
A Statistical Agnostic Boosting

We fill in the gaps of Section 4 for the statistical agnostic setting by providing a boosting algorithm
and its theoretical analysis.

A.1 Algorithm

We now describe a statistical agnostic boosting algorithm whose pseudocode is provided below. The
booster is given as input a sample S = (x1, y1), ..., (xm, ym) 2 X ⇥ Bk. The booster has black-box
oracle access to T copies of a (�, ✏0,m0)-AWL algorithm, W1, ...,WT , each satisfying Definition
2, and m copies of an OCO(�k, T ) algorithm, A1

, ...,Am. Importantly, note that in line 8 , we
denote by

Q
as a randomized prediction operator that given a �-scaled distribution over k labels,

first computes the L2 projection onto �k, and then randomly samples a label from the resulting
distribution.

Algorithm 2: Statistical Agnostic Multiclass Boosting via OCO
Input: (�, ✏0,m0)-AWLs W1...WT , OCO(�k, T ) algorithms A1

...Am, and Sample
S = (x1, y1)...(xm, ym) 2 X ⇥ Bk

1 for t = 1, ..., T do
2 If t = 1, set P1[i] = k

k 8i 2 [m]
3 Pass m0 examples to Wt drawn from the following distribution:
4 Draw xi w.p. 1

m and relabel by drawing ỹi ⇠ Pt[i]
5 Let ht be the weak hypothesis returned by Wt

6 Reveal loss function: lit(p) = (2p� k) ·
⇣

ht(xi)
� � yi

⌘
8i 2 [m]

7 Set Pt+1[i] = Ai(li1, ..., l
i
t) 8i 2 [m]

8 return h̄(x) =
Q⇣ 1

�T

PT
t=1 ht(x)

⌘

Once again, the high-level framework is inspired by the work of Brukhim et al. [6], but like in
the online setting, several pieces need to be redesigned when k > 2. One key difference between
our algorithm and the corresponding algorithm by Brukhim et al. [6] is the use of multiple OCO
algorithms. The algorithmic choices in Algorithm 2 are similar to those made in the online setting.
Thus, the intuition provided in Section 3.1 also follows here.

Under the assumption that the weak learners satisfy Definition 2, Theorem 5 bounds the correlation

of Algorithm 2.
Theorem 5. The output of Algorithm 2, which is denoted h̄, satisfies,

E
⇥
corS(h̄)

⇤
� max

h2H

corS(h)�
RA(T )

T
� k✏0

�
,

where S is the distribution which uniformly assigns to each example (xi, yi) probability 1/m.

The proof of Theorem 5 is split over the next two subsections.

A.2 Improper game playing

An important step towards proving Theorem 5 is framing statistical agnostic multiclass boosting as
an improper zero-sum game. A similar idea was used by Brukhim et al. [6] for binary classification.
We take a detour and elaborate on this connection here.

Consider an improper zero-sum game. In this game, there are two players A and B, and a payoff
function g that decomposes into the sum of m smaller independent convex-concave payoff functions
f
1
, ..., f

m each of which depends on the players’ strategies. The goal for Player A is to minimize
g, while the goal for Player B is to maximize g. Let KA and KB be the convex, compact decisions
sets of players A and B respectively. In addition, let KC be a convex, compact set, and let KA be a
matrix consisting of m row vectors from KC . Because convexity and concavtity are preserved under
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(non-negative weighted) summation, g is also convex-concave. By Sion’s minimax theorem [34], the
value of the game is well-defined, which we denote as

�
⇤ = min

P2KA

max
q2KB

g(P, q) = max
q2KB

min
P2Ka

g(P, q).

Let K0

B be a convex compact set such that KB ✓ K0

B . Strategies in KB are proper, while those
in K0

B are improper. We allow g to be defined over K0

B . In addition, we make the following three
assumptions:

1. Player B has access to a randomized approximate optimization oracle W . Given any
P 2 KA, W outputs a response q 2 K0

B such that E [g(P, q)] � maxq⇤2KB g(P, q⇤) � ✏,
where the expectation is over randomness of W

2. Player B is allowed to play strategies in K0

B

3. Player A has access to m copies of possibly (independently) randomized OCO(KC , T )
algorithms A1, ...,Am, all with regret RA(T )

Algorithm 3: Improper Game Playing
1 for t = 1, ..., T do
2 Player A plays Pt

3 Player B plays qt 2 K0

B , where qt = W(Pt)
4 Player A and B lose/gain payoff g(Pt, qt) =

Pm
i=1 f

i(Pt[i], qt)
5 Define loss: `it(p) = f

i(p, qt) 8i 2 [m]
6 Player A updates Pt+1[i] = Ai(`i1, ..., `

i
t) 8i 2 [m]

Proposition 6. If players A and B play according to Algorithm 3, then player B’s average strategy

q̄ = 1
T

PT
t=1 qt, q̄ 2 K0

B , satisfies for any P
⇤ 2 KA,

�
⇤  E [g(P ⇤

, q̄)] +
mRA(T )

T
+ ✏,

where the expectation is over the randomness of W .

Proof. Since the game is well-defined over KA and KB, there exists a max-min strategy q
⇤ 2 KB for

player B such that for all P 2 KA, g(P, q⇤) � �
⇤. Let P̄ = 1

T

PT
t=1 Pt. Then,

E
"
1

T

TX

t=1

g(Pt, qt)

#
� E

"
1

T

TX

t=1

max
q2KB

g(Pt, q)

#
� ✏

� E
"
1

T

TX

t=1

g(Pt, q
⇤)

#
� ✏

� E
⇥
d(P̄ , q

⇤)
⇤
� ✏

� �
⇤ � ✏.

Now let q̄ = 1
T

PT
t=1 qt. Note that q̄ 2 K0

B . Then we write:
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E
"
1

T

TX

t=1

g(Pt, qt)

#
= E

"
1

T

TX

t=1

mX

i=1

f
i(Pt[i], qt)

#

=
mX

i=1

E
"
1

T

TX

t=1

f
i(Pt[i], qt)

#


mX

i=1

 
E
"
1

T

TX

t=1

f
i(P ⇤[i], qt)

#
+

RA(T )

T

!

= E
"
1

T

TX

t=1

mX

i=1

f
i(P ⇤[i], qt)

#
+

mRA(T )

T

= E
"
1

T

TX

t=1

g(P ⇤
, qt)

#
+

mRA(T )

T

 E [g(P ⇤
, q̄)] +

mRA(T )

T
.

Here, P ⇤ is any arbitrary matrix in KA. Combining the lower and upper bounds, we get:

�
⇤  E [g(P ⇤

, q̄)] +
mRA(T )

T
+ ✏,

which completes the proof.

A.3 Proof of Theorem 5

Now we are ready to prove Theorem 5. The proof strategy will be as follows. We will first show
how the proposed agnostic boosting algorithm is an instance of the improper game playing setup
described above. Then, we will show that a weak learner satisfying Definition 2 corresponds to the
randomized approximate optimization oracle. Finally, we will explicitly compute the value of the
game, and derive the lower bound on correlation.

Under Definition 2, we can carefully argue that the agnostic weak learner W induces an approximate
optimization oracle for Player B. Specifically, we can show the following lemma.

Lemma 7. For any P 2 KA, the output q
0 = W(P )

� 2 K0

B satisfies,

E [g(P, q0)] � max
q2KB

g(P, q)� mk✏0

�
.

Proof. Note that in line 3 of Algorithm 2, we pass re-labelled examples back to the weak learner. An
alternative and equivalent approach to what is presented is to first relabel each example using P and
then to uniformly sample and pass m0 examples to W . Let ỹi correspond to the relabeled class of
example i. Recall that ỹi ⇠ P [i]. Let R be the distribution over (xi, ỹi) after relabelling and define
h
⇤ = maxh2H corR(h). Then, by the weak learning assumption,
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E
S0|ỹ

"
mX

i=1

WS0(xi) · (2ỹi � k)

#
= E

S0|ỹ

2

4
X

`2Bk

X

i:ỹi=`

WS0(xi) · (2ỹi � k)

3

5

�
X

`2Bk

0

@�max
h2H

X

i:ỹi=`

h(xi) · (2ỹi � k)�m✏0

1

A

� �

X

`2Bk

X

i:ỹi=`

h
⇤(xi) · (2ỹi � k)�mk✏0

= �

mX

i=1

h
⇤(xi) · (2ỹi � k)�mk✏0.

Taking the expectation of both sides,

Ẽ
y

"
E

S0|ỹ

"
mX

i=1

WS0(xi) · (2ỹi � k)

##
= E

"
mX

i=1

WS0(xi) · (2ỹi � k)

#

= Ẽ
S0

"
E

ỹ|S0

"
mX

i=1

WS0(xi) · (2ỹi � k)

##

� Ẽ
y

"
�

mX

i=1

h
⇤(xi) · (2ỹi � k)

#
�mk✏0.

For any h 2 H,

Ẽ
y

"
1

m

mX

i=1

h(xi) · (2ỹi � k)

#
= E

(xi,yi)⇠R
[h(xi) · (2yi � k)]

= E
xi


E

yi|xi

[h(xi) · (2yi � k)]

�

= E
xi

[h(xi) · (2E [yi|xi]� k)]

= E
xi

[h(xi) · (2P [i]� k)]

=
1

m

mX

i=1

h(xi) · (2P [i]� k)

= E
(xi,yi)⇠D

[h(xi) · (2P [i]� k)] .

Note the last equality follows from the fact that both R and D have the same marginal distribution
over unlabeled examples xi’s. Combining the results, multiplying by m, and dividing by � gives,

E
S0

"
mX

i=1

WS0(xi)

�
· (2P [i]� k)

#
�

mX

i=1

h
⇤(xi) · (2P [i]� k)�

mk✏0

�
.

Finally, note that q0(xi) =
WS0 (xi)

� 2 K0

B . Then, recalling our definition of g,
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E [g(P, q0)] = E
"

mX

i=1

(2P [i]� k) · (q0(xi)� yi)

#

= E
"

mX

i=1

(2P [i]� k) · q0(xi)

#
�

mX

i=1

(2P [i]� k) · yi

�
mX

i=1

h
⇤(xi) · (2P [i]� k)�

mk✏0

�
�

mX

i=1

(2P [i]� k) · yi

=
mX

i=1

(h⇤(xi)� yi) · (2P [i]� k)�
mk✏0

�

= max
q2KB

g(P, q)� mk✏0

�
.

which completes the proof.

Now, we return to proving Theorem 5. We start by explicitly computing the value of the above game.
One can show that the dominant strategy for player A is to return a matrix where row i is the vector
yi. That is, P = [y1; y2; ...; ym]. Because g decomposes into the sum of smaller independent losses
f , it is helpful to instead focus our attention on

f
i(P [i], q) = (2P [i]� k) · (q(xi)� yi).

Above, Player A has control over the vector P [i] and wants to minimize f
i. We can show that

regardless of what q(xi) 2 KB is, Player A minimizes f by playing P [i] = yi. Note, only the case
where q(xi) 6= yi is important. Under this scenario, Player A needs to maximize the value at the
yith index and minimize the value at the q(xi)th index. This is precisely accomplished by setting
P [i] = yi. Since the smaller loss functions f i are independent of one another, it follows that Player
A minimizes g by playing matrix P = [y1; y2; ...; ym]. Under this fixed dominant strategy for A, the
value of the game �

⇤ can be computed as

�
⇤ = max

q2KB

min
P2Ka

g(P, q)

= max
q2KB

mX

i=1

(2yi � k) · (q(xi)� yi)

= max
q2KB

mX

i=1

2(q(xi) · yi � 1)

= m · corS(h⇤)�m.

Then, for any P
⇤ using Proposition 6,
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m ·max
h2H

corS(h)�m  E [g(P ⇤
, q̄)] +

mRA(T )

T
+

mk✏0

�

= E
"

mX

i=1

(2P ⇤[i]� k) · (q̄(xi)� yi)

#
+

mRA(T )

T
+

mk✏0

�

= E
"

mX

i=1

(2P ⇤[i]� k) · (
1

�T

TX

t=1

ht(xi)� yi)

#
+

mRA(T )

T
+

mk✏0

�

= E
"

mX

i=1

P
⇤[i] ·

 
2
T

PT
t=1 ht(xi)� k

�
� (2yi � k)

!#

= +
mRA(T )

T
+

mk✏0

�
. (Lemma 19)

According to Lemma 17, there exists a P
⇤[i] and therefore a P

⇤, such that

m ·max
h2H

corS(h)�m  E
"

mX

i=1

2

 
Y
 PT

i=1 ht(xi)

�T

!
· yi � 1

!#
+

mRA(T )

T
+

mk✏0

�

= E
"

mX

i=1

2h̄(xt) · yi � 1

#
�m+

mRA(T )

T
+

mk✏0

�
.

Subtracting and then dividing both sides by m,

max
h2H

corS(h)  E
"
1

m

mX

i=1

2h̄(xt) · yi � 1

#
+

RA(T )

T
+

k✏0

�

= E
⇥
corS(h̄)

⇤
+

RA(T )

T
+

k✏0

�
.

Rearranging, we have shown that

E
⇥
corS(h̄)

⇤
� max

h2H

corS(h)�
RA(T )

T
� k✏0

�

which completes the proof. If one further lets RA(T ) to be OGD, as in the online setting, then
observe that we get

E
⇥
corS(h̄)

⇤
� max

h2H

corS(h)�
RA(T )

T
� k✏0

�

B Realizable Multiclass Boosting

In this section, we fill in the gaps of Section 4 for the online and statistical realizable settings by
providing boosting algorithms and their theoretical analysis. Namely, we show explicitly how the
OCO framework can also be used to construct multiclass boosting algorithms in the realizable setting.
Unlike in the agnostic setting, our realizable boosting algorithms will update weak learners by
reweighting examples.
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B.1 Online Setting

We now describe a online realizable boosting algorithm whose pseudocode is provided below. The
booster has black-box oracle access to N copies of a (�, T )-RWOL algorithm W1, ...,WN , each
satisfying Definition 3, and an OCO([0, 1], N) algorithm A. Importantly, note that in line 4 , we
denote by

Q
the L2 projection onto �k.

Algorithm 4: Online Realizable Multiclass Boosting via OCO
Input: (�, T )-RWOL W1...WN , OCO([0, 1], N) algorithm A

1 for t = 1, ..., T do
2 Receive example xt

3 Accumulate weak predictions ht =
PN

i=1 Wi(xt)
4 Set Dt = ⇧( ht

�N )

5 Predict ŷt ⇠ Dt

6 Receive true label yt
7 for i = 1, ..., N do
8 If i > 1, obtain p

i
t = A(l1t , ..., l

i�1
t ). Else, initialize p

1
t = 0.5.

9 Reveal loss function: lit(p) = p( 2Wi(xt)·yt�1
� � 1)

10 Pass (xt, yt) to Wi w.p. pit
11 Reset A

Theorem 8. The regret bound of Algorithm 4 satisfies:

1

T

TX

t=1

(2E [ŷt] · yt � 1) � 1� RA(N)

N
� R̃W(T, k)

�T
,

where R̃W(T, k) = 2RW(T, k) + Õ(
p
T ).

Proof. As usual, the approach is to compute a lower and upper bound on the sum of the expected
losses passed to the OCO oracle. Starting with the upper bound,

E
"
1

N

NX

i=1

l
i
t(p

i
t)

#
 1

N
E
"
min
p2K

NX

i=1

l
i
t(p)

#
+

RA(N)

N
(OCO Regret)

 1

N
E
"

NX

i=1

l
i
t(p

⇤)

#
+

RA(N)

N

=
1

N

NX

i=1

E

p
⇤

✓
2Wi(xt) · yt � 1

�
� 1

◆�
+

RA(N)

N

= E

2

4p⇤
0

@
2
⇣

1
N

PN
i=1 Wi(xt)

⌘
· yt � 1

�
� 1)

1

A

3

5+
RA(N)

N

 E
"
2

 
Y
 

1

�N

NX

i=1

Wi(xt)

!
· yt � 1

!#
+

RA(N)

N
(Lemma 18)

= 2 (E [ŷt] · yt � 1) +
RA(N)

N
.

Finally, summing over t 2 [T ],
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E
"
1

N

TX

t=1

NX

i=1

l
i
t(p

i
t)

#


TX

t=1

2 (E [ŷt] · yt � 1) +
TRA(N)

N
.

For the lower bound, we first need the following important Lemma adapted from [4] to the multiclass
setting:

Lemma 9. For any weak learner (�, T )-RWOL W , there exists R̃W(T, k) = Õ(
pP

t pt) +
2RW(T, k) such that for any sequence p1, ..., pT 2 [0, 1],

TX

t=1

pt(2W(xt) · yt � 1) � �

TX

t=1

pt � R̃W(T, k).

The proof of Lemma 9 follows exactly from Lemma 14 in Brukhim et al. [6] and Lemma 1 in
Beygelzimer et al. [4] and so we omit it here. Using Lemma 9,

1

�
E
"

NX

i=1

TX

t=1

p
i
t(2W(xt) · yt � 1)

#
� E

"
1

�

NX

i=1

 
�

TX

t=1

p
i
t � R̃W(T, k)

!#

=
NX

i=1

TX

t=1

E
⇥
p
i
t

⇤
� N

�
R̃W(T, k).

Then,

E
"

TX

t=1

NX

i=1

l
i
t(p

i
t)

#
=

1

�
E
"

NX

i=1

TX

t=1

p
i
t(2W(xt) · yt � 1)

#
�

NX

i=1

TX

t=1

E
⇥
p
i
t

⇤
� �N

�
R̃W(T, k).

By combining upper and lower bounds for E
⇥

1
NT

P
t

P
i l

i
t(p

i
t)
⇤
, we get

1

T

TX

t=1

(2E [ŷt] · yt � 1) � 1� RA(N)

N
� R̃W(T, k)

�T
.

which completes the proof.

B.2 Statistical Setting

We now describe a statistical realizable boosting algorithm whose pseudocode is provided below. The
booster is given as input a sample S = (x1, y1), ..., (xm, ym) 2 X ⇥ Bk. The booster has black-box
oracle access to T copies of a (�,m0)-RWL algorithm W1, ...,WT , each satisfying Definition 4, and
m copies of an OCO([0, 1], T ) algorithm, A1

, ...,Am. Importantly, note that in line 8 , we denote byQ
as a randomized prediction operator that given a �-scaled distribution over k labels, first computes

the L2 projection onto �k, and then randomly samples a label from the resulting distribution.
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Algorithm 5: Statistical Realizable Boosting via OCO
Input: (�,m0)-RWLs W1...WT , OCO([0, 1], T ) algorithms A1

...Am, and Sample
S = (x1, y1)...(xm, ym) 2 X ⇥ Bk

1 for t = 1, ..., T do
2 If t = 1, set P1[i] = 1/m 8i 2 [m]
3 Pass m0 examples to Wt drawn from the following distribution:
4 Draw (xi, yi) w.p. / Pt[i]
5 Let ht be the weak hypothesis returned by Wt

6 Reveal loss function: lit(p) = p(ht(xi)
� · (2yi � k)� 1) 8i 2 [m]

7 Set Pt+1[i] = Ai(li1, ..., l
i
t) 8i 2 [m]

8 return h̄(x) =
Q⇣ 1

�T

PT
t=1 ht(x)

⌘

Theorem 10. The output of Algorithm 5, which is denoted h̄, satisfies,

E
⇥
corS(h̄)

⇤
� 1� RA(T )

T
,

where S is the distribution which uniformly assigns to each example (xi, yi) probability 1/m.

Proof. We will use a very similar proof strategy as in the agnostic setting by reducing to improper
game playing. Let h⇤ be a hypothesis consistent with the input sample (i.e. h⇤(xi) = yi for i  m)
and let H0 = H [ h

⇤. We begin by establishing the reduction to improper game playing. Take
KA = [0, 1]m, KB = �H, K0

B = 1
�KB . Define payoff functions:

f
i(p, q) = p(q(xi) · (2yi � k)� 1)

g(P, q) =
mX

i=1

f
i(P [i], q)

=
mX

i=1

P [i](q(xi) · (2yi � k)� 1).

We will now show that the agnostic weak learner W induces an approximate optimization oracle for
Player B. Specifically, we will show the following lemma.

Lemma 11. For any P 2 KA, the output q
0 = W(P )

� 2 K0

B satisfies

E [g(P, q0)] � 0.

That is, the weak learner corresponds to an approximate oracle with 0 error.

Proof. Using the definition of correlation and the weak learning condition.

E [corP (WS0)] = E
"

mX

i=1

P [i]Pm
i=1 P [i]

WS0(xi) · (2yi � k)

#
� �

and therefore,

E
"

mX

i=1

P [i]
WS0(xi)

�
· (2yi � k)

#
�

mX

i=1

P [i].

Now, take q
0(xi) =

WS0 (xi)
� 2 K0

B . Then, recalling our definition of g,
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E [g(P, q0)] = E
"

mX

i=1

P [i](q0(xi) · (2yi � k)� 1)

#

= E
"

mX

i=1

P [i]q0(xi) · (2yi � k)

#
�

mX

i=1

P [i]

� 0 = max
q2KB

g(P, q).

Now, we will complete the last part of the overall proof. We start by explicitly computing the value
of the above game. One can show that the dominant strategy for player B is to return h

⇤. Indeed,
since h

⇤ is consistent, we can show that g(P, h⇤) = 0 for any P and thus �⇤ = 0. Then, for any P
⇤

using Proposition 6,

0  E [g(P ⇤
, q̄)] +

mRA(T )

T

= E
"
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i=1
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⇤[i](q̄ · (2yi � k)� 1)

#
+

mRA(T )
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⌘
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�
� 1

1

A

3

5+
mRA(T )
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.

According to Lemma 18, there exists a P
⇤[i] and therefore a P

⇤, such that
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Dividing both sides by m,
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Thus, rearranging, we have shown that
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C Alternate Weak Learning Conditions

Definition 1 roughly requires that the online weak learner be able to distinguish between every pair
of classes to some non-trivial, but far from optimal, degree. In this section, we propose other possible
online agnostic weak learning conditions without changing Algorithm 1.

We start by first considering a setting where there always exists a hypothesis h 2 H that, in
expectation, makes at most T/2 mistakes (i.e. gets at least 1/2 correct). Here, the weak learning
condition below suffices as maxh2H E

hPT
t=1 2h(xt) · yt � 1

i
is guaranteed to be positive.

Definition 5. Let H ✓ BX

k be a class of experts and let 0 < �  1 denote the “advantage”. An

online learning algorithm W is a (�, T )-agnostic weak online learner for H if for any adaptively

chosen sequence of tuples (xt, yt) 2 X ⇥ Bk, at every iteration t 2 [T ], the algorithm outputs

W(xt) 2 Bk such that,

�max
h2H

E
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TX
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2h(xt) · yt � 1

#
� E
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TX
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2W(xt) · yt � 1

#
 RW(T, k),

where the expectation is taken w.r.t. the randomness of the weak learner W and that of the possibly

adaptive adversary, RW : ⇥ ! + is the additive regret: a non-decreasing, sub-linear function

of T .

For weak learners satisfying Definition 5, one can show, using the same proof strategy in Section 3.2,
that Algorithm 1 achieves the average regret bound below.

Proposition 12. Assuming weak learners satisfy Definition 5, the expected regret bound of Algorithm

1 is
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For completeness sake, we include a partial proof below.

Proof. The proof follows the same strategy as that used to prove Theorem 1. That is, we will
upper and lower bound the expected sum of loss passed to the OCO algorithm. Fortunately, the
proof of the upper bound remains exactly the same as that in the proof of Theorem 1. Thus,
we will only derive a lower bound on the sum of losses passed to the OCO algorithm. Define
h
⇤ = argmaxh2H

PT
t=1(2h(xt) · yt � 1) as the optimal competitor in hindsight. Then,
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(Lemma 15)

Using the weak learning condition in Definition 5,
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Putting things together, we find,
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Note that this is the same lower bound as in the proof of Theorem 1 and therefore the same regret
bound as in Theorem 1 holds.

The assumption on the hypothesis class that there exists a hypothesis h 2 H that, in expectation,
makes at most T/2 mistakes is quite strong, especially if we allow a random adaptive adversary. Note
that Definition 5 cannot be used when this assumption on H does not hold - E

hPT
t=1 2h(xt) · yt � 1

i

can be potentially negative for every h 2 H, even for the randomly guessing competitor. One way to
relax this assumption on H is via Definition 1 presented in the main text. Another way, is by taking a
one-vs-all perspective to multiclass classification, which we present below.
Definition 6. Let H ✓ BX

k be a class of experts and let 0 < �  1 denote the “advantage”. An

online learning algorithm W is a (�, T )-agnostic weak online learner for H if for any adaptively

chosen sequence of tuples (xt, yt) 2 X ⇥ Bk, at every iteration t 2 [T ], for every label ` 2 Bk, the

algorithm outputs W(xt) 2 Bk such that,

�max
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X
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2h(xt) · yt � 1

3

5� E
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4
X
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2W(xt) · yt � 1

3

5  RW(T, k),

where the expectation is taken w.r.t. the randomness of the weak learner W and that of the possibly

adaptive adversary, RW : ⇥ ! + is the additive regret: a non-decreasing, sub-linear function

of T .

Intuitively, Definition 6 roughly requires that a weak learner be able to learn each class to a non-trivial
(but far from optimal) degree of accuracy as it processes the stream of examples. In order to ensure
that � 2 (0, 1), we also need that our hypothesis class H contains k hypothesis each of which predicts
a reference class ` 2 Bk with probability a 1/2. This assumption on the hypothesis class is mild: if
our class H does not contain these randomly guessing binary hypotheses, we can add them without
substantially increasing the complexity of the class H. That said, this is still a minor drawback
compared to Definition 1, where no additional assumptions on H are needed.

Under Definition 6, we can show that the following regret bound for Algorithm 1. Note that this
regret bound is worse compared to the one derived assuming the weak learners satisfy Definition 1.
Indeed, compared to Theorem 1, there is an extra factor of k in the term containing RW(T,k) in the
bound below.
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Proposition 13. Assuming weak learners satisfy Definition 6, the expected regret bound of Algorithm

1 is
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Proof. The proof follows the same strategy as that used to prove Theorem 1. Like above, the
proof of the upper bound remains exactly the same as that in the proof of Theorem 1. Thus, we
will only derive a lower bound on the sum of losses passed to the OCO algorithm. Let h⇤ =
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Using the weak learning condition in Definition 6,
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Putting things together, we find,
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Combining this lower bound with the upper bound on the expected sum of losses in the proof of
Theorem 1 completes this proof.
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We end this section by presenting one more online agnostic weak learning condition that places an
asymmetric gain function on the best competitor and the weak learner. One of the benefits of this
condition is that as k increases, it is more explicit how exactly the weak learning assumption becomes
stronger.

Definition 7. Let H ✓ BX

k be a class of experts and let 0 < �  1 denote the “advantage”. An

online learning algorithm W is a (�, T )-agnostic weak online learner for H if for any adaptively

chosen sequence of tuples (xt, yt) 2 X ⇥ Bk, at every iteration t 2 [T ], the algorithm outputs

W(xt) 2 Bk such that,
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where the expectation is taken w.r.t. the randomness of the weak learner W and that of the possibly

adaptive adversary, RW : ⇥ ! + is the additive regret: a non-decreasing, sub-linear function

of T .

Along the same lines as above, under Definition 7, one can show that Algorithm 1 achieves the
following average regret bound.

Proposition 14. Assuming weak learners satisfy Definition 7, the expected regret bound of Algorithm

1 is
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Proof. Again, we only need to show a lower bound on the expected sum of losses passed to the OCO
algorithm. Define h

⇤ = argmaxh2H

PT
t=1(2h(xt) · yt � 1) as the optimal competitor in hindsight.

Then,
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Using the weak learning condition in Definition 7,
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Putting things together, we find,
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Note that this is the same lower bound as in the proof of Theorem 1 and therefore the same regret
bound as in Theorem 1 holds.

D Dependence of RW(T, k) on k

We show concretely how the weak learner’s regret, RW(T, k), can depend on the number of classes
k. Recall, that the weak learning condition in Definition 1 is written in terms of approximately
maximizing a sequence of gain functions:

�y,`(z) =

8
<

:

�1, if z = `

1, if z = y

0, otherwise

with an advantage parameter 0 < � < 1. By taking an affine transformation of �y,`(z), Definition 1
can be equivalently expressed as approximately minimizing a sequence of bounded, non-negative loss

functions

Ly,l(z) =
1� �y,`(z)

2
=

8
<

:

1, if z = `

0, if z = y

1/2, otherwise

with an advantage parameter � > 1. By redefining weak learning in terms of bounded, non-negative
loss functions, we can tap into the rich literature of Prediction with Expert Advice to construct online
agnostic weak learners. Specifically, we will use the celebrated (Randomized) Exponential Weights
Algorithm (EWA). A nice fact about the EWA is that for 0-1 losses L̃yt(zt) = {zt 6= yt}, and any
finite set of experts H, it enjoys the regret bound
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#
 ⌘

1� e�⌘
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,

where ŷt denotes the prediction of the EWA in the t’th iteration and ⌘ > 0 is a tuneable learning rate
(see the the exponentially-weighted forecaster from Chapter 2 of [8]). We will be using this regret
bound extensively in the next two subsections.

D.1 Finite Hypothesis Classes

In this section, we will consider two types of finite hypothesis classes: the set of discretized weight
matrices and the set of discretized multiclass decision trees of depth 1.

Beginning with weight matrices, consider the multiclass classification setup with example label
pairs (x, y) 2 d ⇥ Bk. Let H denote a finite hypothesis class parameterized by discretized weight
matrices Wh 2 k⇥d, such that |H| =

�
1
�

�kd, where � 2 (0, 1) is the level of discretization. For an
input example x 2 d, a hypothesis h 2 H makes its prediction as ŷt = argmaxk Whx. Take H to
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be a set of experts. We will now show that an instance of the EWA, using H and learning rate ⌘, run
over 0-1 losses corresponds to an agnostic weak online learner with advantage parameter � = 2⌘

1�e�⌘

and regret RW(T, k) = O(kd log( 1� )). Taking the discretization parameter � = 1
T ensures that the

regret remains sublinear in T .

First, recall that for 0-1 losses L̃yt(zt) = {zt 6= yt}, the EWA algorithm W using hypothesis class
H and learning rate ⌘ > 0 guarantees the regret bound
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Putting things together, we get
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Finally, observing that |H| =
�
1
�

�kd completes the proof. As an example, if one takes ⌘ = 1,
then the EWA algorithm corresponds to an agnostic weak online learner with advantage parameter
� = 2

1�e�1 ⇡ 3.16 and regret RW(T, k) = O(kd log T ).

A similar procedure can be performed when considering the same multiclass classification setup
when the hypothesis class H is the set of depth 1 multiclass decision trees. If one further restricts to a
k-wise split on a feature j 2 [d], then the class of depth 1 decision trees can be abstractly represented
by the function:

f(x) =

8
>><

>>:

y1, if �1 < xj  ⌧1

y2, if ⌧1 < xj  ⌧2

...

yk, if ⌧k�1 < xj < 1

for input x 2 d, thresholds ⌧1, ..., ⌧k�1, and labels y1, ..., yk. If one discretizes the thresholds using
the parameter � 2 (0, 1), then |H| = O(d ·kk ·( 1� )

k). Therefore, EWA using this hypothesis class and
0-1 losses corresponds to an agnostic weak online learner with regret RW(T, k) = O(k log(kT ) +
log d).

D.2 Infinite Hypothesis Classes

Our construction of weak learners for the two learning settings above crucially relied on the fact that
the hypothesis class was finite. Below, we discuss how to construct agnostic weak online learners for
infinite hypothesis classes. The key insight from the constructions above is that any agnostic weak
online learner with advantage � > 1 for the standard 0-1 loss can be converted into weak learner that
satisfies an equivalent version of Definition 1 with the non-negative loss functions Ly,l(z) with twice
the advantage, namely 2�. For finite hypothesis classes, we constructed weak learners for the 0-1 loss
by running (randomized) EWA over H with a fixed learning rate ⌘. Similarly, for infinite hypothesis
classes, we can construct a weak learner for 0-1 losses by setting the learning rate ⌘ to be a fixed
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positive constant in the optimal multiclass agnostic online learner proposed in Daniely et al. [12].
Concretely, the multiclass agnostic online learner proposed in Section 5 of Daniely et al. [12] runs
the (randomized) EWA over a carefully constructed finite set of experts of size at most (Tk)LDim(H),
where LDim(H) is the Multiclass Littlestone Dimension of H. Following an identical analysis as in
Daniely et al. [12], one can now show that if W is a EWA algorithm, then for 0-1 losses over this
carefully constructed set of experts, W achieves regret
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where H is the hypothesis class of interest and ⌘ > 0. Picking ⌘ = 1, we get that the EWA W is an
agnostic online weak learner for 0-1 losses with advantage parameter ⇡ 1.58. Thus, using the key
insight mentioned above, W is also a agnostic online weak learner for the non-negative loss functions
Ly,l(z) with advantage parameter ⇡ 3.16. This suffices to show that W is also an agnostic online
weak learner with respect to Definition 1.

E Important Lemmas

We give the important lemmas (and their proofs) used in the main text and Appendix A and B.
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Lemma 16. For any pair h, y 2 Bk and p 2 �k,

p · (2h� 2y) � 2(h · y � 1)

Proof. Consider the case when h = y. Then the left and right side of the above inequality hold with
equality at the value of 0 for any vector p in the simplex. Now, consider the case when h 6= y. Then,
observe that setting p = y achieves the minimum of p · (2h�2y) at �2 which matches the right-hand
side.

Lemma 17. For every 0 < �  1, h 2 �k, and y 2 Bk, there exists p 2 �k such that:

p ·
✓
2h� k

�
� (2y � k)

◆
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✓Y✓
h

�

◆
· y � 1

◆
,

where
Q

: k ! �k is the L2 projection operator onto the simplex.
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Proof. We first review an important property of the L2 projection onto the simplex. It is known that
the solution to the L2 projection

Q
(·) onto the simplex is just a threshold operator (see Theorem 2.2

in [11]): for any input vector g, subtract a constant µ from each element. If the result is negative,
replace it by zero. More formally,

Q
(g) = [g � µ k]+ . Note that µ must satisfy the piecewise linear

equation
Pk

i=1 max(0, gi � µ) = 1. Let g
0

denote the sorted version of g in decreasing order. Then,

define K as the largest integer within {1, 2, ..., k} such that g
0

K �
PK

j=1 g
0
j�1

K > 0. One can verify

that µ =
PK

j=1 g
0
j�1

K is the unique solution to the piece-wise linear equation above. We will use this
property of L2 projection extensively in our proof, which we formally begin below.

Define h̃ =
Q⇣h

�

⌘
. Let t be the number of zero entries in the projection h̃. Furthermore, define

hy = h · y and h̃y = h̃ · y as the y’th index of h and
Q
(h� ) respectively. We will show that when

t  k � 2, setting p = y achieves the desired bound and when t = k � 1, there exists some p 2 �k

that achieves the desired bound.

We now begin with the case where t  k � 2. Our goal will be to first show the following lower
bound on h̃y ,

h̃y � (k � t)hy � 1

�(k � t)
+

1

k � t
.

Consider the subcase where h̃y = 0. Then, by the properties of the projection operator above it

must have been the case that hy

�  µ, where using the definition above µ =
1
�

Pk�t
j=1 h

0
j�1

k�t . Therefore,

hy 
Pk�t

j=1 h
0
j��

k�t  1��
k�t . Substituting in, we find

(k � t)hy � 1

�(k � t)
+

1

k � t
 0 = h̃y.

Now, consider the subcase where h̃y > 0. Then, h̃y = hy

� � µ, where again

µ =
1
�

Pk�t
j=1 h

0

j � 1

k � t
 1� �

�(k � t)
.

Substituting in completes proving the lowerbound

h̃y =
hy

�
� µ � hy

�
� 1� �

�(k � t)
=

(k � t)hy � 1

�(k � t)
+

1

k � t
.

Now that we have shown,

h̃y =
hy

�
� µ � (k � t)hy � 1

�(k � t)
+

1

k � t
,

we finally show this implies the inequality

✓
2hy � 1

�
� 1

◆
 2h̃y � 2,

which follows from plugging p = y into the lemma. We start with
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2h̃y �
2hy � 1

�
� 1 � 2(k � t)hy � 2

�(k � t)
+

2

k � t
� 2hy � 1

�
� 1

= � 2

�(k � t)
+

1

�
+

2

k � t
� 1

= (
1

�
� 1)� 2

k � t
(
1

�
� 1)

= (
1

�
� 1)(1� 2

k � t
) � 0,

where the last inequality follows from the assumption that t  k � 2. Thus, for the case where
t  k � 2, we have shown the lemma holds by setting p = y.

Now we will consider the case where t = k � 1. Again, we will also consider the subcases where
h̃y = 0 and h̃y = 1. We start with the subcase where h̃y = 0. Here, we will show that picking p = y

is the right choice. Namely, we will show that the following inequality holds

✓
2hy � 1

�
� 1

◆
 2h̃y � 2.

Under the assumption that h̃y = 0, the right hand side collapses to �2. Thus, we need to show that
2hy�1

�  �1. Recall that if h̃y = 0, then by projection properties. hy

�  µ. Again, by definition,

µ =
1
�

Pk�t
j=1 h

0

j � 1

k � t
= max

j

hj

�
� 1  1� hy

�
� 1.

Therefore we find that, hy

�  1�hy

� � 1, from which it is easy to see that 2hy�1
�  �1, which

completes this subcase.

We now move to the subcase where h̃y = 1. Here, we will show that there exists a p 2 Bk \ {y} that
satisfies the required bound in the lemma. When h̃y = 1, the right hand side collapses to 0. Thus, we
need to show the existence of p 2 Bk \ {y} s.t.

2hp � 1

�
+ 1  0,

where hp denotes h · p, the value of h at the p’th index. We shall prove the bound above via
contradiction. Assume that indeed for all p 2 Bk \ {y},

2hp � 1

�
+ 1 > 0.

This implies that hp >
1��
2 for all p 2 Bk \ {y}. Observe that when k � 3, the probability mass

over all labels other than y is strictly bounded below by 1� � and so it must be that hy < �. Recall
that if h̃y = 1, then by projection properties,

µ =
1
�

Pk�t
j=1 h

0

j � 1

k � t
=

hy

�
� 1 < 0,

where the last inequality follows from the fact that hy must have mass strictly less than �. However,
if µ < 0, then since the solution to the projection operation is

h
h
� � µ k

i

+
and the entries of h are

non-negative, all entries of h
� � µ k are strictly positive. This contradicts our original assumption

that t = k � 1 (implying that all but one index are negative) which completes the proof for k � 3.
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Now, when k = 2, µ = hy

� � 1, and by projection properties,

hp

�
� µ =

hp � hy

�
+ 1  0.

Noting that hy = 1� hp, completes the proof since it implies that for p 6= y, 2hp�1
� + 1  0.

Lemma 18. For every 0 < �  1, h 2 �k, and y 2 Bk, there exists p 2 [0, 1] such that:

p

✓
2h · y � 1

�
� 1

◆
 2

✓Y✓
h

�

◆
· y � 1

◆
,

where
Q

: k ! �k is the L2 projection operator onto the simplex.

Proof. Observe that we can consider the same four cases as in the proof for Lemma 17. Indeed,
for three out of the four cases, the optimal choice for Lemma 17 was selecting p = y. Under these
three cases, we know that by picking p = y the following inequality holds by substituting p = y into
Lemma 17:

2h · y � 1

�
� 1  2

✓Y✓
h

�

◆
· y � 1

◆
.

Thus, for this lemma, for the same three cases of Lemma 17, it suffices to pick p = 1. In the last case
of Lemma 17, h̃y = 1, that is, all the mass after the projection falls on the label y. In this case, the
right hand side of our inequality collapses to 0. Thus it suffices to pick p = 0 for this lemma to hold.

Lemma 19. For 0 < �  1, h 2 �k, y 2 Bk, and all p 2 �k:

p ·
✓
2h� k

�
� (2y � k)

◆
= (2p� k) · (

h

�
� y)

Proof.

p ·
✓
2h� k

�
� (2y � k)

◆
= p ·

✓
2h� k

�

◆
� p · (2y � k)

= 2p · h
�
� 1

�
� 2p · y + 1

= 2p · (h
�
� y)� 1

�
+ 1

= 2p · (h
�
� y)� k · (h

�
� y)

= (2p� k) · (
h

�
� y).

F Experimental Details

Each cell in Table 1 is the average over the "best accuracies" of five independent shuffles of the dataset.
For each shuffle, the "best accuracy" was computed as the maximum accuracy over five candidate �

values. For both OCO-based boosting algorithms, � was tuned across [0.10, 0.30, 0.50, 0.70, 1], and
for OnlineMBBM, � was tuned across [0.001, 0.01, 0.05, 0.1, 0.3]. The range of � values used to tune
OnlineMBBM is consistent with those used by Jung et al. [24]. In addition, in our own experiments,
we found that for � values larger than 0.30, OnlineMBBM performed significantly worse. Note that
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Table 2: Dataset summaries.

Dataset #datapoints #covariates #classes
Balance 625 4 3

Cars 1728 6 4
LandSat 6435 36 6

Segmentation 2310 19 7
Mice 1080 82 8
Yeast 1483 8 10

Abalone 4177 8 28

Table 3: Standard errors of accuracies.

Dataset Standard Errors of Accuracies
Agn Opt Ada OCOR

Balance 0.68 1.06 1.27 0.84
Cars 0.46 0.02 0.55 0.32

LandSat 0.89 0.36 1.23 0.21
Segmentation 0.70 0.48 1.56 0.54

Mice 0.58 0.60 2.53 0.26
Yeast 0.43 1.03 1.09 1.53

Abalone 0.53 0.42 0.28 0.31

AdaBoost.OLM does have not have a tuning parameter �, which is one of its advantages despite its
subpar performance.

For both OCO-based boosting algorithms, we used Online Gradient Descent with learning rate
⌘ = �

p
N

as the OCO algorithm. This learning rate is optimal up to constant factors [35].All
computations were carried out on a Nehalem architecture 10-core 2.27 GHz Intel Xeon E7-4860
processors with 25 GB RAM per core. The total amount of computing time was around 500
hours. The River package [29], used to implement the VeryFastDecisionTree, is licensed under BSD
3-Clause.

Table 2 provides more information about each of the datasets used. For the Mice dataset, entries with
missing data were replaced with the average value of their respective column.

Table 3 provides the standard error for each accuracy in Table 1.
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