

K∑
j 6=k

pjw
∗
j

〉

= 2γ(1− pk)

(〈
ht
k,i,w

∗
k

〉
−
√
EHEW +

γEW (1− pk)

K − 1

)
− 2γht

k,i

K∑
j 6=k

pjw
∗
j −

2γ (1− pk)

K − 1

√
EHEW

= 2γ(1− pk)
〈
ht
k,i,w

∗
k

〉
− 2γht

k,i

K∑
j 6=k

pjw
∗
j − 2γ (1− pk)

K

K − 1

√
EHEW +

2γ2 (1− pk)
2
EW

K − 1
.

(38)
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Since
∑K

i w∗i = 0 for an ETF classifier, and we have assumed in Theorem 2 that pi = pj =
1−pk

K−1 , ∀i, j 6= k, then we have:

2γ(1− pk)
〈
ht
k,i,w

∗
k

〉
− 2γht

k,i

K∑
j 6=k

pjw
∗
j

=− 2γ

〈
ht
k,i, (1− pk)

K∑
j 6=k

w∗j +

K∑
j 6=k

pjw
∗
j

〉

a
=− 2γ

〈
ht
k,i,

K (1− pk)

K − 1

K∑
j 6=k

w∗j

〉

=− 2K

K − 1
(1− pk) γ

√
EHEW

 K∑
j 6=k

cos∠
(
ht
k,i,w

∗
j

)
b
=

2K

K − 1
(1− pk) γ

√
EHEW cos∠

(
ht
k,i,w

∗
k

)
,

(39)

where a
= follows from the assumption that pi = pj = 1−pk

K−1 , and b
= holds because

〈
ht
k,i,
∑K

i w∗i

〉
=

0. Then we have :

M =
2K

K − 1
(1− pk) γ

√
EHEW cos∠

(
ht
k,i,w

∗
k

)
− 2γ (1− pk)

K

K − 1

√
EHEW +

2γ2 (1− pk)
2
EW

K − 1

= −2 (1− pk)
K

K − 1
γ
√
EHEW

(
1− cos∠

(
ht
k,i,w

∗
k

))
+

2γ2 (1− pk)
2
EW

K − 1
,

(40)
and ∥∥∥ht+1

k,i − h∗k,i

∥∥∥2
≤
∥∥ht

k,i − h∗k,i
∥∥2 − 2K

√
EHEW

K − 1
γ (1− pk)

(
1− cos∠

(
ht
k,i,w

∗
k

))
+ γ2 (pk − 1)

2
EW +

∥∥∥∥∥∥γ
K∑

j 6=k

pjw
∗
j

∥∥∥∥∥∥
2

+
2γ2 (1− pk)

2
EW

K − 1

=2EH

(
1− cos∠(ht

k,i,w
∗
k)
)
− EH

(
1− cos∠(ht

k,i,w
∗
k)
)2

+ EH

(
1− cos∠(ht

k,i,w
∗
k)
)2 − 2K

√
EHEW

K − 1
γ (1− pk)

(
1− cos∠

(
ht
k,i,w

∗
k

))
+ γ2 (pk − 1)

2
EW +

γ2 (1− pk)
2
EW

(K − 1)2
+

2γ2 (1− pk)
2
EW

K − 1

=2EH

(
1− cos∠(ht

k,i,w
∗
k)
)
− EH

(
1− cos∠(ht

k,i,w
∗
k)
)2

+ EH

(
1− cos∠(ht

k,i,w
∗
k)
)2 − 2K

√
EHEW

K − 1
γ (1− pk)

(
1− cos∠

(
ht
k,i,w

∗
k

))
+

(
γ(1− pk)K

K − 1

)2

EW .

(41)

Let γ(1− pk) K
K−1 = sk, and we consider the problem:

min
sk

EH

(
1− cos∠(ht

k,i,w
∗
k)
)2 − 2sk

√
EHEW

(
1− cos∠

(
ht
k,i,w

∗
k

))
+ s2kEW . (42)
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When sk =
√

EH

EW

(
1− cos∠(ht

k,i,w
∗
k)
)

, i.e., γ = K−1
K

√
EH

EW

1−cos∠(ht
k,i,w

∗
k)

1−pk
, the objective in

Eq. (42) is minimized. Following Eq. (41) we get the optimal bound for CE as:∥∥∥ht+1
k,i − h∗k,i

∥∥∥2 ≤ 2EH

(
1− cos∠(ht

k,i,w
∗
k)
)
− EH

(
1− cos∠(ht

k,i,w
∗
k)
)2

=
1 + cos∠(ht

k,i,w
∗
k)

2

∥∥ht
k,i − h∗k,i

∥∥2 , (43)

which is the same as DR. However, in this case γ varies with ht
k,i and cannot be a constant as defined

in Definition 2. For any fixed learning rate γ, the objective in Eq. (42) is larger than 0. So we have
the ηh-regularity number of the CE loss:

η
(CE)
h ≥

1 + cos∠(ht
k,i,w

∗
k)

2
= η

(DR)
h , (44)

and conclude the proof. �

C Implementation Details

In implementations, we train a backbone network with our proposed ETF classifier and DR loss.
For small datasets such as CIFAR, SVHN, and STL, we simply perform an `2 normalization for the
features output from the backbone network, which means

√
EH = 1. For large datasets, such as

ImageNet, `2 normalization will induce training instability due to the large dimensionality. We add
an `2 regularization term of the output features instead, to ensure a constrained feature length.

Our analytical work has shown that using a fixed ETF classifier does not suffer from the imbalanced
gradient w.r.t classifier. In implementations, we also consider the gradient w.r.t the backbone network
parameters W1:L−1:

1

N

∂LDR

∂W1:L−1
=

1

N

∂H

∂W1:L−1

∂LDR

∂H

=
1

N

K∑
k=1

nk∑
i=1

∂hk,i

∂W1:L−1

∂LDR

∂hk,i
.

Then we have:
1

N

∥∥∥∥ ∂LDR

∂W1:L−1

∥∥∥∥
2

≤ 1

N

K∑
k=1

nk∑
i=1

∥∥∥∥ ∂hk,i

∂W1:L−1

∂LDR

∂hk,i

∥∥∥∥
2

≤ 1

N

K∑
k=1

nk∑
i=1

∥∥∥∥ ∂hk,i

∂W1:L−1

∥∥∥∥
2

·
∥∥∥∥∂LDR

∂hk,i

∥∥∥∥
2

≤ 2

N

K∑
k=1

nk∑
i=1

σmax

√
Ewk

,

where σmax denotes the largest singular value of the Jacobian ∂hk,i

∂W1:L−1
, ∀1 ≤ k ≤ K, 1 ≤ i ≤ nk,√

Ewk
is the length of the k-th classifier vector, and

∥∥∥∂LDR

∂hk,i

∥∥∥
2
≤ 2
√
Ewk

by Eq. (15). Although
we cannot realize a balanced gradient w.r.t W1:L−1 among classes, we can balance the upper bound
of its gradient norm of each class by controlling

√
Ewk

. In implementations, we set
√
Ewk

= N
Knk

,
which is equivalent to performing a weighted loss function on different classes. In experiments, we
also compare our method with the weighted CE loss for fair comparison.

D Datasets and Training Details

We conduct long-tailed classification experiments on the four datasets, CIFAR-10, CIFAR-100,
SVHN, and STL-10, with two architectures, ResNet-32 and DenseNet with a depth of 150, a growth
rate of 12, and a reduction of 0.5. All models are trained with the same training setting. Concretely,
we train for 200 epochs, with an initial learning rate of 0.1, a batchsize of 128, a momentum of
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CIFAR-10 CIFAR-100 SVHN STL-10

Figure 4: Averages of cos∠(hc − hg,wc), ∀1 ≤ c ≤ K, where hg is the global mean, with (red)
and without (black) our method, using ResNet (up) and DenseNet (bottom) on four datasets. The
models are trained on CIFAR-100 with an imbalance ratio of 0.02.

CIFAR-10 CIFAR-100 SVHN STL-10

Figure 5: Statistics of ||W̃ − H̃||2F during training, where W̃ = W/||W||2F , H̃ = H̄/||H̄||2F , and
H̄ = [hc − hg : c = 1, · · · ,K], using ResNet (up) and DenseNet (bottom) on four datasets. The
models are trained on CIFAR-100 with an imbalance ratio of 0.02

0.9, and a weight decay of 2e − 4. The learning rate is divided by 10 at epoch 160 and 180. The
hyper-parameter in the β distribution used for Mixup is set as 1.0 when Mixup is used. We use the
code released by [48] to produce the imbalanced datasets. The numbers of training samples are
decayed exponentially among classes. We adopt the standard data normalization and augmentation
for the four datasets.

We also conduct long-tailed classification experiments on ImageNet-LT with ResNet-50. We train all
models for 90, 120, 150, and 180 epochs, with a batchsize of 1024 among 8 NVIDIA A-100 GPUs.
Following [48], we use the SGD optimizer with a momentum of 0.9 and a weight decay of 5e− 4.
The initial learning is 0.1 and decays following the cosine annealing schedule.

We conduct fine-grained classification experiments on CUB-200-2011 with ResNet-34, ResNet-50,
and ResNet-101. The ResNet backbone networks are pre-trained on ImageNet. We train for 300
epochs on CUB-200-2011 with a batchsize of 64 and an initial learning rate of 0.04, which is dropped
by 0.1 at epoch 90, 180, and 270. The standard data normalization and augmentation are adopted.
Other training settings are the same as the long-tailed experiments.

E Additional Empirical and Experimental Results

Empirical Results. We provide more empirical results that have been discussed in Section 5.1. We
calculate the averages of cos∠(hc − hg,wc), ∀1 ≤ c ≤ K, and ||W̃ − H̃||2F in Figure 4 and 5.
It reveals that the model using our method generally has a higher cos∠(hc − hg,wc) and a lower
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(a) (b) (c) (d)

Figure 6: Top-1 accuracy curves on ImageNet-LT using the ResNet-50 backbone with “learnable
classifier + CE loss” and our proposed “ETF classifier + DR loss” for (a) 90, (b) 120, (c) 150, and (d)
180 epochs of training.

||W̃− H̃||2F , which indicates that the feature means and classifier vectors of the same class are better
aligned. We observe no advantage of ResNet on STL-10 and DenseNet on CIFAR-100 in Figure
4 and 5. In Table 2, we see that the two cases are right the failure cases, which shows consistency
between neural collapse convergence and classification performance.

Accuracy Curves of Long-tailed Classification on ImageNet-LT. As shown in Figure 6, we depict
the accuracy curves in training of the long-tailed classification results in Table 3. It reveals that the
model using our proposed ETF classifier and DR loss converges faster than the traditional learnable
classifier with the CE loss. Especially when we train for less epochs, the accuracy curves of our “ETF
classifier + DR loss” are less affected, while those of “learnable classifier + CE loss” are deteriorated
and converge slowly. Thus the superiority in performance of our method is more remarkable when
training for limited epochs. It can be explained by the fact that our method directly has the classifier
in its optimality and optimizes the features towards the neural collapse solution, while the learnable
classifier with the CE loss needs a sufficient training process to separate classifier vectors of different
classes. So our method can be preferred when fast convergence or limited training time is required.

F Limitations and Societal Impacts

Limitations. The limitations of this study may include: (1) The benefits of our proposed ETF
classifier and DR loss are mainly analyzed for the case of imbalanced training. But our methods
are general and applicable to all classification problems. The advantages and disadvantages of our
methods for other machine learning areas, such as label noise learning and few-shot learning, are
not discussed in this study, and deserve our future work. (2) In a neural network with a learnable
classifier, the lengths, i.e., `2-norms, of both features and classifier vectors are usually increasing as
training. But for our fixed classifier, the lengths of the classifier vectors are fixed during training. As
shown in Eq. (12) (for CE loss) and Eq. (15) (for DR loss), the gradient norm with respect to feature
is decided by the lengths of classifier vectors. When feature is in a large length, its gradient using our
fixed classifier may have a limited step size. So an adaptive mechanism to adjust the length of the
ETF classifier may be more favorable and further improve the performance.

Societal Impacts. Our study proposes a new paradigm for neural network classification. It enjoys
some theoretical benefits for imbalanced training, which is an important topic in machine learning.
Our method is a general technique for network training, but is not related to any potential impact on
privacy, public health, fairness, and other societal issues. Besides, our proposed ETF classifier and
DR loss actually reduce the computation cost compared with the traditional learnable classifier with
the CE loss, so will not introduce extra environment burden.

G Detailed Comparison with Some Studies

As suggested by a reviewer of this paper, we compare with [5, 30, 50] in more details.

The objective of LPM studied in [5] is also the CE loss with constraints of feature and classifier. They
prove that (1) neural collapse is the global optimality of this objective when training on a balanced
dataset; (2) in imbalanced training, neural collapse will be broken, and the prototypes of minor classes
will be merged, which explains the difficulty of imbalanced training.
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We also study the objective of CE loss with feature and classifier constraints. As a comparison, (1)
We prove that neural collapse can also be the global optimality for imbalanced training as long as the
classifier is fixed as an ETF (Theorem 1); (2) We analyze from the gradient perspective and show
that the broken neural collapse in imbalanced training is caused by the imbalanced magnitude of
gradients of the CE loss (Remark 2). We also show that the “pull-push” mechanism is crucial for
the emergence of neural collapse in the CE loss in balanced training (Remark 3); (3) Inspired by the
analyses, we propose a new loss function with a provable advantage over the CE loss (Theorem 2).

The objective of LPM studied in [50] is the CE loss with regularizations of feature and classifier.
They prove that: (1) neural collapse is the global optimality of this objective when training on a
balanced dataset; (2) despite being nonconvex, the landscape of the objective in this case is benign,
which means that there is no spurious local minimum, so gradient-based optimization method can
easily escape from the strict saddle points to look for the global minimizer.

In contrast, the objective we consider is the CE loss with constraints of feature and classifier, instead
of regularizations. We mainly consider neural collapse in imbalanced learning, and accordingly
propose a new loss function, which are different from the two results in [50].

[29, 30] show that fixing a learnable classifier as the vertices of regular polytopes, including d-simplex,
d-cube, and d-orthoplex, helps to learn stationary and maximally separated features. It does not
harm the performance, and in many cases improves the performance. It also brings faster speed of
convergence and reduces the model parameters. Their spirit of learning maximally separated features
is very similar to neural collapse. Compared with [29, 30], we prove that neural collapse can be the
global optimality of the CE loss even in imbalanced learning based on the LPM analytical tool. We
also propose a new loss function with a provable advantage over the CE loss.
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