
A Network architecture and training hyperparameters

All the methods evaluated in Section 4 are variants of SAC. We based our implementation of
SAC, RAD, SODA, and SVEA on the ones proposed by Nicklas Hansen, available at https:
//github.com/nicklashansen/dmcontrol-generalization-benchmark. To ensure a fair
comparison, we used the same network architecture and hyperparameters for all agents.

Networks architectures. The shared encoder fθ is composed of a stack of 11 convolutional layers,
each with 32 filters of 3× 3 kernels, no padding, stride of 2 for the first one and stride of 1 for all
others, yielding a final feature map of dimension 32× 21× 21 (inputs have dimension 84× 84× 3).
The policy head πθ and the value function head Qθ consist of independent fully connected networks,
each composed of a linear projection of dimension 100 with layer normalization, followed by 3 linear
layers with 1024 hidden units. SGQN also uses a predictor head Mθ responsible for reconstructing
the attribution mask Mρ(Qθ, s, a). The Mθ network follows the 100-unit layer of Qθ and has 6 layers.
It is composed of a first linear layer projecting the 100-dimensional embedding to 32 × 21 × 21
features, then followed by two convolutional+upsampling blocks, each having 64 filters of 3 × 3
kernels (padding of 1 to preserve the feature map size) and an upsampling factor of 2, and finally
a last convolutional layer with 9 filters of 3× 3 kernels (padding of 1). Figure 8 illustrates SGQN
agents’ architecture.

Figure 8: SGQN neural network architecture

Hyperparameters. SGQN introduces three additional hyperparameters to SAC: the quantile value
ρ used to binarize the attribution masks, the data augmentation function τ used during the self-
supervised learning updates, and the frequency of these auxiliary updates NSL. Table 3 summarizes
the hyperparameters used in all experiments.

15

https://github.com/nicklashansen/dmcontrol-generalization-benchmark
https://github.com/nicklashansen/dmcontrol-generalization-benchmark


Hyperparameter Value
Frame rendering 84 × 84 × 3
Stacked frames 3
Action repeat 4 (Walker walk, Walker stand, Ball in cup), 8 (Cartpole), 2 (Finger spin)
Discount factor γ 0.99
Episode length 1,000
Number of frames 500,000
Replay buffer size 500,000
Optimizer (θ of SAC) Adam (lr = 1e − 3, β1 = 0.9, β2 = 0.999)
Optimizer (θ of self supervised learning updates) Adam (lr = 3e − 4, β1 = 0.9, β2 = 0.999)
Optimizer (α of SAC) Adam (lr = 1e − 4, β1 = 0.5, β2 = 0.999)
Batch size 128
Target networks update frequency 2
Target networks momentum coefficient 0.05 (encoder), 0.01 (critic)
Auxiliary updatesNSL frequency 2
Data augmentation τ Overlay [Hansen and Wang, 2021]
Quantile value ρ 0.95 (Walker walk, Walker Stand, and Finger Spin)

0.98 (Cartpole and Ball in cup)

Table 3: SAC and SGQN (in blue) hyperparameters.

B Reproducibility

All the experiments from Section 4 were run on a desktop machine (Intel i9, 10th generation
processor, 64GB RAM) with a single NVIDIA RTX 3090 GPU. All scores were calculated on
an average of 5 repetitions. Details about all experiments are reported in Table 4. Besides this
information, we provide the full source code of our implementation and experiments at https:
//github.com/SuReLI/SGQN.

Algorithm Time by experiment
SAC ∼ 5 hours
RAD ∼ 5 hours
SODA ∼ 15 hours
SVEA ∼ 15 hours
SGQN ∼ 15 hours
SAC + consistency ∼ 5 hours
SAC + self-supervised ∼ 15 hours

Table 4: Experimental setup

C Additional experimental results on DMControl-GB

A particular attention needs to be paid to the number of times an action is repeated in the environments
of the DMControl-GB, since it has an important influence on the scores reached by the agents. All
experiments in Section 4 have been conducted following the hyper-parameters suggested by Hansen
et al. [2021], in particular an action repetition covering 4 time steps for all environments, except
for Cartpole (8 time steps) and Finger spin (2 time steps). To avoid such heterogeneity across
environments, we repeated the experiments of Section 4 with a constant action repetition parameter
of 4 time steps for all environments. Table 5 reports the results obtained. Using a constant action
repetition parameter hinders the performance of almost all agents. Yet SGQN still outperforms its
competitors both in video easy and video hard domains. We report all the corresponding training
curves and testing scores in Figures 9, 10, and 11. We also report a comparison of the attribution maps
for all agents on all environments in video hard environments in Figure 12, illustrating how SGQN
consistently relies on pixels that really belong to the system to control and discards confounding
factors.

16

https://github.com/SuReLI/SGQN
https://github.com/SuReLI/SGQN


Benchmark Environment SAC DrQ RAD SODA SVEA SGQN ∆

Easy

Walker walk 245 ± 165 747 ± 21 608 ± 92 771 ± 66 828 ± 66 910 ± 24 +82(10%)
Walker stand 389 ± 131 926 ± 30 879 ± 64 965 ± 7 966 ± 5 955 ± 9 −11(1%)
Ball in cup 192 ± 157 380 ± 188 363 ± 158 939 ± 10 908 ± 55 950 ± 24 +11(1%)
Cartpole 474 ± 26 350 ± 83 391 ± 66 678 ± 120 702 ± 80 717 ± 35 +15(2%)

Finger spin 152 ± 8 313 ± 180 334 ± 54 535 ± 52 537 ± 11 609 ± 61 +72(13%)
Average 292 551 515 777 785 828 +(5%)

Hard

Walker walk 122 ± 47 121 ± 52 80 ± 10 312 ± 32 385 ± 63 739 ± 21 +354(92%)
Walker stand 231 ± 57 252 ± 57 229 ± 45 736 ± 132 747 ± 43 851 ± 24 +104(14%)
Ball in cup 101 ± 37 100 ± 40 98 ± 40 381 ± 163 498 ± 174 782 ± 57 +284(57%)
Cartpole 153 ± 22 128 ± 19 117 ± 22 339 ± 87 392 ± 37 526 ± 41 +134(34%)

Finger spin 25 ± 6 25 ± 36 15 ± 6 221 ± 48 174 ± 39 540 ± 53 +319(144%)
Average 127 130 108 396 437 688 +(57%)

Table 5: Performance on video easy and video hard testing levels with a constant action repetition
parameter of 4 time steps for all environments. ∆ = difference with second best.

Figure 9: Performance on training levels.

Figure 10: Performance on video easy testing levels.

17



Figure 11: Performance on video hard testing levels.

Observation SAC RAD SODA SVEA SGQN (Ours)

Figure 12: Binarized attribution maps in video hard

18



D Vision-based robotic manipulation experiments

To demonstrate the genericity of our method, and following the recommendation of the reviewers, we
also consider two goal-reaching robotic manipulation tasks from the vision-based robotic manipula-
tion simulator introduced in [Jangir et al., 2022]: Reach, a task where a robot has to reach for a goal
marked by a red disc placed on a table, and Peg in box, a task where a robot has to insert a peg tied to
its arm into a box. We modified the original simulator to include three testing environments for both
tasks, similar to the training ones but with different colors and textures for the background and the
table as illustrated in Figure 13. Note that no fine-tuning of hyperparameters (learning rates, quantile
threshold, etc.) was performed whatsoever.

(a) Train (b) Test 1 (c) Test 2 (d) Test 3

Figure 13: Examples of training and testing observation for (Peg in box)

We trained SGQN agents for 250 000 steps with a quantile threshold ρ = 0.95 and compared their
generalization scores with those of agents trained with SAC [Haarnoja et al., 2018], SODA [Hansen
and Wang, 2021] and SVEA [Hansen et al., 2021]. We used random convolutions [Lee et al., 2020] as
image augmentations for all the methods except for SAC, since it produces color and texture increases
that better match our test environments than the structured distractions induced by a random overlay.
The results are reported in Table 6. For the Reach task, the agents trained with SAC, SODA, and
SVEA fail to maintain their performance when evaluated on the test environments. The agents trained
with SGQN maintain performance almost identical to those obtained during training on two out of
three testing environments and outperform the other agents on average by more than 124%. Figure
14 shows examples of the saliency maps obtained for the Reach training and testing environments.
In the Peg in box task, the generalization scores are degraded for all the agents. Nevertheless, in
two out of the three testing environments (Test 2 and 3), the agents trained with SGQN seem to
be the least affected. The third environment (Test 1) seems to feature textures and colors that are
particularly difficult for generalization and would require further investigation. Overall, the SGQN
agents’ generalization scores over the three environments are still 40% better on average than those
of their competitors.

Task Environment SAC SODA SVEA SGQN ∆

Reach

Train 9.7 ± 22 31.8 ± 1 32.2 ± 0 31.8 ± 1 −0.4(1%)
Test 1 −20.9 ± 16 −30.9 ± 43 −17.6 ± 10 14.4 ± 14 +32(220%)
Test 2 −21.9 ± 14 −20.2 ± 29 −2.1 ± 39 31.0 ± 3 +33.1(107%)
Test 3 −43.2 ± 6 −68.4 ± 30 1.4 ± 29 29.2± 7 +27.8(95%)

Test Average −28.6 ± 8 −39.9 ± 31 −6.1 ± 23 24.9 ± 6 +31(124%)

Peg in box

Train −46.7 ± 7 180.0 ± 1 177.5 ± 1 183.9 ± 1 +3.9(2%)
Test 1 −59.6 ± 26 16.9 ± 44 −21.3 ± 10 −72.0 ± 14 −88.9(526%)
Test 2 −60.15 ± 10 0.7 ± 30 96.8 ± 40 110.7 ± 3 +13.9(12%)
Test 3 −48.8 ± 17 73.6 ± 31 40.5 ± 28 154.6 ± 7 +81(52%)

Test Average −56.2 ± 7 30.4 ± 31 38.6 ± 23 64.4 ± 6 +25.8(40%)

Table 6: Performance on the robotic environments

19



(a) Observation (b) s⊙Mρ(Qθ, s, a) (c) Mθ(s, a)

Figure 14: Observation (a), masked observation (b) and predicted saliency map (c) in the Reach task.
The first row corresponds to the training environment and the last three to the test environments.

E Impact of ρ

In our experiments, the value of the mask threshold parameter ρ was selected after a quick visual
search, as illustrated in Figure 15. During our experiments on DMControl-GB, we set ρ to 0.95 on
all environments but Cartpole and Ball in Cup (for which the ratio of foreground/background pixels
is smaller than on the others environments). To assess SGQN’s sensitivity to ρ, we also performed
an experiment on these two environments with ρ set to 0.95. Results, reported in Table 7, show
that agents trained with ρ = 0.95 perform slightly worse than the ones trained with ρ = 0.98 thus
indicating that this parameter has an impact on performance and is worth fine-tuning. However, it is
important to note that on the most difficult (video hard) environments, the scores obtained by SGQN
remain notably above those of other methods, whichever the value of ρ. Visual search is a (loose)
measure of the amount of information actually present in the image and necessary for predicting the
value. It is likely that one could exhibit worst case environments for which all pixels are necessary to
predict the value. In such environments, SGQN might perform poorly. However, we argue that such
environments are not representative of most realistic visual RL tasks, either real-world or simulated,
where pixel information is very redundant (which is a cause for overfitting). It is likely that in other
(maybe more difficult) environments (e.g. with more complex important objects moving across the
screen), the necessary threshold for ρ could be lowered.

Benchmark Environment ρ = 0.98 ρ = 0.95

Easy Ball in cup 950± 24 905± 39
Cartpole∗ 761± 28 705± 38

Hard Ball in cup 782± 57 789± 96
Cartpole∗ 569± 56 457± 60

Table 7: Impact of ρ for Ball in cup and Cartpole∗

20



(a) Observation (b) ρ = 0.9 (c) ρ = 0.95 (d) ρ = 0.98 (e) ρ = 0.995

Figure 15: Example of Mρ(Qθ, s, a) for different values of ρ on Cartpole (top) and Ball in cup
(bottom).

F Comparison with SVEA + SODA

The losses of SGQN can in some way be related to those present in SODA [Hansen and Wang, 2021]
and SVEA [Hansen et al., 2021]. The auxiliary self-supervised learning objective of SGQN is similar
to replacing the projector used by SODA (and originally introduced in BYOL [Grill et al., 2020])
by ∂Q(s, a)/∂s. Besides, during the critic update, SVEA performs a new estimate of Q from an
augmented state τ(s). The consistency loss used in SGQN can be expressed in a similar fashion by
considering that the augmentation τ consists in the application of a mask resulting in a reduction
of the information contained in s. From this perspective, SGQN can be seen as the combination
of particular cases of SVEA and SODA. Thus we compared the performance of SGQN with the
combination of SVEA and SODA. Table 8 reports the corresponding results. Except on the Walker
walk video hard testing levels, the combination of SVEA and SODA diminishes the scores obtained
by using each method independently. Agents trained with both SVEA and SODA also obtain worse
performance than the agents trained with SGQN, thus showing the advantages brought by each loss
introduced in SGQN.

Benchmark Environment SODA SVEA SVEA + SODA SGQN

Easy

Walker walk 771± 66 828± 66 792± 101 910± 24
Walker stand 965± 7 966± 5 948± 18 955± 9
Ball in cup 939± 10 908± 55 825± 114 950± 24
Cartpole 742± 73 753± 45 677± 100 761± 28

Finger spin 783± 51 723± 98 767± 37 956± 26
Average 836 836 801 906

Hard

Walker walk 312± 32 385± 63 424± 178 739± 21
Walker stand 736± 132 747± 43 773± 35 851± 24
Ball in cup 381± 163 498± 174 211± 107 782± 57
Cartpole 339± 87 403± 17 351± 82 569± 56

Finger spin 309± 49 307± 24 244± 27 822± 24
Average 430 468 401 747

Table 8: Comparison with SVEA + SODA

G Discussion on the interplay between initial saliency maps and saliency
guided training

Since SGQN uses thresholded saliency maps to mask out input images from the very first steps of
the algorithm, and since there is no reason for these initial maps to point towards important pixels
for the true value function, it is legitimate to wonder how the initial saliency maps actually affect
the optimization path of SGQN. We propose the following discussion which aims at explaining
why the mechanism of SGQN is robust to the Qθ network initialization and to which pixels are
being selected by the initial saliency maps. Initial saliency maps are likely to appear random since

21



they represent the gradients of random functions close to zero (as per the classical initialization of
neural networks). Consequently, when thresholded, these saliency maps are likely to yield pixels
that are uniformly spread across the image. In turn, the masking operation initially acts as a random
subsampling operation. Since many close pixels in the input image hold redundant information,
the application of Mρ to input images is likely to preserve enough information to correctly predict
the value function (minimize LQ). It is important to note that many other subsampling masks are
equally likely to preserve the information necessary to correctly predict the value function. So the
initialization of the Qθ network does not prevent learning the true Q-function based on s⊙Mρ. A
direct consequence is that many Qθ functions, that differ only by which subsampled pixels they rely
on, can actually fit the true Q-function, but few will generalize to unseen states, which is the very
issue of observational overfitting. Even if the original maps indicating which pixels are informative
are wrong, i.e. if too many confounding pixels are retained in Mρ, then, LQ, the first part of the
critic’s loss, still encourages that Qθ be a solution to the Bellman equation. In that sense, LC (the
second part of the critic’s loss) acts as a regularizer: it allows discriminating between functions that
would otherwise be equivalent approximate solutions to the Bellman equation. The self-supervised
learning procedure, in turn, yields features fθ that are useful at predicting one’s own saliency map. As
noted by Grill et al. [2020] or Hansen and Wang [2021], such features are good representations of the
input state. Finally, as the Q-function becomes more accurate and as the fθ features become better at
predicting Mρ, the saliency maps become sharper. Overall, the interplay between the two phases of
SGQN is mostly a virtuous circle, that starts from the observation that the initial Mρ preserve enough
information in s to permit correct learning of Qθ.

H Additional attribution evaluations

We visually compare on Figures 16 and 17 the saliency maps obtained by the other attribution methods
Guided-GradCAM [Selvaraju et al., 2017], Occlusion [Zeiler and Fergus, 2014]. Note that, to avoid
going against Goodhart’s Law ("When a measure becomes a target, it ceases to be a good measure."),
[Springenberg et al., 2015] these methods are only used for evaluation, Guided Backpropagation
remaining the method used for the computation of M(Q, s, a). While the other agents still seem
to retain some dependency on background pixels, the attributions of the agent trained with SGQN
remain located chiefly on the important information.

Figure 16: Comparison of different attribution methods on Cartpole video hard levels

22



Figure 17: Comparison of different attribution methods on Finger spin video hard levels

23


