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This document provides more details of our approach and additional experimental results, organized
as follows:

• §I Experimental Details.
• §II Audio Simulator.
• §III Qualitative Results.
• §IV Discussion.

I Experimental Details

Multitask Distributed Proximal Policy Optimization. We propose MDPPO based on PPO [1] that
is an on-policy RL algorithm with actor-critic architecture. The pseudo code of our training procedure
is shown in Algorithm I.

Training Details. We apply max clip gradient normalization to all models to stabilize the training.
To encourage the agent to explore different actions in reinforcement learning, we add the entropy of
predicted action distribution to the loss as a regularizer. We observe that the target position in most
episodes can be reached within 50 steps following the shortest path, hence we set the length of the
rollout sequence to 100 steps during the frame collection, which allows extra exploration steps. For
each round of frame collection, we update the agent for 2 epochs. We use 32 NVIDIA RTX 2080
GPUs to train the agents. Each GPU runs 4 training processes. It results in 128 training processes
in total. In single task learning, all 32 GPUs are assigned to one task. In multi-task learning, each
task is assigned with 8 GPUs. The format of visual observations in the four tasks are identical, where
the vertical FOV of the camera is 90◦, the size of RGB observation is 224 × 224, and the size of
depth observation is 256× 256. In image-goal nav. task, the size of the goal image is 224× 224. In
audio-goal nav. task, the sampling rate of the binaural audio is 16000Hz. Following [2], we transform
the binaural audio wave to 41 × 44 × 2 spectrogram map through Short-time Fourier transform.
The hyperparameters used in the quantitative experiments are listed in Table. I. We utilize these
hyperparameters across the learning of VIENNAST/MT and Seq2SeqST/MT.

Network Architecture Details. For fair comparison, the following encoders are used to encode
sensory observations and target instructions for Seq2Seq and VIENNA in experiments:
• Visual Encoder. Following [3–5], for RGB observation, we apply an ImageNet [6]-pretrained

ResNet50 [7] where the last linear classifier is removed to extract semantic visual features. Similarly,
for depth observation, we use a modified ResNet50 pretrained in point-goal navigation. The
pretrained ResNet50 backbones are frozen during training. Learnable spatial embeddings are
concatenated to the visual features to encode spatial features.
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Algorithm I The pseudo code of Multitask Distributed Proximal Policy Optimization (MDPPO).Algorithm I The pseudo code of Multitask Distributed Proximal Policy Optimization (MDPPO).

class MDPPOLearner:
def __init__(self, config, Q: queue):

self.p = initiates_policy(config) # initiates the policy
self.gp = self.p.share() # global policy copy
self.config = config
self.local_rank = config.local_rank # rank 0 is the host
self.task_id = self.local_rank%config.task_num # task_id is in [0, 3]
self.Q = Q # the queue for gradient synchronization

def train(self):
for i in range(self.config.max_iters):

rollouts = self.p.rollout(self.task_id) # frame collection
for e in range(self.config.epoch):

self.p.optimizer.zero_grad()
loss = self.p.PPO_loss(rollouts) # compute PPO loss
loss.backward()
self._accumulate_grad()
if self.local_rank == 0: # if the current process is the host

self._average_grad()
for p, p_g in zip(self.p.parameters(), self.gp.parameters()):

p.data = p_g.data.clone()

def _accumulate_grad(self):
grads = []
for p in self.p.parameters():

grads.append(p.grad)
self.Q.push(grads)

def _average_grad(self):
self.gp.optimizer.zero_grad()
num = 0
while not Q.empty() or num < self.config.tasks_num: # sum grads

num += 1
grads = Q.get()
for p, g in zip(self.gp.parameters(), grads):

p.grad += g
for p in self.gp.parameters():

p.grad = p.grad / num
self.gp.optimizer.step()

• Audio Encoder. Following [2, 11], we apply a CNN of conv 8 ⇥ 8, conv 4 ⇥ 4, conv 3 ⇥ 3 and a37
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In Seq2Seq, those embeddings are concatenated together and fed into an LSTM planner to encode39

the episode history. Especially, for multi-task learning, the absent embeddings are padded with zeros.40

A linear layer is used as the critic to estimate the value based on the hidden state of the LSTM planner.41
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• Language Encoder. Following [3,5,8–10], we apply a bi-directional LSTM with pre-trained word
embeddings to encode language instructions. Note that in Seq2Seq, only the first and the last
hidden states are used to describe the language instruction, while VIENNA utilizes transformer
encoders to process the encoded language sequence.

• Audio Encoder. Following [2, 11], we apply a CNN of conv 8× 8, conv 4× 4, conv 3× 3 and a
linear layer, interleaved with ReLU to encode the spectrogram of binaural audios.

In Seq2Seq, those embeddings are concatenated together and fed into an LSTM planner to encode
the episode history. Especially, for multi-task learning, the absent embeddings are padded with zeros.
A linear layer is used as the critic to estimate the value based on the hidden state of the LSTM planner.
Our proposed VIENNA is viewed as the actor in the training. The embeddings of multimodal sensory
observations are first integrated through a transformer encoder (Eq.4) and then fed into the episode
history encoder (Eq.6) to obtain contextualized history representation. The augmented instruction
embeddings are queried by the averaged episode contextualized history encoding to get the time-
varying goal description (Eq.7, 8). Finally, a transformer-based multitask planner consumes the goal
description as the query sequence and the episodic history as the key&value sequence to obtain the
context for decision making (Eq.9). We average the retrieved context Ct of the multitask planner (see
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Table I: The hyperparameters used in the experiments.

Hyperparameter Value
NV 12
NA 12
NI 16
NL 120
NG 120
d 512

rsuccess 2.5
rslack -0.001
γ 0.99

τ (PPO) 0.95
Learning rate 0.00025
Rollout length 100

Value loss coefficient 0.5

Hyperparameter Value
Action entropy coefficient 0.01

Max gradient norm 0.2
Batch size (per process) 1

Number of epochs (per rollout) 2
Number of processes (per GPU) 4

Total number of GPUs 32
Success radius 1m

Audio sampling rate 16000Hz
Binaural audio spectrogram map size [41, 44, 2]

Camera vertical FOV 90◦

RGB observation size [224, 224]
Depth observation size [256, 256]

Goal image size [224, 224]

§4.3) and map it to a scalar as the estimate V̂t through a linear layer, i.e., V̂t=FAVG(Ct)W
s. The

linear is shared across the tasks.

II Audio Simulator

Continuous Binaural Audio Simulation. In [12], chen et al.sample a grid of N locations in
an environment and simulate the acoustics of the environment by pre-computing binaural room
impulse response (BRIRs) of four azimuth angles (i.e., 0◦, 90◦, 180◦ and 270◦) for each possible
source and listener placement at the sampled locations. Therefore, the agent is only allowed to
move to its adjacent locations. To simulate continuous auditory scenes, we use [13] for real-time
BRIRs interpolation. Specifically, we first pre-compute the Dynamic Time Wrapping [14] for each
adjacent azimuth angle and location to temporally align BRIRs of different orientations and positions.

Îi,j Îi+1,j

Îi,j+1 Îi+1,j+1

Īi,j

a

b

α

Figure I: Interpolation for BRIRs
at arbitrary location and orienta-
tion.

The left channel and right channel of BRIRs are processed re-
spectively. Then we adopt linear interpolation for orientation and
bilinear interpolation for position to get BRIRs at an arbitrary
location with arbitrary orientation. As shown in Fig. I, the linear
interpolation for orientation is computed as:

Îi,j =
2α

π
Ii,j,0 + (1− 2α

π
)Ii,j,1, (I)

where α ∈ [0, π2 ], Ii,j,0 and Ii,j,1 are the temporally aligned
BRIRs of adjacent azimuth angles. The final BRIRs Īi,j is com-
puted as:

Īi,j =b(aÎi,j + (1− a)Îi+1,j)

+ (1− b)(aÎi,j+1 + (1− a)Îi+1,j+1),
(II)

where a, b ∈ [0, 1]. Some examples of the binaural audio interpo-
lation are available in the video2.

Episodic Background Sound Rendering. Our simulator provides background sound rendering for
image-goal nav., audio-goal nav., and vision-language nav. tasks. As stated in the main context,
the background sound reveals the geometry of the environment, complements the visual cues, and
makes the situation closer to the real world. To this end, for each episode, we randomly sample an
object within 10 metres of the starting point as the background sound source. As the environments in
Matterport3D [15] are densely annotated with semantic labels, we can easily access the locations of
objects. To keep the audio semantics consistent with audio-goal nav. and object-goal nav., we apply

2https://youtu.be/Nd1XWCh2r0A
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Figure II: A qualitative comparison on image-goal nav. task. (a) is the trajectory of Zhu et al. [16] and (b) is
the trajectory of our method. The green trajectory in the top-down map is the shortest path to the goal. The
blue trajectory in the top-down map is the path that the agent navigates. The dashed box in (b) shows the
corresponding area in the goal image.

the sounds of 21 object categories following [11] as the background sounds. It is worth noting that
the sound source is randomly picked for each time an episode starts during training. In the evaluation
phase, the background sound source is randomly sampled and then fixed for the same episode. Some
examples are available in the video3.

III Qualitative Results

Qualitative Comparison. We present some additional qualitative results of our approach and the
specifically designed methods for the four tasks. Fig. II shows the comparison with Zhu et al. [16]
on image-goal nav.. In this case, the agent is asked to reach a corner with a table and a lamp on
the wall. Our agent is able to conduct more robust navigation compared to [16]. Fig. III shows the
comparison with Chen et al. [12]’s model on audio-goal nav.. In this case, the sound source is the
noise of swinging a towel in the bathroom. Our agent is able to locate the sound source accurately
and navigate toward it. The comparison with Chaplot et al. [17] on object-goal nav. is illustrated in
Fig. IV, the goal object category is ‘table’. Our agent can consistently locate the semantic instance in
panoramic visual observation. Fig. V shows the comparison with Krantz et al. [3] on vision-language
nav. task. In this case, our agent is able to consistently navigate following the instruction.

IV Discussion

We present VXN, a realistic multitask navigation dataset on a publicly available interior dataset
Matterport3D [15]. It naturally combines four classic navigation tasks in standardized continuous
audiovisual-rich environments, which provides a foundation for developing a versatile embodied
navigation agent. This new setting is much more challenging compared to any of those single tasks in
two main aspects: 1) With more modalities involved, the agent needs to do multimodal co-grounding
and inference accordingly, which remains an open problem in the field. 2) The instructions of different
navigation tasks are detailed in different granularity, which requires different navigation policies. For
example, the object category tag in object-goal nav. suggests the agent for going somewhere that
contains the goal object instances and finding one. Based on the tag, the agent needs to explore the
environment. Nevertheless, the language instruction in vision-langauge nav. is an explicit instruction
that guides the agent to navigate step by step. In this case, instruction fidelity is important to the
navigation policy. As revealed in our quantitative experiments, the current methods still have a large
room for improvement on all those tasks while our multitask agent first explores the inherent relations
between the fine-grained navigation tasks and makes progress. We believe that mastering a group

3https://youtu.be/_TR24NAc92M
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Figure III: A qualitative comparison on audio-goal nav. task. In this case, the sound source is the noise of
swinging a towel in the bathroom. (a) is the trajectory of Chen et al. [12] and (b) is the trajectory of our method.
The green trajectory in the top-down map is the shortest path to the goal. The blue trajectory in the top-down
map is the path that the agent navigates.
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Figure IV: A qualitative comparison on object-goal nav. task. The goal object category is ‘table’. (a) is the
trajectory of Chaplot et al. [17] and (b) is the trajectory of our method. The green trajectory in the top-down
map is the shortest path to the goal. The blue trajectory in the top-down map is the path that the agent navigates.
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Instruction: Go through the wooden doors to the dining area. Walk past the dining table to the glass and wood doors beyond. Turn right and go
through the doors to the vestibule stop at the doors leading to a second dining area.
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Figure V: A qualitative comparison on vision-language nav. task. (a) is the trajectory of Krantz et al. [3] and (b)
is the trajectory of our method. The blue trajectory in the top-down map is the path that the agent navigates.

of fine-grained navigation tasks through a powerful universal agent is more elegant and potentially
promising. It will facilitate future work in this field.

Limitations & Societal Impact. Our real-time binaural audio rendering relies on the pre-computed
binaural room impulse responses provided by [12]. For some navigable locations where the adjacent
BRIRs are unavailable (due to the coarse size of grid sampling in [12]), we use the nearest BRIRs
as an approximation. We observe some flaws of the audio rendering that the interpolated binaural
audio slightly jitters sometimes. It is probably caused by the dynamic time wrapping of different
BRIRs pairs. A possible workaround to alleviate the jitter is to smooth the interpolated audio through
a low-pass filter. Compared to the Seq2Seq models, our transformer-based model is more memory-
consuming during inference. This can be partially solved by introducing a sliding memory buffer
for history observations similar to [11]. The navigation agents are developed in virtual simulated
environments. If the algorithm is deployed on a real robot in a real dynamic environment, the
collisions during navigation can potentially cause damage to persons and assets. More work should
be done to practice real-world deployment, e.g., introducing hard constraints to the action space to
avoid collisions, and including additional experiments to study the risk of potential damage.
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