
Appendix A Proofs

Throughout the proofs of this paper, we use lower-case bold-faced symbols to denote column vectors
(e.g., x), and upper-case bold-faced symbols to represent matrices (e.g., A).

A.1 Proof of Theorem 1

Connecting MGrad with MTrace. As the loss function ℓ(·, ·) is assumed to be β-Lipschitz continuous
in the first argument, the following holds based on the notations in Sec. 3:

MGrad
(a)
=

∥∥∥∥∥ 1
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∥∥∥∥∥
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√√√√m
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∥∇θf(xi,θ0)∥22

(f)
= βMTrace

(8)

where we let ∇f ℓ(f(xi,θ0), yi) be the gradient of the output of DNN model f . Note that (a) follows
from the definition of MGrad in Sec. 3.2 and (b) derives from the Minkowski inequality. In addition,
(d) is from the definition of Lipschitz continuity and (e) follows from the Cauchy-Schwarz inequality.
Finally, (f) is based on the definition of NTK matrix in Sec. 3.1 and MTrace in Sec. 3.2, i.e.,

MTrace =

√
1

m
∥Θ0∥tr =

√√√√ 1

m

m∑
i=1

∥∇θf(xi,θ0)∥22 . (9)

Let C1 ≜ β, we then have

MGrad ≤ C1MTrace . (10)

Connecting MSNIP with MGrad. We firstly introduce the following lemma.

Lemma A.1 (Laurent and Massart [33]). If x1, · · · , xk are independent standard normal random
variables, for y =

∑k
i=1 x2i and any ϵ,

P(y − k ≥ 2
√
kϵ+ 2ϵ) ≤ exp(−ϵ) .

Following the common practice in [13, 14], each element of θ0 ∈ Rd follows from the standard normal
distribution independently. We therefore can bound ∥θ0∥22 using the lemma above. Specifically, let
δ = exp(−ϵ) ∈ (0, 1), with probability at least 1− δ over random initialization, we have:

∥θ0∥22 ≤ d+ 2

√
d ln

1

δ
+ 2 ln

1

δ
. (11)
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Using the results above and following the definition of MGrad, with probability at least 1− δ over
random initialization, we have

MSNIP =
1

m

m∑
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∣∣θ⊤
0 ∇θL(f(xi,θ0), yi)

∣∣
≤ 1

m
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δ
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1

δ
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m
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∥∇θℓ(f(xi,θ0), yi)∥2

≤ β

√
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1

δ
+ 2 ln

1

δ
MTrace .

(12)

The last inequality follows from the same derivation in (8). Let C2 ≜ β

√
d+ 2

√
d ln 1

δ + 2 ln 1
δ ,

the following then holds with a high probability (i.e., at least 1− δ),

MSNIP ≤ C2MTrace . (13)

Connecting MGraSP and MGrad. We firstly introduce the following lemma adapted from [16].

Lemma A.2 (Lemma 1 in [16]). Let δ ∈ (0, 1). There exist the constant ρ1, ρ2 > 0 such that for any
r > 0, θ,θ′ ∈ B(θ0, r/

√
n) and any input x within the dataset, with probability at least 1− δ over

random initialization, we have

∥∇θf(x,θ)∥2 ≤ ρ1

∥∇θf(x,θ)−∇θ′f(x,θ′)∥2 ≤ ρ2 ∥θ − θ′∥2

where B(θ0, r/
√
n) ≜ {θ | ∥θ − θ0∥ ≤ r/

√
n}.

To ease the notation, we use ∇f ℓ(f(xi,θ0), yi) to denote the gradient of the output (i.e., f(xi,θ0))
from the DNN model f . According to the definition of Hessian matrix, Hi applied in MGraSP can be
computed as

Hi = ∇2
θ0
ℓ(f(xi,θ0), yi)

= ∇θ [∇f ℓ(f(xi,θ0), yi)∇θf(xi,θ0)]

= ∇2
f ℓ(f(xi,θ0), yi)∇θf(xi,θ0)∇θf(xi,θ0)

⊤ +∇f ℓ(f(xi,θ0), yi)∇2
θf(xi,θ0) .

(14)

Since ℓ(·, ·) is assumed to be γ-Lipschitz smooth and β-Lipschitz continuous in the first argument,
we can then bound the operator norm of this hessian matrix Hi induced by the input xi in the dataset
with

∥Hi∥2 =
∥∥∇2

f ℓ(f(xi,θ0), yi)∇θf(xi,θ0)∇θf(xi,θ0)
⊤ +∇f ℓ(f(xi,θ0), yi)∇2

θf(xi,θ0)
∥∥
2

≤
∣∣∇2

f ℓ(f(xi,θ0), yi)
∣∣ ∥∥∇θf(xi,θ0)∇θf(xi,θ0)

⊤∥∥
2
+ |∇f ℓ(f(xi,θ0), yi)|

∥∥∇2
θf(xi,θ0)

∥∥
2

≤ γ
∥∥∇θf(xi,θ0)∇θf(xi,θ0)

⊤∥∥
2
+ β

∥∥∇2
θf(xi,θ0)

∥∥
2

= γ ∥∇θf(xi,θ0)∥22 + β
∥∥∇2

θf(xi,θ0)
∥∥
2

≤ γρ21 + βρ2
(15)

where the last inequality results from Lemma A.2 and is satisfied with probability at least 1− δ over
random initialization.
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Finally, let δ′ ∈ (0, 1), based on the definition of MGraSP, the following then holds with probability
at least 1− (m+ 1)δ′ over random initialization,

MGraSP =
1

m

∣∣∣∣∣
m∑
i=1

θ⊤
0 (Hi∇θL(f(xi,θ0), yi))

∣∣∣∣∣
≤ 1

m
∥θ0∥2

m∑
i=1

∥Hi∇θL(f(xi,θ0), yi)∥2

≤ 1

m
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≤ (γρ21 + βρ2)

√
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√
d ln

1

δ′
+ 2 ln

1

δ′
· 1

m
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i=1

∥∇θℓ(f(xi,θ0), yi)∥2

≤ β(γρ21 + βρ2)

√
d+ 2

√
d ln

1

δ′
+ 2 ln

1

δ′
MTrace .

(16)

Similarly, let δ = (m+ 1)δ′ and C3 = β(γρ21 + βρ2)

√
d+ 2

√
d ln m+1

δ + 2 ln m+1
δ , with a high

probability (i.e., at least 1− δ), we finally have
MGraSP ≤ C3MTrace , (17)

which concludes our proof.
Remark. In addition to the provable theoretical connection between MTrace and other training-free
metrics from Sec. 3.2, we can further reveal the connection between MTrace and recently proposed
training-free metric MKNAS in [12]. Specifically, let the training-free metric MKNAS be defined as

MKNAS ≜

√√√√√
∣∣∣∣∣∣ 1

m2

m∑
i,j=1

∇θf(xi,θ0)⊤∇θf(xj ,θ0)

∣∣∣∣∣∣ . (18)

Of note, we have adapted the original KNAS metric in [12] to match the mathematical form of other
training-free metrics in Sec. 3.2. Interestingly, training-free metric MKNAS is also gradient-based. As
a result, we can also theoretically connect MKNAS with MTrace in a similar way:

M2
KNAS =

∣∣∣∣∣∣ 1

m2

m∑
i,j=1

∇θf(xi,θ0)
⊤∇θf(xj ,θ0)

∣∣∣∣∣∣
≤ 1

m2

√√√√m2

m∑
i,j=1

(∇θf(xi,θ0)⊤∇θf(xj ,θ0))
2

=
1

m
∥Θ0∥F ≤ 1

m
∥Θ0∥tr = M2

Trace

(19)

where the first inequality follows from the Cauchy-Schwarz inequality and the second equality is
based on the definition of Frobenius norm. The last inequality derives from the matrix inequality
∥ ·∥F ≤ ∥·∥tr while the last equality is obtained based on the definition of MTrace. Therefore, we have
the following theoretical connection between MKNAS and MTrace, which we will validate empirically
in Appendix C.1.

MKNAS ≤ MTrace . (20)
Consequently, the theoretical results and the HNAS framework in this paper are also applicable to the
training-free metric MKNAS. We have validated part of them empirically in Appendix C.
Remark. Note that our assumptions about the Lipschitz continuity and the Lipschitz smoothness of
loss function ℓ(·, ·) are usually satisfied for commonly employed loss functions in practice, e.g., Cross
Entropy and Mean Square Error. For example, Shu et al. [8] have justified that these two commonly
applied loss functions indeed satisfy the Lipschitz continuity assumption. As for their Lipschitz
smoothness, following a similar analysis in [8], we can also verify that there exists a constant c > 0
such that ∥∇2

f ℓ(f, ·)∥2 ≤ c for both Cross Entropy and Mean Square Error.
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A.2 Proof of Theorem 2

A.2.1 Estimating the Rademacher Complexity of DNNs

Note that the Rademacher complexity of a hypothesis class G over dataset S = {(xi, yi)}mi=1 of size
m is usually defined as

RS(G) = Eϵ∈{±1}m

[
sup
g∈G

1

m

m∑
i=1

ϵig(xi)

]
, (21)

with ϵi ∈ {±1}. Let θ0 be the initialized parameters of DNN model f , we then define the following
hypotheses that will be used to prove our lemmas and theorems:

F ≜ {x 7→ f(x,θt) : t > 0}, F lin ≜ {x 7→ f(x,θ0) +∇θf(x,θ0)
⊤(θt − θ0) : t > 0} (22)

where ft ∈ F and f lin
t ∈ F lin are the function determined by the DNN model f and its corresponding

linearization at step t of their optimization, respectively. Of note, the θt in ft and f lin
t are not identical

and should instead be determined by the optimization of ft and f lin
t independently. Interestingly, ft

can then be well characterized by f lin
t as proved in the following lemma.

Lemma A.3 (Theorem H.1 [16]). Let n1 = · · · = nL−1 = n and assume λmin(Θ∞) > 0. There
exist the constant c > 0 and N > 0 such that for any n > N and any x ∈ Rn0 with ∥x∥2 ≤ 1, the
following holds with probability at least 1− δ over random initialization when applying gradient
descent with learning rate η < η0,

sup
t≥0

∥∥ft − f lin
t

∥∥
2
≤ c√

n
.

Remark. According to [16], λmin(Θ∞) > 0 usually holds especially when any input x from dataset
S satisfies ∥x∥2 = 1. In practice, ∥x∥2 = 1 can be achieved by normalizing each input x from
real-world dataset using its norm ∥x∥2, which typically servers as the data preprocessing procedure
for the model training of DNNs.

Moreover, we will show that the Rademacher complexity of the DNN model during model training
(i.e., F ) can also be bounded using its linearization model (i.e., F lin) based on the following lemmas.

Lemma A.4. With Lemma A.3, there exists a constant c > 0 such that with probability at least 1− δ
over random initialization, the following holds

RS(F) ≤ RS(F lin) +
c√
n
.

Proof. Based on Lemma A.3, given ϵi ∈ {±1}, with probability at least 1− δ, there exists a constant
c > 0 such that

ϵift ≤ ϵif
lin
t +

c√
n
. (23)

Following the definition of Rademacher complexity, we can bound the complexity of F by

RS(F) = Eϵ∈{±1}m

[
sup
f∈F

1

m

m∑
i=1

ϵif(xi,θ)

]

≤ Eϵ∈{±1}m

[
sup

f lin∈F lin

1

m

m∑
i=1

(
ϵif

lin(xi) +
c√
n

)]

≤ Eϵ∈{±1}m

[
sup

f lin∈F lin

1

m

m∑
i=1

ϵif
lin(xi)

]
+ Eϵ∈{±1}m

[
c√
n

]
≤ RS(F lin) +

c√
n
,

(24)

which completes the proof.
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Lemma A.5. Let f(X,θ0) ≜ [f(x1,θ0) · · · f(xm,θ0)]
⊤ and y ≜ [y1 · · · ym]⊤ be the outputs of

DNN model f at initialization and the target labels of a dataset S = {(xi, yi)}mi=1, respectively.
Given MSE loss L =

∑m
i=1 ∥f lin(xi,θ) − yi∥22/(2m) and NTK matrix at initialization Θ0 =

∇θf(X,θ0)∇θf(X,θ0)
⊤, assume λmin(Θ0) > 0, for any t > 0, the following holds when applying

gradient descent on f lin(x,θ) with learning rate η < m/λmax(Θ0):

∥θt − θ0∥2 ≤ ∥θ∞ − θ0∥2 =

√
ŷ⊤Θ−1

0 ŷ

where θt denotes the parameters of f lin at step t of its model training and ŷ ≜ y−f(X,θ0). Besides,
λmax(Θ0) and λmin(Θ0) denote the maximum and minimum eigenvalue of matrix Θ0.

Proof. Following the update of gradient descent on MSE with learning rate η < m/λmax(Θ0), we
have

θt+1 = θt −
η

m
∇θf(X,θ0)

⊤ (f lin(X,θt)− y
)
. (25)

Note that ∇θf(X,θ0) is a m × d matrix and f(X,θ0), f
lin(X,θ0),y are m-dimensional column

vectors. By subtracting θ0, multiplying ∇θf(X,θ0) and then adding f(X,θ0) on both sides of the
equality above, we achieve

f(X,θ0) +∇θf(X,θ0)(θt+1 − θ0) = f(X,θ0) +∇θf(X,θ0)(θt − θ0)−
η

m
Θ0

(
f lin(X,θt)− y

)
,

(26)
which can be simplified as

f lin(X,θt+1) = f lin(X,θt)−
η

m
Θ0

[
f lin(X,θt)− y

]
=
(
I− η

m
Θ0

)
f lin(X,θt) +

η

m
Θ0y .

(27)

By recursively applying the equality above for t+ 1 times, we finally achieve

f lin(X,θt+1)
(a)
=
(
I− η

m
Θ0

)t+1

f lin(X,θ0) +

t∑
j=0

(
I− η

m
Θ0

)j ( η

m
Θ0y

)
(b)
=
(
I− η

m
Θ0

)t+1

f(X,θ0) +
[
I− (I− η

m
Θ0)

t+1
] ( η

m
Θ0

)−1 η

m
Θ0y

(c)
=
(
I− η

m
Θ0

)t+1 (
f(X,θ0)− y

)
+ y

(28)

where (b) follows from the sum of geometric series for matrix with η < m/λmax(Θ0) as well as the
fact that f lin(X,θ0) = f(X,θ0). Note that this result can be integrated into (25) and provide the
following explicit form of θt+1 − θ0 after applying gradient descent for t+ 1 times:

θt+1 − θ0 =

t∑
k=0

θk+1 − θk

=
η

m
∇θf(X,θ0)

⊤
t∑

k=0

(
I− η

m
Θ0

)k
(y − f(X,θ0))

=
η

m
∇θf(X,θ0)

⊤
t∑

k=0

(I− η

m
Θ0)

kŷ

(29)

Since Θ0 is symmetric, we can alternatively represent Θ0 as Θ0 = VΛV⊤ using principal com-
ponent analysis (PCA) where V and Λ denotes the matrix of eigenvectors {vi}mi=1 and eigenvalues
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{λi}mi=1, respectively. Based on this representation, we have

∥θt+1 − θ0∥2 =
√
(θt+1 − θ0)⊤(θt+1 − θ0)

=
η

m

√√√√ŷ⊤
t∑

k=0

(I− η

m
Θ0)k∇θf(X,θ0)∇θf(X,θ0)⊤

t∑
k′=0

(I− η

m
Θ0)k

′ ŷ

=
η

m

√√√√ŷ⊤
t∑

k=0

(I− η

m
Θ0)kΘ0

t∑
k′=0

(I− η

m
Θ0)k

′ ŷ

=
η

m

√√√√ŷ⊤
t∑

k=0

(I− η

m
VΛV⊤)kVΛV⊤

t∑
k′=0

(I− η

m
VΛV⊤)k′ ŷ

=
η

m

√√√√ŷ⊤V

t∑
k=0

(I− η

m
Λ)kV⊤VΛV⊤V

t∑
k′=0

(I− η

m
Λ)k′V⊤ŷ

=
η

m

√√√√ŷ⊤V

t∑
k=0

(I− η

m
Λ)kΛ

t∑
k′=0

(I− η

m
Λ)k′V⊤ŷ

=
η

m

√√√√ m∑
i=1

λi

[
t∑

k=0

(1− η

m
λi)k

]2
(v⊤

i ŷ)
2 .

(30)

Since η < m/λmax(Θ0) and λmin(Θ0) > 0, we have 0 < 1− ηλi/m < 1 and hence

∥θt − θ0∥2 =
η

m

√√√√ m∑
i=1

λi

[
t−1∑
k=0

(1− η

m
λi)k

]2
(v⊤

i ŷ)
2

≤ η

m

√√√√ m∑
i=1

λi

[
t∑

k=0

(1− η

m
λi)k

]2
(v⊤

i ŷ)
2

= ∥θt+1 − θ0∥2

(31)

We complete the proof by recursively applying the inequalities above

∥θt − θ0∥2 ≤ ∥θ∞ − θ0∥2

=
η

m

√√√√ m∑
i=1

λi

[ ∞∑
k=0

(1− η

m
λi)k

]2
(v⊤

i ŷ)
2

=
η

m

√√√√ m∑
i=1

λi

[
1

ηλi/m

]2
(v⊤

i ŷ)
2

=

√√√√ m∑
i=1

λ−1
i (v⊤

i ŷ)
2

=

√
ŷ⊤Θ−1

0 ŷ

(32)

Lemma A.6 (Awasthi et al. [34]). Let G ≜ {x 7→ wTx : ∥w∥2 ≤ R} be a family of linear functions
defined over Rd with bounded weight. Then the empirical Rademacher complexity of G for m samples
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S ≜ (x1, · · · ,xm) admits the following upper bounds:

RS(G) ≤
R

m
∥X⊤∥2,2

where X is the d×m-matrix with xis as columns: X ≜ [x1 · · ·xm].

Based on our Lemma A.4 and Lemma A.5, we can finally bound the Rademacher complexity of a
DNN model during its model training (i.e., F) using its linearization model (i.e., F lin). Specifically,
under the conditions in Theorem A.3 and Lemma A.5, there exist the constant c > 0 and N > 0 such
that for any n > N , with probability at least 1− δ over initialization, we have

RS(F)
(a)

≤ RS(F lin) +
c√
n

(b)
= Eϵ∈{±1}m

[
sup
t≥0

1

m

m∑
i=1

ϵi
(
f(xi,θ0) +∇θf(xi,θ0)

⊤(θt − θ0)
)]

+
c√
n

(c)
= Eϵ∈{±1}m

[
sup
t≥0

1

m

m∑
i=1

ϵi∇θf(xi,θ0)
⊤(θt − θ0)

]
+

1

m

m∑
i=1

Eϵ∈{±1}m [ϵi] f(xi,θ0) +
c√
n

(d)

≤ ∥θ∞ − θ0∥2∥∇θf(X,θ0)∥2,2
m

+
c√
n

(e)

≤ ∥∇θf(X,θ0)∥2,2
m

√
ŷ⊤Θ−1

0 ŷ +
c√
n

(f)

≤
√
κλ0 ·

√
ŷ⊤Θ−1

0 ŷ

m
+

c√
n

(33)
where (d) derives from Lemma A.6 and (f) derives from the following inequalities based on the
definition κ ≜ λmax(Θ0)/λmin(Θ0) and λ0 ≜ λmin(Θ0).

∥∇θf(X,θ0)∥2,2 =

√√√√ m∑
i=1

∥∇θf(xi,θ0)∥22

=

√√√√ m∑
i=1

λi(Θ0)

≤
√
mκλ0 .

(34)

A.2.2 Deriving the Generalization Bound for DNNs using Training-free Metrics

Define the generalization error on the data distribution D as LD(g) ≜ E(x,y)∼Dℓ(g(x), y) and the
empirical error on the dataset S = {(xi, yi)}mi=1 that is randomly sampled from D as LS(g) ≜∑m

i=1 ℓ(g(xi), yi). Given the loss function ℓ(·, ·) and the Rademacher complexity of any hypothesis
class G, the generalization error on the hypothesis class G can then be estimated by the empirical
error using the following lemma.
Lemma A.7 (Mohri et al. [18]). Suppose the loss function ℓ(·, ·) is bounded in [0, 1] and is β-Lipschitz
continuous in the first argument. Then with probability at least 1− δ over dataset S of size m:

sup
g∈G

{LD(g)− LS(g)} ≤ 2βRS(G) + 3
√
ln(2/δ)/(2m) .

Lemma A.8. For a symmetric matrix A ∈ Rm×m with eigenvalues {λi}mi=1 in an ascending order,
define κ ≜ λm/λ1, the following inequality holds if λ1 > 0,

∥A∥tr

∥∥A−1
∥∥

tr ≤ m2κ .
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Proof. Since eigenvalues {λi}mi=1 are in an ascending order, we have

λm

κ
≤ λi ≤ λ1κ . (35)

Based on the results above, we can connect the matrix norm ∥A∥tr and ∥A−1∥tr with

∥A∥tr

∥∥A−1
∥∥

tr = (

m∑
i=1

λi) · (
m∑
i=1

λ−1
i ) ≤ (mλ1κ) ·

mκ

λm
=

m2κ2

κ
= m2κ , (36)

which concludes the proof.

We are now able to prove Theorem 2 by combining the results in Lemma A.7 and (33). Specifically,
under the conditions in Theorem A.3 and Lemma A.5, there exist constant c,N > 0 such that for any
ft ∈ F and any n > N , the following holds with probability at least 1−2δ over random initialization,

LD(ft) ≤ LS(ft) + 2βRS(F) + 3

√
ln(2/δ)

2m

≤ LS(ft) + 2β
√
κλ0 ·

√
ŷ⊤Θ−1

0 ŷ

m
+

2βc√
n

+ 3

√
ln(2/δ)

2m
.

(37)

Assume f(x,θ0) and y are bounded in [0, 1] for any pair (x, y) in the dataset S, let {vi}mi=1 and
{λi}mi=1 be the eigenvectors and eigenvalues of Θ0, respectively, we then have ŷ ∈ [−1, 1]m and the
following inequalities:

ŷ⊤Θ−1
0 ŷ =

m∑
i=1

(v⊤
i ŷ)

2

λi
≤

m∑
i=1

∥vi∥22∥ŷ∥22
λi

≤
m∑
i=1

m

λi
. (38)

Based on the fact that ∥Θ0∥tr =
∑m

i=1 λi and Lemma A.8, we finally achieve√
ŷ⊤Θ−1

0 ŷ

m
≤
√∥∥Θ−1

0

∥∥
tr ≤

m
√
κ√

∥Θ0∥tr
=

√
mκ

MTrace
. (39)

By introducing (39) into (37), with λ0 ≤ 1, we have

LD(ft) ≤ LS(ft) +
2βκ

√
m

MTrace
+

2βc√
n

+ 3

√
ln(2/δ)

2m
. (40)

Let M be any metric introduced in Sec. 3.2, based on the results in our Theorem 1 and the definition
of O(·), the following inequality then holds with a high probability using the result above:

LD(ft) ≤ LS(ft) +O(κ/M) , (41)

which finally concludes our proof of Theorem 2.

Remark. Our (41) still holds when λ0 ≤ z(z ̸= 1), i.e., by simply placing z into our (40). Though
our conclusion is based on the initialization using standard normal distribution and over-parameterized
DNNs, our empirical results in Appendix C.6 show that this conclusion can also hold for DNNs
initialized using other methods and also DNNs of small layer width.

A.3 Proof of Corollary 2

To prove our Corollary 2, we firstly consider the convergence of f lin
t under the same conditions in

Theorem 2. Specifically, following the notations and results in Lemma A.5, let {vi}mi=1 and {λi}mi=1
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be the eigenvectors and eigenvalues of Θ0, respectively, we have
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t )
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2
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2
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∥vi∥22 ∥ŷ∥

2
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(42)

where (d) follows the same derivation in (30). Moreover, based on ŷ ∈ [−1, 1]m and the fact that
∥vi∥2 = 1, for any t > 0 (i.e., t = 1, 2, · · · ), we naturally have

LS(f
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t )

(a)

≤ 1

2
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2
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)2t

(43)

where (e) is based on the results in our Theorem 1: For any training-free metric M introduced in
Sec. 3.2, there exists a constant C such that the following holds with a high probability,

M2 ≤ CM2
Trace ⇒ m− ηM2/C ≥ m− ηM2

Trace . (44)

Based on Lemma A.3 and the fact that loss function ℓ(f, y) = (f − y)2/2 is 1-Lipschitz continuous
in the first argument, the following then holds with a high probability∣∣LS(ft)− LS(f

lin
t )
∣∣ ≤ ∣∣ft − f lin

t

∣∣ ≤ O(
1√
n
) . (45)

By introducing the results above into our Theorem 2 with 1/
√
n being absorbed in O(·), we finally

achieve the following results with a high probability,

LD(ft) ≤ LS(ft) +O(κ/M) ≤ LS(f
lin
t ) +O(κ/M)

≤ 1

2

(
m− ηM2/C

)2t
+O(κ/M) ,

(46)

which thus concludes our proof.

A.4 Proof of Theorem 3

Let W(i)
j· denote the j-th row of matrix W(i), based on the definition of f and f ′ in Sec. 4.4, we can

compute the gradient (represented as a column vector) of W(i)
j· for function f and f ′ respectively as

below
∇

W
(i)
j·
f(x) = x

∇
W

(i)
j·
f ′(x) =

(
i−1∏
k′=1

W(k′)x

)
1⊤

(
L∏

k=i+1

W(k)

)
·j

(47)
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Figure 3: Two different architecture topologies for our analysis.

where
(∏L

k=i+1 W
(k)
)
·j

is defined as the j-th column of matrix
(∏L

k=i+1 W
(k)
)

, i.e.,(
L∏

k=i+1

W(k)

)
·j

≜
(
W(i+1) · · ·W(L)

)
·j
= W(L)W(L−1) · · ·W(i+1)

·j , (48)

Consequently, the NTK matrix of initialized wide architecture can be represented as

Θ0(x,x
′) =

L∑
i=1

n∑
j=1
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∇
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(49)

Meanwhile, the NTK matrix of initialized deep architecture can be represented as
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(50)

Since each element in W(i) is initialized using standard normal distribution, we have following
simplified expectation by exploring the fact that E

[
W(i)

]
= 00⊤ and E

[(
W(i)

)⊤
W(i)

]
= nI.
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25



Similarly, we also have
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Since W(i) in each layer is initialized independently, we achieve the following result by introducing
the equality above and expectation over model parameters into (47).
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By exploiting the fact that X⊤X = I with X ≜ [x1x2 · · ·xm], we finally conclude the proof by

Θ0(X,X) = Ln · I
E [Θ′

0(X,X)] = LnL · I .
(54)

Appendix B Optimization and Experimental Details

B.1 Optimization Details for Algorithm 1

Solution to the Training-Free NAS Objective (7). Following the common practice in [6, 12],
to solve (7) for the every iteration of our Algorithm 1 in practice, we independently and randomly
sample a large pool of architectures from the search space to evaluate their training-free metrics and
then select the architecture achieving the optimum value of (7) (given the values of µ and ν) from all
sampled architectures. Meanwhile, following the common practice in [9], the training-free metrics of
these sampled architectures are evaluated using a batch of sampled data as introduced in Sec. 6.1.

Introduction to the BO Applied in HNAS. BO is a type of gradient-free optimization algorithm
aiming to optimize a black-box or non-differentiable objective function by iteratively selecting an
input (to only evaluate/query its function value) that intuitively trades off between sampling an input
likely achieving optimum (i.e., exploitation) given the current belief of the function modeled by a
Gaussian process (GP) vs. improving the GP belief over the entire input domain (i.e., exploration)
to guarantee finding the global optimum, which recently has been widely extended to various real-
world problem settings in order to achieve better optimization in practice [35–47]. Since we adopt
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the non-differentiable validation performance (i.e., validation error) as the objective function to be
optimized (over µ and ν) in our Algorithm 1, BO will naturally be a better choice to find the optimal
µ and ν compared with gradient-based optimization algorithms, and therefore has been applied in our
HNAS framework. Specifically, in every iteration k of Algorithm 1, a GP belief with mean u(µ, ν)
and variance σ2(µ, ν) for the entire input domain is firstly obtained following the Equation (1) in
[48] (i.e., by letting input x in [48] be the column vector (µ, ν)⊤ and the function value y in [48] be
Lval(A)) using the historical evaluations Hk−1 = {((µi, νi),Lval(A

∗
i ))}

k−1
i=1 (this corresponds to line

6 in Algorithm 1 for iteration k − 1). 2 Then, the mean u(µ, ν) and standard deviation σ(µ, ν) from
the resulting GP belief are used to construct an acquisition function such as the expected improvement
(EI) from [49] or the upper confidence bound (UCB) u(µ, ν) +

√
βσ(µ, ν) from [48] where the

parameter β > 0 is set to trade off between exploitation vs. exploration for guaranteeing no regret
asymptotically with high probability. Finally, an input (i.e., µk, νk) will be selected (for querying) by
maximizing the acquisition function within the entire input domain (i.e., line 3 in Algorithm 1), e.g.,
(µk, νk) = argmax(µ,ν) u(µ, ν) +

√
βσ(µ, ν) for UCB. The acquisition function in BO is usually

differentiable and thus gradient-based optimization algorithms (e.g., L-BFGS and gradient ascent)
can be applied to maximize it. We refer to [48] for more technical details about the BO algorithm
based on UCB and [50] for the implementation of BO that has been used in our experiments.

B.2 Experimental Details in NAS-Bench-201

In our experiments on NAS-Bench-201, we set the number of iterations K for Algorithm 1 to be 20.
In addition, for every iteration of Algorithm 1, we independently and randomly sample a pool of 2,000
architectures from the search space and then choose the architecture enjoying the optimum value of
(7) from all sampled architectures (e.g., 2000×k architectures in total). After choosing this candidate
architecture, we query the validation performance of this architecture on CIFAR-10 after 12-epoch
training (i.e., “hp=12”) from the tabular data in NAS-Bench-201, which then will be employed to
update the GP surrogate applied in BO. After completing 20 iterations of our Algorithm 1, there are
(a) 40,000 sampled architectures with evaluated training-free metrics which can already cover all the
architectures in NAS-Bench-201 (consisting of 15,625 architectures) with a high probability, and (b)
20 architectures with evaluated validation performance which can already allow our HNAS to select
architectures achieving competitive performances. Overall, our (7) and Algorithm 1 can be solved
both efficiently and effectively following our aforementioned optimization techniques.

Appendix C More Empirical Results

C.1 Connections among Training-Free Metrics

Besides the theoretical (Theorem 1) and empirical (Sec. 4.1) connections between MTrace and other
gradient-based training-free metrics from Sec. 3.2, we further show in Table 4 that any two metrics
from Sec. 3.2 are highly correlated, i.e., they consistently achieve large positive correlations in both
NAS-Bench-101 and NAS-Bench-201. Similar to the results in our Sec. 4.1, the correlation between
MGraSP and any other training-free metric is generally lower than other pairs, which may result from
the hessian matrix that has only been applied in MGraSP. To figure out whether our Theorem 1 is
also applicable to non-gradient-based training-free metrics, we then provide the correlation between
MFisher [51], MSynFlow [52], MNASWOT [6] and MTrace [8] for the comparison. Interestingly, both
MFisher and MSynFlow achieve higher positive correlations with MTrace than MNASWOT in general.
According to their mathematical forms in the corresponding papers, such a phenomenon may result
from the fact that MFisher and MSynFlow have contained certain gradient information while MNASWOT

only relies on the outputs of each layer in an initialized architecture. 3 These results therefore imply
that our Theorem 1 may also provide valid theoretical connections for the training-free metrics that
are not gradient-based but still contain certain gradient information.

2Since BO is usually applied to solve maximization problem, we use the historical evaluations Hk−1 =
{((µi, νi),−Lval(A

∗
i ))}k−1

i=1 for BO instead in order to maximize −Lval(A) in practice.
3Of note, the so-called gradient information contained in MFisher and MSynFlow is different from the commonly

used gradient of initialized model parameters that is derived from loss function or the output of DNN models.
So, MFisher and MSynFlow are taken as the non-gradient-based training-free metrics instead in this paper.
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Table 4: Connection between any two training-free metrics (i.e., M1 and M2 in the table) from
Sec. 3.2 in NAS-Bench-101/201. Note that each training-free metric is evaluated using a batch of
randomly sampled data from CIFAR-10 following that of [9].

M1 M2
NAS-Bench-101 NAS-Bench-201

Pearson Spearman Kendall’s Tau Pearson Spearman Kendall’s Tau

Gradient-based training-free metrics
MGrad MSNIP 0.98 0.98 0.87 1.00 1.00 0.97
MGrad MGraSP 0.35 0.61 0.43 0.60 0.92 0.77
MGrad MTrace 0.98 0.98 0.87 0.98 0.97 0.85
MSNIP MGraSP 0.34 0.59 0.42 0.55 0.92 0.77
MSNIP MTrace 0.94 0.93 0.77 0.97 0.96 0.83
MGraSP MTrace 0.37 0.57 0.40 0.69 0.89 0.73

MKNAS MGrad 0.95 0.96 0.83 0.88 0.94 0.80
MKNAS MSNIP 0.91 0.92 0.75 0.87 0.94 0.78
MKNAS MGraSP 0.37 0.65 0.46 0.45 0.87 0.69
MKNAS MTrace 0.96 0.96 0.84 0.89 0.97 0.86

Non-gradient-based training-free metrics
MFisher MTrace 0.69 0.97 0.85 0.30 0.78 0.69
MSynFlow MTrace 0.02 0.50 0.34 0.07 0.49 0.35
MNASWOT MTrace 0.08 0.11 0.08 0.10 0.32 0.22
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Figure 4: (a) Varying architecture performances under different value of training-free metrics in
NAS-Bench-201. Note that the x-axis denotes the averaged value of training-free metrics over the
architectures grouped in the same bin and y-axis denoted the test error evaluated on CIFAR-10.
(b) Correlation between the condition numbers and the true generalization performances of the
architectures within the same bin (i.e., the y-axis). Note that the x-axis denotes the corresponding 20
bins in Figure 4 (a).

C.2 Valid Generalization Guarantees for Training-Free NAS

To further support that our Corollary 2 presents a more practical and valid generalization guarantee
for training-free NAS in practice, we examine the true generalization performances of all candidate
architectures under their different value of training-free metrics in Figure 4 (a) and exhibit the
correlation between the condition number and the true generalization performances of all candidate
architectures in Figure 4 (b). Specifically, we group the value of training-free metrics in NAS-Bench-
201 into 20 bins and then plot the test errors on CIFAR-10 of all candidate architectures within the
same bin into the blue vertical lines in Figure 4 (a). Besides, we plot the averaged test errors over the
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Table 5: Correlation between the test errors of candidate architectures in NAS-Bench-201 and their
training-free metrics applied in several different scenarios. We refer to Sec. 4.3 for more details about
the trade-off and condition number κ applied in the following scenarios.

Dataset Scenario Spearman Kendall’s Tau
MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

C10

Realizable 0.637 0.639 0.566 0.538 0.469 0.472 0.400 0.387
Realizable + Trade-off 0.642 0.641 0.570 0.549 0.475 0.474 0.403 0.397
Realizable + κ 0.724 0.728 0.658 0.657 0.530 0.533 0.474 0.474
Non-realizable 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512

C100

Realizable 0.638 0.638 0.571 0.535 0.473 0.475 0.409 0.385
Realizable + Trade-off 0.642 0.645 0.578 0.546 0.476 0.481 0.414 0.394
Realizable + κ 0.716 0.719 0.649 0.651 0.527 0.529 0.469 0.470
Non-realizable 0.740 0.746 0.680 0.686 0.552 0.557 0.498 0.504

IN-16

Realizable 0.578 0.578 0.550 0.486 0.430 0.433 0.397 0.354
Realizable + Trade-off 0.588 0.589 0.566 0.526 0.438 0.441 0.408 0.382
Realizable + κ 0.646 0.649 0.612 0.587 0.472 0.474 0.443 0.423
Non-realizable 0.682 0.685 0.655 0.660 0.505 0.506 0.480 0.482

architectures within the same bin into the black dash lines in Figure 4 (a). Besides, each correlation
between condition number and test error in Figure 4 (b) is computed using the candidate architectures
within the same bin.

Notably, as illustrated by the black dash lines in Figure 4 (a), there consistently exists a trade-off for all
the training-free metrics in Sec. 3.2. Specifically, there exists an optimal value Mopt for each training-
free metric M that is capable of achieving the best generalization performance in the search space.
When M < Mopt, architecture with a larger value of M typically enjoys a better generalization
performance. On the contrary, when M > Mopt, architecture with a smaller value of M generally
achieves a better generalization performance. Interestingly, these results perfectly align with our
Corollary 2. Furthermore, Figure 4 (b) shows that the condition number is indeed highly correlated to
the generalization performance of candidate architectures and a smaller condition number is generally
preferred in order to select well-performing architectures in training-free NAS. More interestingly,
similar phenomenons can also be found in [8] and [7]. Remarkably, our Corollary 2 can provide
theoretically grounded interpretations for these results, whereas Corollary 1 fails to characterize these
phenomenons. Consequently, our Corollary 2 is shown to be more practical and valid in practice.

Based on the conclusions above, we then compare the impacts of the trade-off and condition number
κ mentioned above by examining the correlation between the true generalization performances of
candidate architectures and their training-free metrics applied in different scenarios. Here, we use
the same parameters applied in Sec. 6.2 for Corollary 2. Table 5 summarizes the comparison. Note
that the non-realizable scenario is equivalent to the realizable scenario + trade-off + κ as suggested
by our Corollary 2. As revealed in Table 5, both trade-off and condition number κ are necessary
to achieve an improved characterization of architecture performances over the one in the realizable
scenario followed by [9], which again verifies the practicality and validity of our Corollary 2. More
interestingly, condition number κ is shown to be more essential than the trade-off for training-free
NAS in order to improve the correlations in the realizable scenario. By integrating both trade-off
and condition number κ into the realizable scenario, the non-realizable scenario consistently enjoys
the highest correlations on different datasets, which also further verifies the improvement of our
training-free NAS objective (7) over the one used in [9].

C.3 Transferability of Training-Free NAS

In practice, the transferability of the architectures selected by both training-based and training-free
NAS algorithms has been widely verified [5, 7, 8]. So, in this section, we also verify the transferability
of our generalization guarantees for training-free NAS. Specifically, we examine the deviation of the
correlation between the architecture performance and the generalization bounds in Sec. 4.3 using
training-free metrics evaluated on different datasets. That is, training-free metrics and architecture
performance usually will be evaluated on different datasets. Table 6 summarizes the results using
CIFAR-10/100 (C10/100) and ImageNet-16-120 (IN-16) [53] in NAS-Bench-201 where we employ
the same parameters as Sec. 6.2 for Corollary 2. Notably, nearly the same correlations (i.e., with
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Table 6: Deviation of the correlation between the test errors in NAS-Bench-201 and the generalization
bounds in Sec. 4.3 using training-free metrics evaluated on various datasets. Each correlation is
reported with the mean and standard deviation using the metrics evaluated on CIFAR-10/100 and
ImageNet-16-120. Small standard deviations imply strong transferability.

Dataset Training-free Metrics
MGrad MSNIP MGraSP MTrace

Realizable scenario
C10 0.64±0.01 0.64±0.01 0.58±0.02 0.55±0.01
C100 0.64±0.01 0.64±0.01 0.58±0.03 0.54±0.02
IN-16 0.57±0.01 0.57±0.01 0.52±0.03 0.47±0.02

Non-realizable scenario
C10 0.75±0.00 0.75±0.00 0.69±0.01 0.69±0.00
C100 0.74±0.00 0.74±0.00 0.69±0.01 0.69±0.01
IN-16 0.69±0.00 0.69±0.00 0.63±0.01 0.65±0.00

Table 7: Comparison of the number of queries (to evaluate the validation performances of trained
architectures) required by different NAS algorithms in NAS-Bench-201. The performance of each
algorithm is reported with the mean and standard deviation of five independent searches.

Algorithm Test Accuracy (%)
# Queries

C10 C100 IN-16

REA 93.92±0.30 71.84±0.99 45.15±0.89 102
RS (w/o sharing) 93.70±0.36 71.04±1.07 44.57±1.25 106
REINFORCE 93.85±0.37 71.71±1.09 45.24±1.18 103

HNAS (MGrad) 94.04±0.21 71.75±1.04 45.91±0.88 20
HNAS (MSNIP) 93.94±0.02 71.49±0.11 46.07±0.14 20
HNAS (MGraSP) 94.13±0.13 72.59±0.82 46.24±0.38 20
HNAS (MTrace) 94.07±0.10 72.30±0.70 45.93±0.37 20
Optimal 94.37 73.51 47.31 -

extremely small deviations) are achieved for training-free metrics evaluated on different datasets. This
implies that the training-free metrics computed on a dataset S can also provide a good characterization
of the architecture performance evaluated on another dataset S′. Therefore, the architectures selected
by training-free NAS algorithms on S are also likely to produce a compelling performance on S′.
That is, the transferability of the architectures selected by training-free NAS is guaranteed.

C.4 Additional Comparison in NAS-Bench-201

In addition to the comparison of search performances and search costs (measured by GPU seconds)
in Table 3, we further provide the comparison of the number of queries required by different NAS
algorithms in Table 7. The queries compared here are applied to evaluate the validation performance
of the selected architectures after training, which is typically avoided by training-free NAS algorithms.
Consequently, here, we mainly compare HNAS with other training-based NAS algorithms. As shown
in Table 7, HNAS can consistently achieve improved search performances with fewer number of
queries, which also aligns with the results in our Table 3. This therefore further confirms the superior
search efficiency and the remarkable search effectiveness of our HNAS framework.

C.5 HNAS in the DARTS Search Space

To support the effectiveness and efficiency of our HNAS, we also apply HNAS in the DARTS [5]
search space to find well-performing architectures on CIFAR-10/100 and ImageNet [54]. Specifically,
we sample a pool of 60000 architecture to evaluate their training-free metrics on CIFAR-10 in
order to maintain high computational efficiency for these training-free metrics. For the results on
CIFAR-10/100, we then apply the BO algorithm for 25 iterations with a 10-epoch model training
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Table 8: Performance comparison among state-of-the-art (SOTA) neural architectures on CIFAR-
10/100. The performance of the final architectures selected by HNAS is reported with the mean and
standard deviation of five independent evaluations. The search costs are evaluated on a single Nvidia
1080Ti. Note that HNAS (C10 or C100) denoted the architecture selected by our HNAS using the
dataset CIFAR-10 or CIFAR-100, respectively.

Algorithm Test Error (%) Params (M) Search Cost
(GPU Hours) Search Method

C10 C100 C10 C100

DenseNet-BC [56] 3.46∗ 17.18∗ 25.6 25.6 - manual

NASNet-A [25] 2.65 - 3.3 - 48000 RL
AmoebaNet-A [26] 3.34±0.06 18.93† 3.2 3.1 75600 evolution
PNAS [57] 3.41±0.09 19.53∗ 3.2 3.2 5400 SMBO
ENAS [4] 2.89 19.43∗ 4.6 4.6 12 RL
NAONet [58] 3.53 - 3.1 - 9.6 NAO

DARTS (2nd) [5] 2.76±0.09 17.54† 3.3 3.4 24 gradient
GDAS [29] 2.93 18.38 3.4 3.4 7.2 gradient
NASP [59] 2.83±0.09 - 3.3 - 2.4 gradient
P-DARTS [60] 2.50 - 3.4 - 7.2 gradient
DARTS- (avg) [61] 2.59±0.08 17.51±0.25 3.5 3.3 9.6 gradient
SDARTS-ADV [62] 2.61±0.02 - 3.3 - 31.2 gradient
R-DARTS (L2) [63] 2.95±0.21 18.01±0.26 - - 38.4 gradient
DrNAS [30] 2.46±0.03 - 4.1 - 14.4 gradient

TE-NAS♯ [7] 2.83±0.06 17.42±0.56 3.8 3.9 1.2 training-free
NASI-ADA [8] 2.90±0.13 16.84±0.40 3.7 3.8 0.24 training-free

HNAS (C10) 2.62±0.04 17.10±0.18 3.4 3.5 2.4 hybrid
HNAS (C100) 2.78±0.05 16.29±0.14 3.7 3.8 2.7 hybrid
† Reported by Dong and Yang [29] with their experimental settings.
∗ Obtained by training corresponding architectures without cutout [55] augmentation.
♯ Reported by Shu et al. [8] with their experimental settings.

for the selected architectures in our HNAS (Algorithm 1). As for the results on ImageNet, we apply
the BO algorithm for 10 iterations with a 3-epoch model training for the selected architectures in
our HNAS. We follow [5] to construct 20-layer final selected architectures with an auxiliary tower
of weight 0.4 for CIFAR-10 (0.6 for CIFAR-100) located at 13-th layer and 36 initial channels.
We evaluate these architectures on CIFAR-10/100 using stochastic gradient descent (SGD) of 600
epochs with a learning rate cosine scheduled from 0.025 to 0 for CIFAR-10 (from 0.035 to 0.001
for CIFAR-100), momentum 0.9, weight decay 3×10−4and batch size 96. Both Cutout [55], and
ScheduledDropPath linearly increased from 0 to 0.2 for CIFAR-10 (from 0 to 0.3 for CIFAR-100) are
employed for regularization purposes on CIFAR-10/100. As for the evaluation on ImageNet, we train
the 14-layer architecture from scratch for 250 epochs with a batch size of 1024. The learning rate is
warmed up to 0.7 for the first 5 epochs and then decreased to zero with a cosine schedule. We adopt
the SGD optimizer with 0.9 momentum and a weight decay of 3×10−5.

The results on CIFAR-10/100 and ImageNet are summarized in Table 8 and Table 9, respectively. As
shown in Table 8, both our HNAS (C10) and HNAS (C100) are capable of achieving state-of-the-art
performance on CIFAR-10 and CIFAR-100, correspondingly, while incurring lower search costs than
other training-based NAS algorithms. Even compared with other training-free NAS baselines, e.g.,
TE-NAS, our HNAS can still enjoy a compelling search cost. Overall, these results further validate
that our HNAS is indeed able to enjoy the superior search efficiency of training-free NAS and also
the remarkable search effectiveness of training-based NAS. More interestingly, our HNAS (C10) can
achieve a lower test error on CIFAR-10 but a higher test error on CIFAR-100 when compared with
HNAS (C100). This result indicates that similar to training-based NAS algorithms, directly searching
on the target dataset is also able to improve the final performance in HNAS. By exploiting this
advantage over other training-free NAS baselines, our HNAS thus is capable of selecting architectures
achieving higher performances, as shown in Table 8. Similar results are also achieved on ImageNet
as shown in Table 9. Overall, these results have further supported the superior search efficiency and
remarkable search effectiveness of our HNAS that we have verified in Sec. 6.4.
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Table 9: Performance comparison among SOTA image classifiers on ImageNet.

Algorithm Test Error (%) Params
(M)

+×
(M)

Search Cost
(GPU Days)Top-1 Top-5

Inception-v1 [64] 30.1 10.1 6.6 1448 -
MobileNet [65] 29.4 10.5 4.2 569 -
ShuffleNet 2×(v2) [66] 25.1 7.6 7.4 591 -

NASNet-A [25] 26.0 8.4 5.3 564 2000
AmoebaNet-A [26] 25.5 8.0 5.1 555 3150
PNAS [57] 25.8 8.1 5.1 588 225
MnasNet-92 [67] 25.2 8.0 4.4 388 -

DARTS [5] 26.7 8.7 4.7 574 4.0
SNAS (mild) [27] 27.3 9.2 4.3 522 1.5
GDAS [29] 26.0 8.5 5.3 581 0.21
ProxylessNAS [68] 24.9 7.5 7.1 465 8.3
DARTS- [61] 23.8 7.0 4.5 467 4.5
SDARTS-ADV [62] 25.2 7.8 5.4 594 1.3
DrNAS [30] 23.7 7.1 5.7 - 4.6

TE-NAS (C10) [7] 26.2 8.3 5.0 - 0.05
TE-NAS (ImageNet) [7] 24.5 7.5 5.4 - 0.17
NASI-ADA [8] 25.0 7.8 4.9 559 0.01

HNAS (C100) 24.8 7.8 5.2 601 0.1
HNAS (ImageNet) 24.3 7.4 5.1 575 0.5

C.6 Ablation Studies

Ablation Study on Initialization Method. While our theoretical analyses throughout this paper
are based on the initialization using the standard normal distribution (Sec. 3), 4 we wonder whether
our theoretical results are also applicable to DNNs using different initialization methods, e.g., Xavier
[70] and Kaiming [71] initialization. Specifically, we compare the correlation between the true
generalization performances of all candidate architectures in NAS-Bench-201 and the generalization
guarantees in Sec. 4.3 that are evaluated using different initialization methods. Table 10 summarizes
the comparison. Here, we use the same parameters applied in Sec. 6.2 for Corollary 2. Notably,
Table 10 shows that our generalization guarantees for training-free NAS, i.e., Corollary 1, 2, can also
perform well for training-free NAS using DNNs initialized with different methods, indicating a wider
application of our generalization guarantees in Sec. 4.3. Of note, LeCun initialization can achieve the
best results among the three initialization methods in Table 10 since it satisfies our assumption about
the initialization of DNNs. As an implication, LeCun initialization is more preferred when using
the training-free metrics from Sec. 3.2 to characterize the architecture performances in training-free
NAS.

Ablation Study on Batch Size. Theoretically, the training-free metrics from Sec. 3.2 are defined
over the whole training dataset. In practice, we usually only apply a batch of randomly sampled data
points to evaluate these training-free metrics in order to achieve a desirable computational efficiency,
which follows [9]. To investigate the impact of batch size on these metrics, we examine the correlation
between the true generalization performances of all candidate architectures in NAS-Bench-201 and
their generalization guarantees in the non-realizable scenario under varying batch sizes. Table 11
summarizes the results. Here, we use the same parameters applied in Sec. 6.2 for Corollary 2. Besides
the impact of batch size on training-free metrics, we also include the impact of batch size on condition
number κ in this table. Specifically, in the upper part of Table 11, the correlations are evaluated
using a batch size of 64 for κ and varying batch sizes for any training-free metric M from Sec. 3.2.
Meanwhile, in the lower part of Table 11, the correlations are evaluated using varying batch sizes
for κ and a batch size of 64 for any training-free metric M. Notably, Table 11 shows that similar
results will be achieved even when training-free metrics are evaluated under varying batch sizes,

4Note that this initialization is equivalent to the LeCun initialization [69] according to [13].
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Table 10: Correlation between the test errors (on CIFAR-10) of all architectures in NAS-Bench-201
and our generalization guarantees in Sec. 4.3 that are evaluated on DNNs using different initialization
methods.

Initialization Spearman Kendall’s Tau
MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

Realizable scenario
LeCun [69] 0.637 0.639 0.566 0.538 0.469 0.472 0.400 0.387
Xavier [70] 0.608 0.627 0.449 0.465 0.445 0.463 0.316 0.334
He [71] 0.609 0.615 0.340 0.460 0.446 0.454 0.242 0.334

Non-realizable scenario
LeCun [69] 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512
Xavier [70] 0.676 0.685 0.615 0.635 0.493 0.501 0.442 0.460
He [71] 0.607 0.611 0.505 0.569 0.436 0.439 0.358 0.407

Table 11: Correlation between the test errors (on CIFAR-10) of all architectures in NAS-Bench-201
and their generalization guarantees in the non-realizable scenario under varying batch size.

Batch Size Spearman Kendall’s Tau
MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

Batch size 64 for κ and varying batch sizes for any M
4 0.737 0.741 0.671 0.684 0.547 0.550 0.487 0.501
8 0.739 0.743 0.676 0.689 0.549 0.552 0.492 0.506

16 0.747 0.748 0.685 0.690 0.556 0.556 0.499 0.507
32 0.750 0.748 0.687 0.690 0.558 0.556 0.502 0.506
64 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512

Varying batch sizes for κ and batch size 64 for any M
4 0.578 0.585 0.569 0.509 0.416 0.421 0.402 0.362
8 0.597 0.603 0.591 0.542 0.429 0.433 0.419 0.386

16 0.628 0.633 0.620 0.582 0.462 0.455 0.442 0.414
32 0.663 0.666 0.645 0.621 0.479 0.481 0.462 0.445
64 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512

whereas κ evaluated under varying batch sizes will lead to different results, indicating that κ is more
sensitive to batch size than training-free metrics. As an implication, while a small batch size is also
able to perform well in practice, a large batch size is more preferred when using our generalization
guarantees for training-free NAS.

Ablation Study on Layer Width. While our theoretical analyses are based on over-parameterized
DNNs, i.e., n > N in our Theorem 2, we are also curious about how the layer width will influence
our empirical results. In particular, we examine the correlation between the true generalization
performances of all candidate architectures in NAS-Bench-201 and their generalization guarantee in
the non-realizable scenario under varying layer width. Similar to the ablation study on batch size, we
investigate the impacts of layer width on the training-free metrics from Sec. 3.2 and the condition
number κ separately. Table 12 summarizes the results. Here, we use the same parameters applied in
Sec. 6.2 for Corollary 2. As shown in Table 12, our generalization guarantee in the non-realizable
scenario also performs well when layer width becomes smaller. Surprisingly, similar results can
be achieved for training-free metrics evaluated under varying layer widths, whereas a larger layer
width for training-free metrics typically leads to marginally higher correlations in Table 12. On the
contrary, a larger layer width for κ leads to lower correlations in Table 12. This may result from the
similar behavior that can be achieved by layer width and topology width since both layer width and
topology width are used to measure the width of DNN but in totally different perspectives. Therefore,
increasing layer width will make deep architectures (in terms of topology) more indistinguishable
from wide architectures (in terms of topology) and hence make it harder to apply our generalization
guarantee in Corollary 2 to characterize the architecture performances in a search space. As an
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Table 12: Correlation between the test errors (on CIFAR-10) of all architectures in NAS-Bench-201
and their generalization guarantees in the non-realizable scenario under varying layer widths, which
are measured by the number of initial channels in our experiments. Larger initial channels indicates a
large layer width.

Init Channels Spearman Kendall’s Tau
MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

4 channels for κ and varying channels for any M
4 0.744 0.746 0.688 0.732 0.550 0.552 0.499 0.539
8 0.750 0.753 0.707 0.744 0.556 0.559 0.515 0.550

16 0.753 0.753 0.728 0.750 0.558 0.559 0.535 0.556
32 0.755 0.756 0.736 0.752 0.560 0.562 0.543 0.558

Varying channels for κ and 32 channels for any M
4 0.755 0.756 0.736 0.752 0.560 0.562 0.543 0.558
8 0.720 0.722 0.700 0.709 0.529 0.531 0.512 0.522

16 0.698 0.700 0.677 0.681 0.511 0.514 0.492 0.498
32 0.686 0.688 0.664 0.664 0.501 0.503 0.481 0.484

Table 13: Correlation between the test errors of all architectures in NAS-Bench-201 and our general-
ization guarantees in Sec. 4.3 using training-free metrics MKNAS, MFisher, MSynFlow and MNASWOT
that are evaluated on various datasets. Each correlation is reported with the mean and standard
deviation using the metrics evaluated on CIFAR-10/100 and ImageNet-16-120.

Dataset Spearman Kendall’s Tau
MKNAS MFisher MSynFlow MNASWOT MKNAS MFisher MSynFlow MNASWOT

Realizable scenario
C10 0.53±0.02 0.39±0.01 0.78±0.00 0.09±0.02 0.39±0.02 0.29±0.01 0.58±0.00 0.10±0.00
C100 0.53±0.03 0.39±0.01 0.76±0.00 0.09±0.02 0.38±0.02 0.29±0.01 0.57±0.00 0.11±0.01
IN-16 0.46±0.02 0.32±0.01 0.75±0.00 0.16±0.02 0.33±0.02 0.24±0.01 0.56±0.00 0.15±0.02

Non-realizable scenario
C10 0.66±0.02 0.51±0.00 0.81±0.00 0.05±0.00 0.49±0.02 0.37±0.00 0.61±0.00 0.03±0.00
C100 0.67±0.03 0.51±0.01 0.80±0.02 0.05±0.01 0.49±0.02 0.37±0.00 0.60±0.00 0.03±0.00
IN-16 0.62±0.04 0.44±0.00 0.78±0.00 0.05±0.01 0.45±0.03 0.32±0.00 0.59±0.00 0.03±0.00

implication, a large layer width for training-free metrics and a smaller layer width for condition
number κ are more preferred when applying our generalization guarantees for training-free NAS in
practice.

Ablation Study on Generalization Guarantees and HNAS Using Non-Gradient-Based Training-
Free Metrics. As Appendix C.1 has validated that our Theorem 1 may also provide valid theoretical
connections for certain non-gradient-based training-free metrics, we wonder whether our theoretical
generalization guarantees and HNAS based on Theorem 1 are also applicable to these non-gradient-
based training-free metrics. In particular, we firstly examine the correlation between the true
generalization performances of all candidate architectures in NAS-Bench-201 and their generalization
(Sec. 4.3) using training-free metrics MFisher, MSynFlow and MNASWOT. Table 13 summarizes the
results. Here, we use the same parameters applied in Sec. 6.2 for Corollary 2. While MFisher and
MSynFlow enjoy higher correlation to MTrace than MNASWOT in Appendix C.1, our generalization
guarantees also performs better when using MFisher and MSynFlow. We then apply our HNAS based
on these training-free metrics in NAS-Bench-201 and the Table 14 summarizes the search results.
Similarly, our HNAS based on MFisher and MSynFlow can also find better-performing architectures
than HNAS (MNASWOT). Surprisingly, HNAS (MSynFlow) can even achieve competitive results when
compared with HNAS using gradient-based training-free metrics. These results therefore indicate that
our HNAS sometimes may also be able to improve over training-free NAS using non-gradient-based
training-free metrics especially when these non-gradient-based training-free metrics contain certain
gradient information.
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Table 14: Comparison among HNAS using different training-free metrics in NAS-Bench-201. The
performance of each HNAS variant is reported with the mean and standard deviation of five indepen-
dent searches and the search costs are evaluated on a single Nvidia 1080Ti.

Algorithm Test Accuracy (%) Search Cost
C10 C100 IN-16 (GPU Sec.)

HNAS (MGrad) 94.04±0.21 71.75±1.04 45.91±0.88 3010
HNAS (MSNIP) 93.94±0.02 71.49±0.11 46.07±0.14 2976
HNAS (MGraSP) 94.13±0.13 72.59±0.82 46.24±0.38 3148
HNAS (MTrace) 94.07±0.10 72.30±0.70 45.93±0.37 3006

HNAS (MKNAS) 94.19±0.06 72.94±0.52 46.31±0.38 3081

HNAS (MFisher) 93.28±0.73 69.42±1.36 42.85±2.09 3309
HNAS (MSynFlow) 94.13±0.00 72.50±0.00 45.47±0.00 3615
HNAS (MNASWOT) 92.10±0.62 66.81±0.32 39.26±0.72 2832

Optimal 94.37 73.51 47.31 -

Table 15: Comparison between HNAS and its training-free variant in NAS-Bench-201.

Algorithm Test Accuracy (%)
C10 C100 IN-16

κ/MTrace 93.50 69.78 43.73
HNAS (MTrace) 94.10±0.16 72.48±0.95 46.30±0.17

Optimal 94.37 73.51 47.31

Ablation Study on Optimization Process of HNAS. In this section, we examine the evolution
of the correlation between the test errors of candidate architectures in the NAS search space and
their generalization guarantees in the non-realizable scenario with the increasing BO iterations in our
HNAS framework. Figure 5 illustrates the results in NAS-Bench-201 with CIFAR-10 dataset and
training-free metric MTrace. Note that in every BO iteration of Figure 5, the Spearman correlation
we reported corresponds to the pair of hyperparameters µ and ν that achieves the best validation
performance in the query history. As shown in Figure 5, our HNAS framework, interestingly, is
indeed selecting better-performing architectures by selecting hyperparameters µ and ν that can
achieve higher Spearman correlation in the search space. These results therefore further justify the
advantages of introducing BO algorithms with training-based performances into training-free NAS
for better characterization.

Ablation Study on Training-Free Variant of HNAS. According to (7) in our main paper, a
completely training-free metric can be produced by simply specifying the values of µ and ν with
prior knowledge. For example, by setting µ = 0, we can obtain the training-free metric κ/MTrace.
However, obtaining prior knowledge regarding the best choice of µ and ν for NAS is non-trivial.
Therefore, tuning µ and ν would be a better alternative to achieve more competitive search results
in practice. To demonstrate this, we compare the performance of the architecture selected from
training-free metric κ/MTrace vs. our standard HNAS framework in Table 15. Notably, the results
in Table 15 demonstrate that tuning µ and ν based on training-based performances can indeed lead
to improved search results and therefore will be a better alternative than pre-defining µ and ν for
a completely training-free NAS, which further justifies the essence of combining training-free and
training-based methods (as one of our major contributions) in HNAS.

Ablation Study on BO algorithm in HNAS. To investigate the influence of different BO algorithms
(i.e., different acquisition functions) on the optimization part of our HNAS, we compare the search
results obtained from using different acquisition functions (i.e., expected improvement (EI) vs. upper
confidence bound (UCB)) with HNAS(MTrace) and HNAS(MGrad) on NAS-Bench-201 in Table
16. Since the default hyperparameters for different acquisition functions in [50] have already been
tuned for a variety of tasks, we directly make use of them in our experiments without any changes.
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Figure 5: Evolution of the correlation between the test errors (on CIFAR-10) of all architectures in
NAS-Bench-201 and their generalization guarantees (using MTrace) in the non-realizable scenario
with the BO iterations in our HNAS framework.

Table 16: Comparison among HNAS using different acquisition functions in NAS-Bench-201. The
performance of each HNAS variant is reported with the mean and standard deviation of five indepen-
dent searches.

Algorithm Test Accuracy (%)
C10 C100 IN-16

HNAS (MGrad) w/ EI 94.04±0.21 71.75±1.04 45.91±0.88
HNAS (MGrad) w/ UCB 94.05±0.18 72.04±1.18 45.81±0.88

HNAS (MTrace) w/ EI 94.07±0.10 72.30±0.70 45.93±0.37
HNAS (MTrace) w/ UCB 94.10±0.16 72.48±0.95 46.30±0.17

Optimal 94.37 73.51 47.31

Interestingly, the results in Table 16 show that different acquisition functions (i.e., different BO
algorithms) typically have limited influence on our HNAS framework. That is, our HNAS is shown
to be relatively robust to the change of acquisition function in BO.
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