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In this supplementary material, we describe the data generation (Sec. A), settings for baseline methods
(Sec. B), evaluation of category-wise error bars on ShapeNet and ScanNet (Sec. C), evaluation on
seen categories for all the methods on ScanNet (Sec. D), additional ablation studies (Sec. E), network
parameters and specifications (Sec. F), and additional qualitative results (Sec. G).

A Data Generation

ShapeNet [2] We use ShapeNet1 to test our performance on synthetic data. In order to generate
watertight meshes as ground truth, we first normalize ShapeNet CAD models, and render depth maps
under 20 different viewpoints for each model. We then use volumetric fusion [4] to generate 323

truncated signed distance fields (TSDFs) with truncation value as 2.5 voxel units. Finally, we choose
4 views of TSDF as the input, which mimic the partial scan in real data (e.g., ScanNet). The main
idea can be referred to [8]2.

We split the training and testing object categories on ShapeNet as follows. The 18 training categories
are table, chair, sofa, cabinet, clock, bookshelf, piano, microwave, stove, file cabinet, trash bin, bowl,
display, keyboard, dishwasher, washing machine, pots, faucet, and guitar; and the 8 novel testing
categories are bathtub, lamp, bed, bag, printer, laptop, bench, and basket.

ScanNet [5] We use ScanNet3 to test our method on real-world data. The inputs are directly
extracted from ScanNet scenes based on the bounding box annotations from Scan2CAD [1]4. We
keep their real scale and convert them to 323 voxel grids with truncation value at 3 voxel units,
and save their voxel size separately. These inputs could contain walls, floors, or other cluttered
backgrounds, which are transformed to canonical space to be aligned with the ShapeNet model
coordinate system. The ground-truths are the corresponding complete and watertight ShapeNet
meshes based on Scan2CAD annotations, which are generated with the similar method as above.

We split the training and testing object categories on ScanNet as follows. The 8 training categories
are chair, table, sofa, trash bin, cabinet, bookshelf, file cabinet, and monitor; and the 6 novel testing
categories are bathtub, lamp, bed, bag, basket, and printer, and each category has more than 50
samples for testing.

1The license can be found here: https://shapenet.org/, received permission after registration without
personally identifiable information or offensive content

2https://github.com/yinyunie/depth_renderer
3The license can be found here: https://github.com/ScanNet/ScanNet, filled out an agreement without

personally identifiable information or offensive content
4The license can be found here::https://github.com/skanti/Scan2CAD, filled out an agreement without

personally identifiable information or offensive content

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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Alternative Train Category Splits Here are two new category splits for the last ablation study. For
Category Split 1, the 8 novel testing categories are trash bin, bed, piano bench, chair, monitor, lamp,
laptop, washing machine. For Category Split 2, the 8 novel testing categories are basket, bookshelf,
bowl, cabinet, laptop, pot, sofa, stove.

B Baseline Comparisons

We use the authors’ original implementations and hyperparameters in all the baselines for fair
comparisons.

3D-EPN [6] 3D-EPN is a two-stage network, which completes partial 3D scans first and then
reconstructs the completed shapes to a higher resolution by retrieving priors from a category-wise
shape pool. In our case, priors for novel categories are not accessible, thus, we only compare its 3D
Encoder-Predictor Network (the 3D completion model) on our dataset.

Wallace and Hariharan [9] (Few-Shot) This method uses a few-shot learning strategy for single
view completion with averaged shape prior for each category. For a fair comparison with other works,
we adapt it to a zero-shot learning mechanism here. We pre-compute the averaged shape priors for
each training category; during training, we use two voxel encoder modules in parallel for the occupied
voxel grids inputs and the averaged shape priors based on the input category; in the testing step, since
we cannot provide shape priors for novel categories, we average shape prior from all the training
categories, and use this averaged shape prior as input to the prior encoder module, along with the
testing samples for shape completion.

IF-Net [3] IF-Net can predict implicit shape representations conditioned on different input modali-
ties. (e.g., voxels, point clouds). We use 1283 occupied surface voxel grids as inputs, and use point
clouds sampled from watertight ShapeNet meshes as the ground-truths for training and testing. We
also normalize the ground-truth meshes from the ScanNet dataset to sample points.

AutoSDF [7] AutoSDF learns latent patch priors using VQ-VAE along with a transformer-based
autoregressive model for 3D shape completion, and manually picks the unknown patches during
testing. Following their settings, we apply their method by using ground-truth SDFs as the training
data; during testing on the ShapeNet data, we choose the patches that have more than 400 voxel grids
(each patch has 83 voxel grids) with negative signs as the unknown patches (unseen parts) that need
to be generated.

Note that since AutoSDF work focuses on multi-model shape completion and produces multiple
output possibilities, we report the performance of only the best prediction among the nine given an
oracle to indicate the best (highest IoU value with respect to ground truth).

Furthermore, as there are no absolutely unknown patches for ScanNet scans because of the cluttered
environments, we use the pipeline of their single view reconstruction task. We first replace their
ResNet in resnet2vq_model with three 3D encoders (the same as 3D-EPN encoders) to extract the
encoding features of desired dimensions; then we train this modified model along with the pre-trained
pvq_vae_model with partial ScanNet inputs; finally we test our partial ScanNet inputs along with all
the pre-trained models: resnet2vq_model, pvq_vae_model, and rand_tf_model.

C Category-wise Evaluations with Error Bars

Table 1 and Table 2 show the category-wise error bars on ShapeNet and ScanNet respectively; each
method is run n = 2 times to obtain the error bars.

D Evaluation on Seen Categories

Table 3 shows the comparisons on seen train categories with state of the art on real-world data from
ScanNet [5]. We evaluate 1060 samples for 7 seen categories including: chair, table, sofa, trash
bin, cabinet, bookshelf, and monitor; categories are selected as those which have more than 50 test
samples.
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Table 1: Quantitative comparisons with state of the art on ShapeNet [2].

Chamfer Distance (×102) ↓ IoU↑
3D-
EPN [6]

Few-
Shot [9]

IF-
Nets [3]

Auto-
SDF [7]

Ours 3D-
EPN [6]

Few-
Shot [9]

IF-
Nets [3]

Auto-
SDF [7]

Ours

Bag 5.01
±2e−1

8.00
±4e−1

4.77
±3e−1

5.81
±2e−1

3.94
±2e−2

0.738
±5e−3

0.561
±2e−2

0.698
±2e−3

0.563
±1e−2

0.776
±3e−3

Lamp 8.07
±6e−1

15.10
±2e−1

5.70
±5e−1

6.57
±1e−1

4.68
±2e−2

0.472
±1e−2

0.254
±2e−3

0.508
±1e−3

0.391
±1e−2

0.564
±3e−3

Bathtub 4.21
±1e−2

7.05
±1e−1

4.72
±8e−2

5.17
±2e−2

3.78
±2e−2

0.579
±2e−2

0.457
±4e−4

0.550
±9e−3

0.410
±8e−3

0.663
±9e−4

Bed 5.84
±3e−2

10.03
±2e−1

5.34
±2e−1

6.01
±1e−1

4.49
±2e−4

0.584
±4e−3

0.396
±1e−3

0.607
±2e−3

0.446
±1e−2

0.668
±2e−3

Basket 7.90
±4e−1

8.72
±9e−2

4.44
±1e−2

6.70
±3e−1

5.15
±3e−1

0.540
±1e−2

0.406
±5e−3

0.502
±1e−4

0.398
±1e−2

0.610
±3e−3

Printer 5.15
±1e−2

9.26
±5e−2

5.83
±1e−1

7.52
±1e−1

4.63
±7e−2

0.736
±6e−3

0.567
±3e−3

0.705
±4e−3

0.499
±3e−2

0.776
±2e−4

Laptop 3.90
±1e−1

10.35
±3e−1

6.47
±8e−1

4.81
±2e−1

3.77
±9e−2

0.620
±6e−3

0.313
±2e−2

0.583
±1e−3

0.511
±1e−2

0.638
±8e−3

Bench 4.54
±3e−2

8.11
±8e−1

5.03
±9e−1

4.31
±5e−2

3.70
±1e−2

0.483
±1e−2

0.272
±1e−2

0.497
±4e−3

0.395
±3e−3

0.539
±3e−4

Inst-
Avg

5.48
±2e−1

9.75
±9e−2

5.37
±1e−1

5.76
±3e−2

4.23
±4e−2

0.582
±9e−3

0.386
±1e−3

0.574
±4e−5

0.446
±6e−3

0.644
±1e−3

Cat-
Avg

5.58
±2e−1

9.58
±1e−1

5.29
±1e−1

5.86
±5e−3

4.27
±5e−2

0.594
±8e−3

0.403
±1e−3

0.581
±3e−4

0.452
±7e−3

0.654
±1e−3

Table 2: Quantitative comparisons with state of the art on ScanNet [5].

Chamfer Distance (×102) ↓ IoU↑
3D-
EPN [6]

Few-
Shot [9]

IF-
Nets [3]

Auto-
SDF [7]

Ours 3D-
EPN [6]

Few-
Shot [9]

IF-
Nets [3]

Auto-
SDF [7]

Ours

Bag 8.83
±1e−1

9.10
±2e−1

8.96
±1e−1

9.30
±3e−2

8.23
±4e−2

0.537
±1e−2

0.449
±6e−3

0.442
±5e−3

0.487
±1e−4

0.583
±8e−3

Lamp 14.27
±2e0

11.88
±3e−1

10.16
±2e−1

11.17
±3e−2

9.42
±1e−2

0.207
±4e−2

0.196
±5e−4

0.249
±4e−3

0.244
±9e−4

0.284
±2e−2

Bathtub 7.56
±7e−2

7.77
±1e−1

7.19
±5e−2

7.84
±1e−2

6.77
±1e−1

0.410
±7e−3

0.382
±3e−3

0.395
±4e−3

0.366
±1e−3

0.480
±2e−3

Bed 7.76
±8e−2

9.07
±1e−1

8.24
±1e−2

7.91
±5e−2

7.24
±1e−1

0.478
±7e−3

0.349
±1e−2

0.449
±9e−3

0.380
±2e−3

0.484
±3e−3

Basket 7.74
±1e−1

8.02
±3e−1

6.74
±4e−2

7.54
±2e−2

6.60
±1e−1

0.365
±9e−3

0.343
±5e−3

0.427
±4e−3

0.361
±2e−3

0.455
±3e−3

Printer 8.36
±7e−1

8.30
±3e−1

8.28
±2e−1

9.66
±2e−2

6.84
±2e−1

0.630
±4e−2

0.622
±7e−4

0.607
±1e−2

0.499
±1e−4

0.705
±2e−2

Inst-
Avg

8.60
±2e−1

8.83
±2e−2

8.12
±7e−2

8.56
±2e−2

7.38
±6e−2

0.441
±2e−3

0.387
±1e−3

0.426
±3e−3

0.386
±1e−4

0.498
±9e−3

Cat-
Avg

9.09
±3e−1

9.02
±8e−2

8.26
±8e−2

8.90
±2e−2

7.52
±2e−2

0.440
±3e−3

0.386
±6e−3

0.426
±7e−3

0.389
±3e−4

0.495
±5e−3

Table 3 shows that our performance on seen categories is on par with state of the art, particularly
when evaluating category averages, as our learned multiresolution priors maintain robustness across
categories. Note that similar to the previous evaluation, AutoSDF results are reported as the best
among their nine predictions with the highest IoU value given an oracle to indicate the best choice.
Our method thus achieves performance on par with state of the art on seen categories, and notably
improves shape completion for unseen categories.
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Table 3: Quantitative comparison with state of the art on real-world ScanNet [5] shape completion
for seen categories. We bold the best results and underline the second best results in the table.

Chamfer Distance (×102) ↓ IoU↑
3D-
EPN [6]

Few-
Shot [9]

IF-
Nets [3]

Auto-
SDF [7]

Ours 3D-
EPN [6]

Few-
Shot [9]

IF-
Nets [3]

Auto-
SDF [7]

Ours

Trash Bin 5.03 5.65 5.23 4.48 4.44 0.61 0.70 0.62 0.66 0.68
Chair 9.99 6.88 7.93 6.00 7.14 0.40 0.46 0.43 0.49 0.45
Bookshelf 4.87 4.33 5.17 4.12 3.80 0.53 0.65 0.58 0.61 0.61
Table 8.74 7.13 10.15 6.72 6.60 0.47 0.50 0.46 0.49 0.54
Cabinet 4.60 4.36 5.64 4.53 4.17 0.76 0.80 0.74 0.78 0.79
Sofa 4.94 4.28 7.87 4.58 4.53 0.69 0.75 0.67 0.72 0.73
Monitor 5.75 4.98 6.39 5.92 4.74 0.52 0.59 0.53 0.49 0.56

Inst Avg 7.94 6.18 7.65 5.68 6.02 0.50 0.56 0.51 0.55 0.55
Cat Avg 6.27 5.37 6.91 5.20 5.06 0.57 0.63 0.58 0.61 0.62

E Additional Ablation Studies

Runtime efficiency. We evaluate runtime efficiency in Table 4. Times are measured for each
method for a single shape prediction (running with batch size of 1), averaged over 20 samples. Here,
Ours (M3 only) denotes our approach with only single-resolution M3 priors.

Table 4: Quantitative comparison for testing time efficiency (s).

3D-EPN Few-Shot IF-Nets AutoSDF Ours (43
only)

Ours (83
only)

Ours (323
only)

Ours

0.015 0.004 0.421 0.958 0.025 0.017 0.016 0.063

What is the impact of the number of priors? We evaluate the effect of different numbers of
priors on ShapeNet data in Table 5 (with 50% priors and 150% priors). We see that performance
degrades with 50% priors, while further increasing the prior number reaches a performance plateau
(and requiring additional storage). In our approach, our prior storage takes 14.68 MB in memory.

Table 5: Ablation on the number of shape priors on ShapeNet [2].

Inst-CD↓ Cat-CD↓ Inst-IoU↑ Cat-IoU↑

Ours (50% priors) 4.41 4.45 0.632 0.640
Ours 4.23 4.27 0.644 0.654
Ours (150% priors) 4.22 4.30 0.638 0.647

What is the effect of different multi-resolution combinations? We considered patch resolutions
of 43, 83, 163, and 323. We found 163 and 83 to perform very similarly (variance of 8e−6 IoU and
6e−5 CD), and used 83 to potentially resolve more detailed patches.

We evaluate alternative multi-resolution combinations in Table 6, which shows that all resolutions
benefit the more detailed chamfer evaluation (whereas IoU only penalizes non-intersections, rather
than how far the predictions are from the GT object).

Table 6: Ablation study of multi-resolution combinations on synthetic ShapeNet [2].

Inst-CD↓ Cat-CD↓ Inst-IoU↑ Cat-IoU↑

Ours (43 with 323) 4.30 4.35 0.642 0.651
Ours (43 with 83) 4.35 4.42 0.644 0.654
Ours (all resolutions) 4.23 4.27 0.644 0.654
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What is the impact of the concatenation in Eq. 3. We evaluate the effectiveness of concatenation
in Eq. 3 in the main paper in Table 7, considering the attention-based term only (the core of our
approach). We note that when excluding the attention-based term, this does not consider local patches
anymore and becomes similar to the encoder-decoder training of 3D-EPN. As the attention-based
learning of correspondence to local priors is the core of our approach, this produces the most relative
benefit, with a slight improvement when combining the terms together.

Table 7: Concatenation ablation study for each term in Eq. 3 on the ShapeNet [2].

Inst-CD↓ Cat-CD↓ Inst-IoU↑ Cat-IoU↑

3D-EPN 5.48 5.58 0.582 0.594
Ours (attention term only) 4.25 4.29 0.640 0.650
Ours 4.23 4.27 0.644 0.654

Ablation for fixed priors, no pre-training, and no attention on 43 priors only. We evaluate this
scenario as the lower bound for our task in Table 8, which produces significantly worse results due to
the lack of learnable priors in combination with attention.

Table 8: Evaluation for fixed priors, no pre-training, and no-attention on 43 priors only on ScanNet [5].

Inst-CD↓ Cat-CD↓ Inst-IoU↑ Cat-IoU↑

Ours (fixed priors, no pre-training, and
no-attention on 43 priors only)

9.53 9.73 0.35 0.37

Ours 7.38 7.52 0.50 0.50

F Model Architecture Details

Figure 1 details our model architecture. Figure 1 (a), (b) and (c) respectively present the submodule
for learning patch priors at resolutions 323, 83, and 43. The network in Figure 1 (d) shows our
multi-resolution patching learning stage. Inputs are partial scans and the learnable shape priors, and
the outputs are completed shapes. The specifications of encoder and decoder blocks in these models
are shown in Figure 2.

G Additional Qualitative Results

Figure 3 shows more examples for qualitative results on ShapeNet, and Figure 4 shows more examples
for qualitative results on ScanNet scans.
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Figure 1: Model specifications in our method. (a) represents the patch learning model structure
for resolution at 323; (b) represents the patch learning model structure for resolution at 83; (c)
represents the patch learning model structure for resolution at 43; (d) represents the multi-resolution
model structure. In figure (d), Ai represents the obtained attention map, Qi represents the input
local features, and Ki represents the learned prior patch features, where i is the resolution for patch
learning model, i = 32, 8, 4.
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Figure 2: Layer specifications in our model. During the process of learning patch priors in a single
resolution, we use encoder blocks to encode partial input scans and learnable shape priors to local
features, and then use linear blocks to post-process the obtained attention map. The decoder block is
used for decoding complete shapes in a multi-resolution patch learning module.
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Figure 3: Qualitative comparisons with state of the art on ShapeNet [2].
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Figure 4: Qualitative comparisons with state of the art on ScanNet [5].
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