Supplementary Material

Learning Partial Equivariances from Data

A Groups, subgroups, group actions and other group theoretical concepts

Groups. Group theory is the mathematical language that describes symmetries. The core mathe-
matical object is that of a group, and defines what it means for something to exhibit symmetries.
Specifically, a group is a tuple (¢, -) consisting of a set of transformations ¢, and a binary operation
-, that exhibit the following properties: (i) closure, i.e., g1 x g2 = g3 € G, Vg1, g2 € ¢ (ii) associativity,
ie., g1-(g2-93)=(g1-ge2) - gs forall g1, gs, g3 € G, (iii) the existence of an identity element e € ¢,
such that g - e=e - g = g, and (iv) the existence of an inverse g~* € G forall g € G.

Subgroups. Given a group (G,-), we say that a subset # of the group ¢, is a subgroup of ¢ if
this subset also complies to the group axioms under the binary operation -. For instance, the set of
rotations by 90°, #={0°,90°, 180°,270°}, is a subgroup of the rotation group SO(2), because it also
complies to the closure, associativity, identity and inverse group axioms.

Group action. One can define the action of the group ¢ on a set X. This action describes how group
elements g € ¢ modify the set X’ when the transformation is applied. For instance, the action of
elements in the group of planar rotations § € SO(2) on an image x € X —written x—, depicts how the
image x changes when the rotation 6 is applied.

Lie groups. A group whose elements form a smooth manifold is referred to as a Lie group. Since G is
not necessarily a vector space, we cannot add or subtract group elements —the only operation defined
on the group is the binary operation - —. However, if the group is a Lie group, one can link the group
@ to a vector space —tangent space at the identity 7.(()—, called the Lie algebra. Consequently,
one can readily expand group elements on the Lie algebra using a basis A=Y, a*e; and use these
components for calculations. As neural networks work on vector spaces —by means of sums and
products—, it is desirable to define convolutional kernels on the Lie algebra as ¢)=MLP: g — RNin*Nout
where Nj, and N, depict the input and output channels of a convolutional kernel, respectively [16].

Relevant groups for computer vision applications. In this work, we consider computer vision
applications and thus, are mainly interested in groups that have direct effect on these applications.
These groups compose the translation group T(2), the rotation group SO(2), the group of rotations
and reflections O(2) and combinations thereof.> The actions of these groups can intuitively be
understood as the translation, the rotation, and the rotation and reflection of 2D functions, respectively.

These groups can be combined by means of the semi-direct product (x) to construct groups that
represent combined symmetries. For instance, the 2D roto-translation group SE(2)=T(2) x SO(2)
encompasses symmetries described by both translations and rotations on 2D. Similarly, we can
construct a group that describes 2D symmetries given by rotations, translations and reflections
E(2)=T(2)%0(2).° Considering equivariance to these groups allows us to construct neural networks
that respect the combined symmetries described by them.

B Formal treatment of equivariance in partial group convolutions
B.1 Partial group convolutions from the group ¢ to a subset &

The partial group convolution from signals on ( to signals on a subset & can be interpreted as a group
convolution for which the output signal outside of & is set to zero. Consequently, we can calculate
the equivariance difference A.quiv in the feature representation, by calculating the difference on the
subset & of a group convolution with a group-transformed input (L, f * ¢) and a group convolution
with a canonical input proceeded by the same transformation on §, i.e., L, (f * ©).

The equivariance difference A2%;, resulting from the effect of considering a subset § in the output

domain of the operation is given by:

The names SO(2), O(2) are derived from their formal names: Special Orthogonal and Orthogonal group.
®The names SE(2), E(2) are derived from their formal names: Special Euclidean and Euclidean group.

14



2
2

Aitse = || [ £ul s+ D@ ang(u) = [ (0 Luf) () dag (w)

2
2

| [ @ e w g - [ @ n i

2
2

- [N dug) = [ @) dugw)

L e n@anet - [ we D dng|

Smin WSmin

L@ neang s 77 @ D ang ) -
(fwsmax(w * £)(u) dug (u) + fsm(w ) f)(u)d“g(u))

Smin WSmin

2
2

L e e - [ 6 0 o)

Smax WSmin

2
2

From the first line to the second we take advantage of the equivariance property of the group
convolution: (Ly, f * 1) (u)=Ly (f * 1) (u), and account for the fact that only the region within
S8 is visible at the output. We use the change of variables u = w™u from the second to third line,
and specify the boundaries of &, (Smax, Smin) from the third to the fourth line. In the fifth line we
separate the integration over & as a sum of two integrals which depict the same range. In the last line,
we cancel out the overlapping parts of the two integrals to come to the final result.

In conclusion, the equivariance difference induced by a subset §(?) on the domain of the output
Aggfliv is given by the difference between the part of the representation that leaves the subset &, and
the part that comes to replace it instead. This behaviour is illustrated in Figure 1.

B.2 Partial group convolutions from a subset (1) to a subset §(%)

To isolate the effect of having a group subset as domain of the input signal f, we first consider the

domain of the output to be the group, i.e., §(?)=C. The equivariance difference in this case is given
by the difference across the entire output representation of the group convolution calculated on an

input subset §!) with a canonical input f, and with a group transformed input £, f.

The equivariance difference Ag}luiv resulting from the effect of considering a subset 1) in the input

domain of the operation is given by:

2
N = | [, [ 00 07 @) g ng )~ [ [ o)) dng@)dng ()]

L[ e s dug) - [ e n @) dug )] dug (w)

2
2

=L [ e w [f) - £ )] dng()dng(w)

In other words, the equivariance difference induced by a subset §(*) on the domain of the input

Ag‘luiv is given by the difference in (1) between the input f, and the part that comes to replace it

when the input is modified by a group transformation w. This behavior is illustrated in Figure 2.

C Equivariance property of Monte-Carlo approximations

Consider the Monte-Carlo approximation shown in the main paper:
(&) (ui) = 37 005 wi) f(v5)fig (v)).

For a transformed version of the £, f, we can show that the Monte-Carlo approximation of the group
convolution is equivariant in expectation. The proof follows the same steps than Finzi et al. [16]

15



except that the last step of the proof follows a different reason resulting from the fact that input and
output elements can be sampled from different probability distributions.

For a transformed version of the ., f, we have that:
(W % Lo f) (i) = 3 o (0; ug) f(w™ o) fig (vy)

= 20, (07w ) (55) i (35)

d /. » - .

£ (W * M)(w ) = LW % ) (ui)
From the first to the second line, we use the change of variables v; = wv; and the fact that, group ele-
ments in the input domain are sampled from the Haar measure for which it holds that fi¢ (v;)=fic (0;).
However, from the second to the third line, we must also assume that this holds for the output domain.

That is, that the probability of drawing w™"u; is equal to that of drawing u;. We emphasize that this
is of particular importance in the partial equivariance setting as this might not be the case in general.

D Algorithm for Monte-Carlo approximation of the partial group convolution

Algorithm 1 The Partial Group Convolution Layer

1: Inputs: position, function-value tuples on the group or a subset thereof {v;, f(v;)}.

2: Outputs: convolved position, function-value tuples on the output group subset {u;, (f*1)(u;)}.
3: {u;} ~p(u) > Sample elements from p(u)
4: for u; € {u;} do

5: h(u;) =%; w(vglui)f(vj)ﬂg(vj) > Compute group convolution (Eq. 4)
6: end for

7: Return: {u;, h(u;)}

E Experimental details
E.1 Dataset description

Dataset availability and licensing. We note that all the datasets used in this paper are publicly
available. MNIST is available online under Creative Commons Attribution-Share Alike 3.0 license.
CIFAR-10 and CIFAR-100 are available online under MIT license. PatchCamelyon is available
online under MIT license.

Rotated MNIST. The rotated MNIST dataset [30] contains 62,000 gray-scale 28x28 handwritten
digits extracted from the MNIST dataset [31] uniformly rotated on the circle. The dataset is split into
training, validation and test sets of 10,000, 2,000, and 50,000 images, respectively.

CIFAR-10 and CIFAR-100. The CIFAR-10 dataset [28] consists of 60,000 real-world 32x32 RGB
images uniformly drawn from 10 classes divided into training and test sets of 50,000 and 10,000
samples respectively. The CIFAR100 dataset [28] is similar to the CIFARO dataset, with the difference
that images are uniformly drawn from 100 different classes. For validation purposes, we divide the
training dataset of the CIFAR-10 and CIFAR-100 datasets into training and validation sets of 45,000
and 5,000 samples, respectively.

PatchCamelyon. The PatchCamelyon dataset [45] consists of 327,000 RGB image patches of
tumorous and non-tumorous braset tissues extracted from the Camelyon16 dataset [2], where each
patch was labelled as tumorous if the central region of 32x32 pixels contained at least one tomorous
pixel as givel by the original annotation in Bejnordi et al. [2]. The dataset is divided into train,
validation and test sets of 262,144, 32,768 and 32,768 images, respectively.

E.2 General remarks

Hardware. Our code is written in PyTorch. Our experiments were performed on NVIDIA TITAN
RTX and V100 GPUs, depending on their availability and the size of the datasets.

Network specifications. For almost all the experiments in this paper —except those using the 13-
layer CNN of Laine and Aila [29]—-, we use the architecture shown in Fig. 3 with an initial lifting
convolutional layer followed by 2 ResBlocks with full, partial or regular convolutional layers for
Regular G-CNNs, Partial G-CNNs and conventional (T(2)) CNNs. All datasets use a network with
32 feature maps in the hidden layers, Batch Normalization and ReL.U.

16



Table 6: Image recognition accuracy on PatchCam dataset.

BASE No. PARTIAL  CLASSIFICATION ACCURACY
GROUP ELEMENTS  EQUIV. ON PATCHCAM (%)

T(2) 1 - 67.59
8 X 89.87
SE(2) v 89.07
X 89.71
16 v 90.31
X 89.77
E(2) 16 v 88.13

For MNIST6-M and MNIST6-180, max-pooling is performed after each of the Residual Blocks. In
the case of rotMNIST, max-pooling is performed after the lifting convolutional layer and the first
group convolutional layer. For CIFAR-10 and CIFAR-100, we use max-pooling after each of the
residual blocks. Finally, for PatchCamelyon, we apply max-pooling after the lifting convolution as
well as both residual blocks. At the end of the network, a global max-pooling layer is used to create
invariant features used for classification. These networks have approximately 460K parameters.

The continuous group convolutional kernels. The convolutional kernels of Partial G-CNNs are
parameterized as 3-layer SIRENs with 32 hidden units. For the experiments in the main text, we
use wp=10.0. We compare these to other conventional nonlinearities in Appx. F (Tab. 7). In the case
of (partial) group equivariant 13-layer CNNs, the convolutional kernels are constructed as a 3-layer
SIREN with 8 hidden units.

E.3 Hyperparameters and training details

To facilitate replicating our experiments, we provide the list of commands used for our experiments
in github.com/merlresearch/partial-gcnn/EXPERIMENTS . md

Optimization and learning rate schedulers. Networks on MNIST6-180, MNIST6-M, rotMNIST,
CIFAR-10 and CIFAR-100 are trained for 300 epochs and networks on PatchCamelyon are trained
for 30 epochs. Furthermore, we utilize a cosine annealing scheduler and combine it with a linear
learning rate warm-up for 5 epochs.

Learning schedulers for the probability distributions p(«). In order to improve the stability of
learning the probability distributions on the groups, we utilize a learning rate scheduler similar to
that of the main network, i.e., learning rate warm-up for 5 epochs followed by a cosine annealing
scheduler, but with a lower base learning rate. Specifically, we use a base learning rate for all
probability distributions p(u) of le—4.

Hyperparameters. We note that all hyperparameters were chosen based on the best performance of
the fully equivariant G-CNNs on the validation datasets. The found hyperparameters are subsequently
used for the training of our Partial G-CNNs.

We use a batch size of 64 for all networks. In the case of CIFAR-10, CIFAR-100 and PatchCamelyon
datasets, we also use a weight decay of le—4.

13-layer CNNs. Additionally, in the case of 13-layer CNNs we use a dropout rate of 0.3 and train for
200 epochs with batches of size 128. These settings are used on rotMNIST, CIFAR10 and CIFAR100.

F Additional Experiments

Classification results on PatchCamelyon. Table 6 shows the results obtained for G-CNNs and
Partial G-CNNs on the PatchCamelyon dataset [45]. Partial G-CNNs match the performance of
G-CNNs in this full equivariant setting. Similar to the rotMNIST case (Fig. 5), the learned probability
distributions over the group elements for PatchCamelyon are consistent with Regular G-CNNs.

Convolution kernels as implicit neural representations. Next, we validate that SIRENs are better
suited to parameterize group convolutional kernels than other alternatives. Tab. 7 shows that SE(2)-
CNNs with SIREN kernels consistently outperform SE(2)-CNNs with other parameterizations by
a large margin on all the image benchmarks considered. STREN kernels consistently lead to better
accuracy than other existing kernel parameterizations.

17


https://github.com/merlresearch/partial-gcnn/EXPERIMENTS.md

Table 7: Comparison of kernel parameterizations.

No. KERNEL CLASSIFICATION ACCURACY (%)
MODEL g, pvENTS TYPE

ROTMNIST CIFAR-10 CIFAR-100

ReLU 96.49 59.95 28.01

4 LeakyReLU 94.47 56.19 27.36

Swish 94.41 66.12 34.20

SIREN 99.10 83.73 52.35

ReLU 97.73 68.29 37.81

SE(2)-CNN ] LeakyReLU 97.65 68.94 36.30

Swish 97.72 69.20 34.10

SIREN 99.17 86.08 55.55

ReLU 98.49 66.84 37.72

16 LeakyReLU 98.53 68.01 38.29

Swish 98.55 65.99 37.72

SIREN 99.24 86.68 51.51

Table 8: Results of using additional penalty term to encourage monotonicity in the subset sizes

GROUP NoO. ELEMENTS ROTMNIST CIFAR10 CIFAR100

SE(2) 16 99.15 87.02 57.11
E(2) 16 98.41 89.00 58.85

Enforcing monotonic decreasing group subsets over depth. Once a Partial G-CNN becomes
partial equivariant at some depth, the network is, in general, unable to become fully equivariant at
subsequent layers.” As a consequence, using fully equivariant layers after a partially equivariant layer
does not restore full equivariance.

Based on this observation, one could argue that it is beneficial to impose a monotonically decreasing
size to the learned group subsets in order to prevent the at first sight meaningless situation in which
the network goes back to larger group subsets. This can be encouraged with an additional monotonic
equivariance loss term in the training loss, which penalizes bigger subsets at subsequent layers:

L-1
Lo, equiv = ('Vl - maX('YHla ’Yl))~ ()
1=1
Here, 7; represents the limit of the subset learned at the [-th layer.

Interestingly, we find that due to the reasons explained in Sec. 6 imposing a monotonic decrease on
the learned subsets leads to slightly worse performance than an unconstrained model (see Tabs. 8, 3).

G Broader social impact

This work is fundamental and mathematical in nature. We believe it does not pose any immediate
harm to society. However, the exact applications of these ideas could have negative impact and thus,
care should be taken when using these ideas in machine learning. One motivation of this paper is to
make deep networks more robust to nuisance factors and can hopefully be safer than earlier works.

" An exception to this rule is when the a layer goes back to the original input space, i.e., 8@ =, and the
immediately subsequent layer goes back to the full group. This case is equivalent to performing a projection
along a group axis, and going back to the full group afterwards, i.e., a lifting convolution.

18



	Groups, subgroups, group actions and other group theoretical concepts
	Formal treatment of equivariance in partial group convolutions
	Partial group convolutions from the group G to a subset S
	Partial group convolutions from a subset S(1) to a subset S(2)

	Equivariance property of Monte-Carlo approximations
	Algorithm for Monte-Carlo approximation of the partial group convolution
	Experimental details
	Dataset description
	General remarks
	Hyperparameters and training details

	Additional Experiments
	Broader social impact

